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ABSTRACT

Learning a graph from data is the key to taking advantage of
graph signal processing tools. Most of the conventional al-
gorithms for graph learning require complete data statistics,
which might not be available in some scenarios. In this work,
we aim to learn a graph from incomplete time-series obser-
vations. From another viewpoint, we consider the problem
of semi-blind recovery of time-varying graph signals where
the underlying graph model is unknown. We propose an al-
gorithm based on the method of block successive upperbound
minimization (BSUM), for simultaneous inference of the sig-
nal and the graph from incomplete data. Simulation results on
synthetic and real time-series demonstrate the performance of
the proposed method for graph learning and signal recovery.

Index Terms— Graph signal, graph learning, incomplete
data, missing sample recovery, time-series.

1. INTRODUCTION

Graph signal processing is an emerging field of research with
numerous applications in social networks [1], neural networks
[2], communications [3], and even financial markets [4].

Finding a graphical model for efficient signal representa-
tion is a prerequisite for graph signal processing. An undi-
rected graph models bilateral correlations (e.g., factor graphs
[5]), whereas for unilateral dependencies, a directed graph
is utilized (e.g., Bayesian networks [6]). There are numer-
ous approaches to learning the topology of the graph that
best represents the data, including stochastic approaches via
a Gaussian Markov random field (GMRF) model [7–9] or de-
terministic approaches incorporating measures of smoothness
or stationarity for signal representation [10]. Another cat-
egory of methods aims to recover a signal from corrupted
(noisy or incomplete) measurements using a known graph
model. Many of these algorithms exploit a graph-induced fi-
delity criterion, e.g., spatio-temporal smoothness [11] or total
variation [12, 13] to help recover the graph signal.

Graph learning algorithms rely on the integrity (complete-
ness) of the data, whereas for graph signal recovery methods,
the graph model of the data needs to be given a priori. In prac-
tical applications, however, the data may be incomplete, or the
graphical model may be unavailable. In this work, we study

the problem of graph learning from incomplete data or semi-
blind graph signal recovery, in which the underlying graph
structure is unknown. Our method, applied to both i.i.d. and
time-dependent data, is shown to improve the reconstruction
quality of missing entries in the signal by joint estimation of
the signal and graph.

The organization of the paper is as follows. In Section 1.1,
we formulate the problem and in Section 2, we propose an it-
erative solution method. The simulation results are provided
in Section 3. For the notations, we reserve bold lower-case
letters for vectors (e.g., x) and bold upper-case letters for ma-
trices (e.g., X). The Kronecker and the Hadamard products
are respectively denoted with ⊗ and ⊙. In addition, ◦ and ⊘,
are respectively used for element-wise power and division.

1.1. Problem Statement

An undirected graph with n vertices can be represented by
G = {V, E ,w}, with V = {1, . . . , n} being the set of vertices,
E ⊆ {{i, j}| i, j ∈ V} the set of edges, and w ∈ Rn(n−1)/2

the edge weights. Let X∗ = [x∗
1, . . . ,x

∗
T ] ∈ Rn×T denote

the matrix of the original signal for T time-stamps. Assume
we have observations with missing entries as Y = M⊙X∗,
where M denotes the binary sampling mask matrix. Now,
given Y and M, the problem considered in this paper is to es-
timate the original signal X∗ and the weights w∗ of an undi-
rected graph model that encode how similarly the signal el-
ements vary with time (assuming spatial smoothness for the
temporal variations of the signal).

2. PROPOSED METHOD

Assume the graph is connected. Using the graph learning
framework in [8, 9] and assuming a Laplacian GMRF model
for the temporal difference of the signal inspired by the notion
of spatio-temporal smoothness [11], we propose to solve the
following problem for joint estimation of X∗ and w∗

X∗,w∗ =argmin
X,w≥0

f(X,w) (1)

f(X,w) ≜ ∥Y −M⊙X∥2F + αTr
(
L(w)∆(X)∆(X)⊤

)
− β log det(L(w) + J) + γ ∥w∥1
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where ∆(X) = X−XD = [x1 − x0, . . . ,xT − xT−1] rep-
resents the first-order temporal differences of the signal, and
D ∈ RT×T is an upper triangular matrix with only 1s as
the first upper diagonal elements (assuming x0 = 0). Also,
J = (1/n)11⊤, and L : Rn(n−1)/2 → Rn×n denotes the
Laplacian operator [14] that maps w to the Laplacian matrix.
The adjoint of this operator is also denoted with L∗. The first
term in (1) is in fact the similarity criterion, and the second
term quantifies the spatio-temporal smoothness, which mea-
sures the smoothness of temporal variations in a graph sig-
nal. For temporally i.i.d. data, this simply leads to the con-
ventional graph signal smoothness [10], making our model
applicable for both i.i.d. and time-dependent data. The third
term, partially referred to as data-fidelity in [8], appears in the
maximum likelihood estimation of the Laplacian in a GMRF
model. The last term also acts as a sparsity-promoting regu-
larization function on w.

To solve problem (1), we use the block successive upper-
bound minimization (BSUM) [15, 16] method which is actu-
ally an extension of the block-coordinate-descent (BCD) [17].
Here, we minimize an uppperbound or a majorizer (see the
definition in [15]) of the original cost with respect to a block
variable in each iteration, resulting in unique and closed-form
solutions to the subproblems (with guaranteed convergence
[15]). These update steps are as follows:

2.1. X-update step

Let w be fixed. Then f(X,w) in (1), would be only a func-
tion of X as

fX(X) =Tr
(
(Y −M⊙X)(Y −M⊙X)⊤

)
+

αTr
(
L(w)∆(X)∆(X)⊤

)
+ const. (2)

Using vectorial representation, one obtains

fX(X) =vec(X)⊤Gvec(X)− 2vec(X)⊤b+ const

where G = Diag(vec(M)) + αH⊤(IT ⊗ L(w))H, H =
InT −D⊤ ⊗ In, and b = vec(Y).

Lemma 1. Assume X0 to be constant. The function

fS
X(X;X0) = fX(X) + vec(X−X0)

⊤(θI−G)vec(X−X0)

is a strictly convex majorizer for fX(X) if θ > 1+4α ∥L(w)∥.
Proof. For θ > λmax(G) = ∥G∥, the matrix θI−G is pos-
itive definite. This implies that fS

X(X;X0) ≥ fX(X), and
the equality is only occurred at X = X0. In addition, we can
obtain an upper-bound for ∥G∥ as

∥G∥ = max
∥x∥=1

∥∥Diag(vec(M))x+ αH⊤(I⊗ L(w))Hx
∥∥

≤ max
∥x∥=1

∥Diag(vec(M))x∥+ α
∥∥H⊤(I⊗ L(w))Hx

∥∥
≤ max

∥x∥=1
∥x∥+ α ∥H∥2 ∥I⊗ L(w)∥ ∥x∥

= 1 + α ∥H∥2 ∥L(w)∥

It is also easy to show that ∥H∥ ≤ 2. Therefore, fS
X(X;X0)

would be a majorization function for fX(X) if θ > 1 +
4α ∥L(w)∥ ≥ ∥G∥. We also obtain

fS
X(X;X0) = θ

∥∥∥∥vec(X−X0) +
Gvec(X0)− b

θ

∥∥∥∥2 + const

Hence, fS
X(X;X0) is trivially a strictly convex (quadratic)

function whose unique minimizer is given by vec(X0) −
1
θ (Gvec(X0)− b) = vec

(
X0 − 1

2θ
∂
∂XfX(X)|X0

)
.

Setting X0 = X(j), the X-update step yields as follows

X(j+1) = argmin
X

fS
X(X;X(j)) = X(j) − 1

2θ
∂
∂XfX(X(j))

∂
∂XfX(X) = 2

(
αL(w)∆(X)(I−D⊤) +M⊙X−Y

)
(3)

2.2. w-update step

Since w ≥ 0, we may write 2 ∥w∥1 = Tr(L(w)Hoff), where
Hoff = I−11⊤ Hence, assuming X to be fixed, after division
by β, the cost function in (1) reduces to

fw(w) = Tr(L(w)K)− log det(L(w) + J) (4)

where K = 1
β

(
α∆(X)∆(X)⊤ + γ/2Hoff

)
.

Lemma 2. Let q = L∗ ((L(w(j)) + J)−1
)
, r = L∗(K), and

τ > 0 be a constant. Also assume w0 ≥ 0. Then, the follow-
ing is a strictly convex majorization function for fw(w).

fS
w(w;w0) = τ⟨q⊙w◦2

0 ,w ⊘w0 + (w0 + 1/τ)⊘w − 2⟩+
⟨w, r⟩+Tr

(
(L(w0) + J)−1J

)
− log det(L(w0) + J)− n

(5)

Proof. Taking advantage of the notion of the Laplacian oper-
ator [14], we have

L(w) + J = EDiag(w)E⊤ + J = GDiag(w̃)G⊤ (6)

where w̃ = [w⊤1/n]⊤ and G = [E,1]. The matrix E =
[ξ1, . . . , ξn(n−1)/2] ∈ Rn×n(n−1)/2, consists of vectors ξk
for k = i− j + j−1

2 (2n− j), i > j, each of which has a +1
at the j-th position, a −1 at the i-th position, and zeros else-
where. Since the log det function is concave, an upperbound
for− log det(L(w)+J) can be constructed via the following
inequality [9]

− log det(L(w) + J) ≤Tr
(
F0(GDiag(w̃)G⊤)−1

)
(7)

− log det(L(w0) + J)− n

where F0 = L(w0) + J, and the equality is only achieved at
w = w0. Moreover, using Lemma 4 in [9], one can obtain



another majorizer as follows:

Tr
(
F0(GDiag(w̃)G⊤)−1

)
(8)

≤ Tr
(
F−1

0 GDiag(w̃◦2
0 ⊘ w̃)G⊤)

= ⟨w◦2
0 ⊘w,L∗(F−1

0 )⟩+Tr
(
F−1

0 J
)

Now, let gw(w;w0) = Tr(L(w)K)+⟨w◦2
0 ⊘w,L∗(F−1

0 )⟩.
Also, define r = L∗(K) and q = L∗(F−1

0 ) = L∗(L(w0 +
J)−1). Then, gw(w;w0) can be decomposed to scalar func-
tions of wi as

gw(w;w0) =

n(n−1)/2∑
i=1

gwi(wi;w0i) = riwi + qi
w0

2
i

wi
(9)

with ri = [r]i, qi = [q]i. Now, let h(x) = x+ 1
x −2. It can

be easily shown that h(x) is always non-negative for x > 0,
and only achieves zero at x = 1. In addition, since L(w(j))+
J ≻ 0 and K ⪰ 0, one can conclude that qi > 0 and ri ≥ 0
(using the property of the adjoint Laplacian operator). Thus,
one may suggest a majorizer for gwi

(wi;w0i) as

gSwi
(wi;w0i) = gwi

(wi;w0i) + τqiw0
2
i h(wi/w0i)

= riwi + τqiw0
2
i

(
wi

w0i

+
w0i + 1/τ

wi
− 2

)
with τ being a positive constant. Finally, after simplifications,
one obtains the majorizer in (5) for fw(w), using (7) and (8).
It is easy to verify that fS

w(w;w(j)) is strictly convex for w ≥
0 (via second order derivatives).

Using the above lemma, the w-update step yields as

w(j+1) = argmin
w

fS
w(w;w(j)) (10)

= w(j) ⊙
√
(τw(j) ⊙ q+ q)⊘ (τw(j) ⊙ q+ r).

2.3. Main algorithm

The proposed method with all steps can be summarized in
Algorithm 1. We choose X(0) = Y and w(0) = Pw≥0(S

†
Y )

for initialization, where SY = 1
T YY⊤ and Pw≥0 denotes

the projection onto the set w ≥ 0. The stopping criterion
is met when the relative error between consecutive iterations
becomes smaller than a threshold or when the number of iter-
ations exceeds a limit.

2.4. Computational complexity

The update step in (3) is O(n2T + T 2n + n3) computation-
ally complex. Furthermore, given K, the complexity of the
w update step (10) is controlled by (L(w(k)) + J)−1, which
needs O(n3) operations. It also costs O(n2T + T 2n) opera-
tions to compute K. Hence, each iteration of Algorithm 1 is
O(n3 + n2T + T 2n) computationally complex.

Algorithm 1 Proposed algorithm to solve problem (1)

Input: Y, M. Parameters: α, β, γ, and τ .
Output: X(j), L(j) = L(w(j)).
Initialization: X(0) = Y, w(0) = Pw≥0(S

†
Y ), j = 0

repeat
Obtain X(j+1) using (3) with w = w(j).
Obtain w(j+1) via (10) with X = X(j+1).
Set j ← j + 1

until a stopping condition is met

3. SIMULATION RESULTS

Here, we present the simulation results of our proposed al-
gorithm for graph learning and missing sample recovery on
synthetic and real data.

3.1. Synthetic data

For generation of synthetic data, we consider n = 64 and
T = 640. We use the Stochastic Block Model for the un-
derlying graph comprising of 4 clusters (blocks), with inter-
cluster and intra-cluster edge probabilities of 0.7 and 0.075,
respectively. The Laplacian matrix of the graph is then scaled
to have Tr(L∗) = n. We then generate random samples of
the signal via x∗

t =
√
L∗†νt, νt ∼ N (0, I). The original

data matrix X∗ is then constructed as X∗ = [x∗
1, . . . ,x

∗
T ].

Next, we normalize X∗, so that each row has zero mean and
unit standard deviation. Finally, the observations are obtained
as Y = M ⊙ X∗, where M is the binary (sampling) mask
matrix. Now, we provide the matrices Y and M as inputs,
for signal and graph inference. The hyper-parameters of our
method are chosen as α = 0.02, β = 0.02T , γ = 0.002T ,
and τ = 100. To measure the performance of the graph learn-
ing algorithms, we use the relative error (RelErr) and the F-
score criteria. Let L∗ ∈ Rn×n be the ground-truth Laplacian,
and L̂ ∈ Rn×n be the estimated one, the relative error and the
F-score values are defined as

RelErr =
∥L∗ − L̂∥F
∥L∗∥F

, F-score =
2TP

2TP + FP + FN
.

The terms TP, FP, and FN, respectively denote the true pos-
itive, false positive, and false negative connections in the
inferred graph. The signal recovery performance is also
measured via SNR and the normalized mean squared error
(NMSE) criteria, defined as

SNR = 20 log10

(
∥X∗∥F

∥X∗−X̂∥F

)
, NMSE =

1

T

T∑
i=1

∥x∗
i − x̂i∥2

∥x∗
i ∥2

where X∗ and X̂, denote the ground-truth and the estimated
data matrices, with x∗

i and x̂i being their i-th columns, re-
spectively.
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Fig. 1: Performance results of the Laplacian matrix estimation from synthetic
data (in terms of F-score and relative error) versus the sampling rate (SR).

3.1.1. Graph learning

Here, we evaluate the performance of the proposed
method for learning the Laplacian matrix from incomplete
data. We compare the results of our method with several
benchmark algorithms for undirected graph learning. These
include the CGL [8], the GSP toolbox graph learning meth-
ods [10], namely the GSPBOX-Log and the GSPBOX-L2,
the GL-SigRep method in [18] for both graph learning and
signal recovery assuming smooth signal representation, and
the nonconvex graph learning algorithm in [19] called NGL1.
For fair comparison, the estimated Laplacian matrix is scaled
such that Tr(L̂) = n.

Figure 1 shows the estimation results in terms of RelErr
and F-score versus different values of the sampling rate (SR).
As it is implied from the figure, the proposed algorithm has
superior performance in estimating the graph Laplacian ma-
trix, especially at higher sampling rates.

3.1.2. Data matrix recovery

In this part, we evaluate the performance of the pro-
posed method for recovery of the original signal X∗. We
compare our method with several benchmark algorithms,
some of which are also based on graphical modeling. These
include the SOFT-IMPUTE algorithm2 for matrix comple-
tion using nuclear norm regularization [20], the GL-SigRep
method [18], the method for joint inference of signals and
graphs (JISG) [21], the time-varying graph signal reconstruc-
tion method (TVGS) [22] and the method in [23] named as
Graph-Tikhonov. For the last two methods, the underlying
graph Laplacian matrix must be given a priori. For this, we
use the CGL algorithm to infer the Laplacian matrix from the
incomplete observations Y. Figure 2 depicts the performance
of the proposed algorithm compared to the benchmark meth-
ods for recovery of the data matrix, at different values of the
sampling rate. The proposed method is shown to outperform
the other methods for recovery of the missing data.

1https://github.com/mirca/sparseGraph
2https://cran.r-project.org/web/packages/softImpute/index.html
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Fig. 2: Performance results of the original synthetic data matrix reconstruc-
tion (in terms of SNR and NMSE) versus the sampling rate.
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Fig. 3: Performance results of the recovery algorithms (in terms of SNR and
NMSE) for reconstruction of PM2.5 data matrix from incomplete measure-
ments, at different sampling rates.

3.2. Real data

This part provides numerical results on real data. For this
purpose, we use the data corresponding to the PM2.5 concen-
tration in the air of the state of California. The data matrix of
dimension 93x300, contains concentration values of PM2.5
particulate matters, measured at 93 stations (in California) for
300 days starting from January 1, 2015. We then normal-
ize the data as explained in the previous part and construct
Y = M ⊙X∗ (with random M). Here, we only provide the
results of graph signal recovery (since there is no ground-truth
graph model). Figure 3 is an example to show that our pro-
posed method has better performance compared to the bench-
mark algorithms, in recovery of real-world signals.

4. CONCLUSION

In this paper, we examined the problem of learning a graph
from incomplete data, which can also be considered as semi-
blind recovery of missing samples of a time-varying graph
signal. We proposed an algorithm to jointly estimate the un-
derlying graph model and the signal based on the block suc-
cessive upperbound minimization method. We further ana-
lyzed the computational complexity of our proposed method
in Section 2.4. The results of simulations on synthetic and real
data provided in Section 3, also demonstrate the efficiency of
the proposed method for both signal recovery and graph in-
ference from incomplete time-series observations.

https://github.com/mirca/sparseGraph
https://cran.r-project.org/web/packages/softImpute/index.html
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