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ABSTRACT

Posterior sampling for high-dimensional Bayesian inverse
problems is a common challenge in real-world applications.
Randomized Maximum Likelihood (RML) is an optimization
based methodology that gives samples from an approximation
to the posterior distribution. We develop a high-dimensional
Bayesian Optimization (BO) approach based on Gaussian
Process (GP) surrogate models to solve the RML problem.
We demonstrate the benefits of our approach in comparison
to alternative optimization methods on a variety of synthetic
and real-world Bayesian inverse problems, including medical
and magnetohydrodynamics applications.

Index Terms— Bayesian Optimization, Gaussian Pro-
cesses, Randomized Maximum Likelihood, Inverse Problems

1. INTRODUCTION

We consider Bayesian inverse problems, where the goal is to
sample from the posterior distribution p(x|D) = p(D|x)p(x)

p(D)

of the unknown parameters x ∈ RD given the observed
data D ∈ Rm. Typically, the likelihood is assumed to
be a Gaussian distribution D|x ∼ Nm(f(x),Σobs), where
f(x) : RD → Rm is known as the simulator; f is often
computationally expensive to evaluate and it usually models
an underlying physical process. The covariance matrix Σobs
describes the modelling and observational errors. Bayesian
inverse problems are encountered in applications such as
climate modelling [1], medical imaging [2], and material
sciences [3].

Randomized Maximum Likelihood (RML) was intro-
duced in [4, 5], as an approximate posterior sampling method-
ology. RML is formulated for the situation where the obser-
vations are subject to Gaussian distributed errors (i.e., a
Gaussian likelihood) and where the prior distribution is also
Gaussian: x ∼ ND(µ,Σ). The algorithm proceeds by first
perturbing the data and the prior mean, and then optimizing
the unnormalised log-posterior using these perturbed values.
See Algorithm 1.

This work was partially funded by TotalEnergies.

Algorithm 1 Randomized Maximum Likelihood (RML)
nRML : number of samples required
for n ∈ [nRML] do

1. Sample Dn ∼ Nm(D,Σobs) from the Gaussian likeli-
hood
2. Sample µn ∼ ND(µ,Σ) from the Gaussian prior
3. Construct On(x) := log p(D|x)p(x) w.r.t. the ran-
domizations (Dn, µn)

On(x) = logNm(Dn|f(x),Σobs) + logND(x|µn,Σ)
(1)

4. Obtain x⋆
n as the maximizer x⋆

n = argmaxx On(x).
end for

Here, we use the notation [nRML] = {1, 2, . . . , nRML}.
Thus, RML solves nRML optimization problems, each with
a different objective function, On(x). The resulting solutions
{x⋆

n}
nRML
n=1 are approximate samples from the posterior dis-

tribution p(x|D). The samples are exact draws from the pos-
terior if the simulator f(x) is linear; see Appendix A for a
simple proof, or [6] for the original proof treating a more gen-
eral case. Nonetheless, good practical performance has been
observed for nonlinear (deep) neural network parametrized
simulators [7]; see also [8] for a modification of RML for
multi-modal posteriors with highly nonlinear simulators.

Instead of focusing on the accuracy of the approximate
samples {x⋆

n}
nRML
n=1 with respect to the true posterior, we ad-

dress solving the optimization problems (1) efficiently in the
challenging case of a high-dimensional input space RD. We
focus on the specific scenario where the log-likelihood

log p(D|x) ∝ L(x) := −||D − f(x)||2Σobs
(2)

has a low-dimensional active subspace [9], where we use the
notational convention that ||y||2Σ = y⊤Σ−1y. In other words,
we assume L(x) ≈ g(ATx), where g : Rd → R with d ≪ D,
and A ∈ RD×d is a semi-orthogonal matrix (i.e., ATA = Id);
A is known as the active subspace. As pointed out in [9],
many log-likelihoods used in inverse problems possess such a
low-dimensional structure, e.g., in medical applications [10].

Bayesian Optimization (BO, i.e., finding argmaxx O(x)
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for a generic objective function O(x) using a Gaussian pro-
cess surrogate model gGP(x) ≈ O(x)) is based on a stan-
dard exploration-exploitation principle. Namely, an acquisi-
tion function based on gGP(x) is used such that in the explo-
ration phase, the target function O(x) is explored globally,
whereas in the exploitation phase, points x̃ that are likely to
satisfy x̃ = argmaxx O(x) are sampled until the maximum
is eventually found. For an introduction, see [11] for BO, and
[12] for Gaussian processes (GPs). In our setting, we deal
with high-dimensional objectives O(x) with an active sub-
space; however, we do not assume access to the active sub-
space. The most common solution is the use of random pro-
jections (embeddings) instead of the true low-dimensional ac-
tive subspace; see Algorithm 2, and [13] for a seminal work.

Algorithm 2 Standard high-dimensional BO algorithm with
random embeddings for a generic objective function O(·)

M : number of evaluations possible for a generic objective
function O(·) given the computational budget;
de : chosen dimensionality of the embedding R;
R ∈ RD×de : random embedding;
m0 : initial training points {yi, O(Ryi)}m0

i=1, yi ∈ Rde

for m ∈ {m0 + 1, . . . ,M} do
1. Construct a GP approximation O(Ry) ∼ GP
using the available objective function evaluations
{yi, O(Ryi)}m−1

i=1

2. Select ym = argmaxy am(y) as the maximizer of a
BO acquisition function am(y) for O(Ry) ∼ GP
3. Update the training data to {yi, O(Ryi)}mi=1.

end for
Obtain x⋆ = Rym⋆ as the maximizer

m⋆ = argmax
m

O(Rym), m ≤ M.

Although there is an extensive literature for high dimen-
sional BO (HD-BO) with random embeddings, which offers
theoretical guarantees and good practical performance (see
[11] for a recent survey on the topic), there is no method-
ology designed for posterior sampling. Yet RML is a natu-
ral way to use HD-BO for high-dimensional posterior sam-
pling. The closest related work to ours is [14], where BO is
compared with alternative gradient-free optimization methods
for maximizing the log-likelihood in low-dimensional inverse
problems. We extend their work by considering the multi-
objective setting (nRML randomized log-likelihoods) in or-
der to do posterior sampling, as well as considering high-
dimensional inverse problems with high-dimensional priors.

Contributions. We introduce a new methodology for
high-dimensional posterior sampling via BO (Algorithm 3);
we propose a natural way to exploit the shared simulator
f(x) that is present in all of the objective functions (1), as
well as an adjustment needed to incorporate a prior distribu-
tion without a low-dimensional structure. By using random

embeddings, we sidestep the difficulty of estimating the active
subspace, which might be impossible under tight computa-
tional budgets. We show that in the limited budget setting,
our methodology usually outperforms alternative gradient-
free optimization methods, according to a series of synthetic
and real-world experiments. Finally, we show that the sam-
ples produced by our method are indeed close to ‘true’ RML
samples (collected via an infinite computational budget),
whilst also covering well the high posterior density regions.

2. METHODOLOGY

Firstly, we consider the setting of a uniform prior, x ∼
U [ai, bi]

D
i=1, where [ai, bi]

D
i=1 := [a1, b1] × · · · × [aD, bD].

In this case, the posterior distribution is proportional to the
likelihood in the region of the prior support, and using our
active subspace assumption the RML objectives (1) become

On(x) ∝ Ln(x) := logNm(f(x)|Dn,Σobs) ≈ gn(A
T
nx),

(3)
where the objective functions now need to be maximized over
the prior support [ai, bi]Di=1 ⊆ RD. Note that we do not as-
sume knowledge of the active subspaces An ∈ RD×d or the
low-dimensional link functions gn : Rd → R.

We propose our procedure HD-BO-RML in Algorithm
3. Following the suggestion of [13], we use a collection of
K interleaved random embeddings. Algorithm 3 is based
on a cyclic pass through all the objective functions (3),
where for every random embedding k ∈ [K], the simula-
tions {(ykm, f(Rky

k
m))}nm=1 collected up to some iteration n

will serve as the basis for the training set used in the next iter-
ation, where the objective function O(n+1)′(x) is considered,
with (n+ 1)′ := n+ 1 mod nRML.

Given a budget of N simulator evaluations, our procedure
performs T := N/nRML HD-BO iterations for each objec-
tive. If N (and thus T ) is large enough, then HD-BO-RML
benefits from the same theoretical guarantees as a (vanilla)
HD-BO algorithm for each objective function (e.g., Theorem
11 in [13]). However, instead of performing the T HD-BO
iterations independently for each objective, we further exploit
that the simulator function f(x) is present in all the objectives
Ln(x) := logN (f(x)|Dn,Σobs). Namely, with one HD-BO
iteration for Lj(x), where some point ykj is selected by max-
imizing the acquisition function, we can use (ykj , f(Rky

k
j ))

to obtain (training) data for all the objectives. The next HD-
BO iteration for Lj(x) will come after nRML − 1 steps, and
instead of having only one training point (ykj , Lj(Rky

k
j )), we

will have nRML−1 extra points {(ykn, Lj(Rky
k
n))}

nRML+j−1
n=j+1

obtained from all the other objectives during the cyclic pass.
What we tend to observe in experiments is that during

the first few HD-BO iterations (exploration phase), the se-
lected points (ykn, f(Rky

k
n)) are informative of the overall

landscape of the posterior space (i.e., they separate the low-
posterior density regions from the high-posterior density re-



gions), whereas training points selected during the exploita-
tion phase are informative for the high-posterior density re-
gions, and thus are beneficial for every RML objective.

Algorithm 3 HD-BO-RML (Uniform or Gaussian priors; the
additional steps for Gaussian priors are shown in parentheses)

N : max possible number of evaluations of f(·);
de : choice of embedding dimensionality;
R1, . . . , RK ∈ RD×de : random embeddings;
n0 ×K initial points: {yki , f(Rky

k
i )}

n0
i=1, with yki ∈ Rde ,

k ∈ [K];
for k ∈ {1, . . . ,K} do

for n ∈ {n0 + 1, . . . , ⌊N/K⌋} (n ∈ {n0 +
1, . . . , ⌊N/2K⌋} in case of a Gaussian prior) do

1. Let n′ := n mod nRML

2. Construct a GP approximation to Ln′(Rky) using
the existing simulations {yki , f(Rky

k
i )}

n−1
i=1

3. Select ykn = argmaxy a
k
n(y) as the maximizer of a

BO acquisition function using the GP approximation
4. Perform f(Rky

k
n) and update the shared simulation

ensemble (i.e., training set) to {yki , f(Rky
k
i )}ni=1

(Gaussian prior) 5G. Perform local optimization in
RD around x0 = Rky

k
n with respect to the prior

pn′(x) = ND(x|µn′ ,Σ)
end for

end for
for n ∈ {1, . . . , nRML} do

(Uniform prior) 1U. Obtain x⋆
n = Rk⋆

yk⋆
m⋆

as the maxi-
mizer

k⋆,m⋆ = argmax
k,m

On(Rky
k
m), k ∈ [K],m ≤ ⌊N/K⌋

(Gaussian prior) 1G. Writing zkm for the local maxima
from step 5G. above, obtain x⋆

n = zk⋆
m⋆

via

k⋆,m⋆ = argmax
k,m

On(z
k
m), k ∈ [K],m ≤ ⌊N/2K⌋

end for

Using a Gaussian prior distribution, x ∼ ND(µ,Σ),
rather than a uniform prior, requires a modification of the
algorithm. Using again the active subspace assumption, the
objective functions (1) become:

On(x) = Ln(x)+log pn(x) ≈ gn(A
T
nx)+logND(x|µn,Σ).

Due to the potential lack of a low-dimensional (linear) sub-
space in the prior, as for example if x ∼ N (0, ID), run-
ning HD-BO by directly modelling On(Ry) as a GP might
be unsatisfactory, and hence we cannot simply use the al-
gorithm from the uniform prior case. Steps 5G and 1G
in Algorithm 3 propose a heuristic solution. While we
keep performing HD-BO with respect to the log-likelihood

Ln′(x) ≈ gn′(AT
n′x) as in the uniform prior case, we try to

increase the prior value for the points ykn = argmaxy a
k
n(y)

of potentially high-likelihood Ln′(Rky
k
n) by carefully per-

forming local optimization with respect to the prior pn′(x) =
ND(x|µn′ ,Σ) in the high-dimensional space RD, starting
from x0 := Rky

k
n; the resulting local maxima zkn try to

achieve Ln′(zkn) + pn′(zkn) > Ln′(Rky
k
n) + pn′(Rky

k
n) (i.e.,

On′(zkn) > On′(Rky
k
n)). This inequality was indeed ob-

served in our experiments; during the exploitation stage, zkn
managed to achieve a trade-off between high-likelihood and
high-prior. Note that the local maximization (step 5G) does
not require simulator evaluations, and any local optimization
method can be applied without any significant costs.

3. EXPERIMENTS

We now give empirical results showing that the proposed al-
gorithm performs well in comparison with competing meth-
ods in a variety of synthetic and real-world Bayesian inverse
problems. We use four simulators from the Active Subspaces
github page maintained by [15]:

• Elliptic-PDE f : R100 → R7. This is a widely used
exemplar for Bayesian inverse problems.

• Ebola: f : R8 → R, an 8-parameter dynamical system
model for the spread of Ebola in Liberia [16].

• MHD: f : R5 → R, a 5-parameter magnetohydrody-
namics power generation model [17].

• HIV long-term model: f : R27 → R is the cell count
at time t = 24 days [10].

In each case, the log-likelihood has a low-dimensional ac-
tive subspace L(x) ≈ g(ATx) with g : R → R for the HIV
model, and g : R2 → R for the other simulators. We do not
assume knowledge of A. We use a standard Gaussian prior
x ∼ N100(0, I) for the elliptic-PDE, and a uniform prior dis-
tribution for the other simulators. For each experiment, we
use RML to approximately sample from the posterior distri-
bution, comparing our high dimensional Bayesian optimiza-
tion (HD-BO) approach HD-BO-RML against the following
gradient-free optimization methods: BOBYQA [18], a trust-
region algorithm, used for method comparison versus HD-BO
in [19]; CMA-ES [20], an evolution strategy algorithm, used
for method comparison in [19, 11]; NSGA-II [21], an evo-
lutionary algorithm for multi-objective optimization, used for
method comparison versus HD-BO in [22]; and random de-
sign [13], a standard baseline for comparison versus BO. We
measure performance of the different methods by compar-
ing the mean return, defined as: 1/nRML

∑nRML

n=1 On(x
⋆
n),

where x⋆
n is the approximate maximizer of On(x) as selected

by the different optimization methods considered.
For HD-BO-RML, we use the Gaussian Process Upper

Confidence Bound (GP-UCB) acquisition function [23], i.e.,
akn(y) = µk

n(y) + βσk
n(y), where µk

n(y) is the GP predictive
mean which tries to approximate the log-likelihood Ln′(Rky)



(n′ := n mod nRML), and σk
n(y) represents the GP predic-

tive uncertainty. This acquisition function has been studied
in the HD-BO literature with random embeddings [13]. We
use a standard squared-exponential covariance function (RBF
kernel), i.e.,Cov(O(Ry1), O(Ry2)) := o2 exp(− ||y1−y2||2

2l2 )
for each GP model, where o and l are trainable hyperparam-
eters known as the outputscale and lengthscale, respectively.
For the random embeddings, Rk, each row is sampled inde-
pendently from the uniform distribution on the unit hyper-
sphere Sde−1, as suggested in [11]. We use K = 10 random
embeddings of low dimensionality de = d+1 and n0 = 5 ini-
tial points (where d is the dimension of the active subspace).

3.1. Results

Figure 1 shows the performance of each algorithm for dif-
ferent computational budgets, averaged over 5 trials. Each
trial has a budget of N = 1000 simulations in order to find
nRML = 20 samples. We can see that HD-BO-RML has the
best performance of all the methods for small budgets (i.e.,
small N ), and has comparable performance to other methods
with larger budgets; in each experiment, HD-BO-RML is the
best performing method across the full range of computa-
tional budgets for at least one of the 5 trials (and in all the 5
trials for the high-dimensional Elliptic PDE with D = 100).
With a fixed budget, the performance for HD-BO-RML
should remain relatively stable as the number nRML of RML
samples required increases (since exploration/exploitation
will still be performed jointly); CMA-ES and BOBYQA will
perform significantly worse due to fewer iterations and no
data sharing between objectives, while NSGA-II is known to
struggle for a large number of objectives [24].

Elliptic PDE Ebola

MHD HIV

Fig. 1. Negative mean returns: −1/nRML

∑nRML

n=1 On(x
⋆
n)

(lower is better) versus computational budget for each method

As in [9], we can visualize each posterior landscape
p(x|D) in the active subspace. The plots in the left column of

PDE RML oracle HDBO-RML

Ebola RML oracle HDBO-RML

MHD RML oracle HDBO-RML

HIV RML oracle HDBO-RML

Fig. 2. Posterior landscape in the active subspace (left), oracle
RML samples (middle), HD-BO-RML samples (right). RML
samples are shown in orange, with prior samples in blue.

Figure 2 show 10000 prior samples xi ∼ p(x) projected into
the true two-dimensional (one-dimensional for HIV) active
subspace A, coloured by their unnormalized log-posterior
density, i.e., {ATxi, log p(D|xi) + log p(xi)}10000i=1 . We use
an oracle with access to an unlimited amount of simulator
evaluations to obtain the ‘true’ nRML = 20 RML samples;
the resulting samples are represented in orange in the middle
column of Figure 2. We see that the RML samples cover
the high posterior density regions well in all the experiments.
Finally, the right column of Figure 2 shows the analogous
samples obtained from using HD-BO-RML (instead of the
oracle optimizer), averaged over the 5 trials. We see that the
HD-BO-RML samples are close to the oracle samples in the
active subspace representation.

4. DISCUSSION

Our focus has been on the challenging and commonly occur-
ring problem of posterior sampling using a complex simu-
lator, but with limited computational budget and no access
to gradient information. We have introduced an RML ap-
proach based on high-dimensional Bayesian optimization
that outperforms competing gradient-free optimization meth-
ods when there are tight computational budget constraints.
Here we assumed the active subspace is unknown, but if it



is known, the same BO approach can be used with the true
active subspace instead of the random embeddings.
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A. PROOF FOR THE LINEAR SIMULATOR CASE

In case of a linear simulator f(x) := Hx, Gaussian prior
distribution x ∼ N (µ,Σ), and Gaussian likelihood D|x ∼
N (Hx,Σobs), the posterior distribution p(x|D) is also Gaus-
sian:

x|D ∼ N (m,V ),

where

V = (Σ−1 +H⊤Σ−1
obsH)−1

and m = V (Σ−1µ+H⊤Σ−1
obsD).

To see why Randomized Maximum Likelihood (RML)
from Algorithm 1 produces exact samples from the poste-
rior distribution in this case, we first recall the RML objective
functions from (1):

On(x) := logNm(Hx|Dn,Σobs) + logND(x|µn,Σ),

where µn := µ + ϵn and Dn := D + ηn, with ϵn ∼
N (0,Σ) and ηn ∼ N (0,Σobs) independently.

Differentiating with respect to x gives

∇On(x) = 2Σ−1x−2Σ−1µn+2H⊤Σ−1
obsHx−2H⊤Σ−1

obsDn

and setting this equal to zero and rearranging gives

x = (Σ−1 +H⊤Σ−1
obsH)−1(Σ−1µn +H⊤Σ−1

obsDn)

= m+ V (Σ−1ϵn +H⊤Σ−1
obsηn).

The distribution of x can then easily be seen to be

x ∼ N (m,V (Σ−1ΣΣ−1 +H⊤Σ−1
obsΣobsΣ

−1
obsH)V ⊤)

= N (m,V ),

i.e., x is a sample from the true posterior distribution.
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