
MATRIX LOW-RANK APPROXIMATION FOR POLICY GRADIENT METHODS

Sergio Rozada, and Antonio G. Marques

Dept. of Signal Theory and Communications, King Juan Carlos University, Madrid, Spain

ABSTRACT

Estimating a policy that maps states to actions is a central problem
in reinforcement learning. Traditionally, policies are inferred from
the so called value functions (VFs), but exact VF computation suf-
fers from the curse of dimensionality. Policy gradient (PG) methods
bypass this by learning directly a parametric stochastic policy. Typ-
ically, the parameters of the policy are estimated using neural net-
works (NNs) tuned via stochastic gradient descent. However, find-
ing adequate NN architectures can be challenging, and convergence
issues are common as well. In this paper, we put forth low-rank
matrix-based models to estimate efficiently the parameters of PG al-
gorithms. We collect the parameters of the stochastic policy into a
matrix, and then, we leverage matrix-completion techniques to pro-
mote (enforce) low rank. We demonstrate via numerical studies how
low-rank matrix-based policy models reduce the computational and
sample complexities relative to NN models, while achieving a simi-
lar aggregated reward.

Index Terms— Reinforcement Learning, Low-rank optimiza-
tion, Policy gradients, Actor-critic methods.

1. INTRODUCTION

In the era of big data, complex dynamical systems call for intelli-
gent algorithms that use observations to adapt the way they behave
with the world. Reinforcement Learning (RL) addresses this by im-
plementing stochastic algorithms that learn by trial and error how to
interact with the environment [1, 2]. Technically speaking, RL mod-
els decision-making problems: given an environment defined by a
set of states, the RL goal is to learn the best action to be made in
each state. Then, RL is about estimating the reward associated with
state-action pairs, which is referred to as value function (VF), and
inferring a function that maps the states into actions, which is re-
ferred to as policy. Typically, RL algorithms estimate first the VF
(strictly speaking, the expected accumulated reward associated with
each state-action pair) and, then, implement a policy that maximizes
the VF. However, value-based methods are algorithmically challeng-
ing, and suffer from the curse of dimensionality. To overcome these
issues, policy-based methods were introduced. They bypass these
problems by estimating the policy directly. To render the design
of these methods tractable, policies are typically assumed stochas-
tic and parametric, so that the problem boils down to estimating the
parameters of some probability distribution.

The workhorse approach in policy approaches is to consider nor-
mal distributions and learn the parameters of those Gaussians using
a neural network (NN) architecture that uses the states as inputs [3].

Work supported by the Spanish NSF Grants SPGraph (PID2019-
105032GB-I00/AEI/10.13039/501100011033) and DATRASCOOP@SESM
(TED2021-130347B-I00). All the authors are with the Dept. of Signal The-
ory and Comms., King Juan Carlos University, Madrid, Spain. Email contact
author: antonio.garcia.marques@urjc.es.

NNs, and therefore, most policy-based methods tend to suffer from
convergence issues, as they strongly depend on the architecture em-
ployed. As a result, postulating (finding) the proper NN architecture
for the RL setup at hand is usually a problem in itself.

In the context of stochastic policy methods for RL, this paper
takes an alternative path and, leveraging matrix completion results
[4, 5], puts forth a low-rank algorithm to estimate stochastic policy
models. The ultimate goal is to design an estimation scheme that i)
is sufficiently generic to learn the policy and ii) mitigates some of the
problems present in NN-based schemes. The rest of this section is
devoted to explaining the state of the art and the contribution in more
detail. Fundamentals of RL are discussed in Section 2, and our new
low-rank scheme is introduced in Section 3. Numerical experiments
showcasing some of the benefits of our approach are provided in
Section 4.
Detailed contribution and related work. This paper investigates
the design of low-rank schemes for (actor/critic) policy RL meth-
ods leveraging matrix completion techniques. The central aspects
of such a design are i) the consideration of a policy method based
on an actor and a critic (where the latter estimates a VF); ii) mod-
eling the actor parameters and the critic VF as matrices (typically
associated with a clusterization of the different dimensions of the in-
put state); and iii) to regularize the estimation problem by enforcing
a low-rank structure via matrix factorization. Although those tech-
niques are well-known in the context of low-rank optimization and
matrix completion [4, 5, 6, 7], they have not been exploited in the
context of policy-based RL methods. While closely-related ways
of modeling parsimony in RL have been investigated, e.g. sparsity
[8, 9], the use of low-rank optimization in the general context of RL
has been limited. Notable exceptions include efforts to approximate
some structures of the Markov Decision Process (MDP), such as the
transition matrix or the reward function, as low rank [10, 11, 12].
Matrix-completion techniques have also been used to compress the
estimated Q-functions of an MDP [13]. In energy storage applica-
tions, low-rank (rank-one) methods have been proposed for the esti-
mation of the VF [14, 15]. Along the same lines, linear models have
been used to approximate VFs on-the-fly [16]. These methods op-
erate by defining a set of features [17] and then modeling the VF as
a weighted sum of the features associated with the state-action pair.
More recently, in the context of value-based methods, schemes that
estimate the VF promoting a low-rank matrix structure [18, 19, 20]
and a low-rank tensor structure [21] have been proposed.

2. FUNDAMENTALS OF RL AND NOTATION.

RL models the world as a closed-loop setup where agent(s) sequen-
tially interact with the environment. The environment consists of i)
the space of states S; ii) the space of action agent(s) can take A;
and iii) the reward associated with every state-action pair. In each
(typically multidimensional) state, the agent takes an action and ob-
tains a reward. To be more specific, let t = 1, ..., T be a time index.

ar
X

iv
:2

40
5.

17
62

6v
1

 [
cs

.L
G

]
 2

7
M

ay
 2

02
4

Given a particular state st, the agent takes an action at, and obtains
a reward rt. The reward rt quantifies the instantaneous value of the
state-action pair. However, the action at impacts st′ for t′ > t and,
as a result, affects future rewards rt′ for t′ > t. This illustrates
that actions are coupled across time and that the aggregated (long-
term) reward must be considered for decision-making. Furthermore,
the dependence of rt on st and at is usually stochastic, rendering
the optimization more challenging. Markovianity is commonly used
to mitigate these issues, so that the optimization can be recast as a
MDP.

In this context, i) a policy π : S 7→ A is a function that maps
states into actions; and ii) the VF associated with (st, at) is the ex-
pected cumulative reward E[

∑T
t′=t γ

t′−trt′ |st, at], with γ ∈ (0, 1)
being a discount factor that places more focus on short-term rewards
[1, 2]. For a specific policy π, the VF quantifies the expected reward
associated with a particular state by taking the actions dictated by
π. Value-based methods focus on estimating the VFs (using para-
metric or non-parametric approaches) of the MDP, to infer a pol-
icy later on from the VFs by greedily following the path of highest
value [22, 23]. Policy-based methods, on the other hand, focus on
directly learning the policy π, typically using a stochastic paramet-
ric models [24, 25]. To estimate the parameters, a set of trajecto-
ries sampled from the environment is assumed to be available, and
those are used to run a stochastic gradient descent scheme. Each
trajectory τT : (s0, a0, r0), ..., (sT , aT , rT) is a set of state-action-
rewards triplets obtained from the sequential interaction of an agent
with the environment.

From an optimization perspective, policy-based methods aim at
maximizing the reward of a trajectory R(τT) over all possible tra-
jectories τ . To be precise, consider the following objective function:

J(θ) = ETθ(τT)[R(τT)] (1)

where θ denotes the parameters of a policy πθ . Then, Tθ(·) is
the probability density function of the trajectories under the given
policy πθ . Leveraging Markovianity, it follows that Tθ(τT) =

D(s0)
∏T

t=0 πθ(at|st)P (st+1|st, at), where D(·) is the initial dis-
tribution of the MDP. Since direct optimization of (1) is intractable,
the standard approach is to estimate the parameters θ of the policy πθ

via (stochastic) gradient ascent methods [26]. The update rule takes
the form θh+1 = θh + αθ∇θJ(θh), where h is the iteration index,
and αθ is the gradient step, or learning rate. Obtaining the gradient
of J is challenging since it involves computing derivatives of an
expectation across Tθ . The policy gradient theorem [27] provides an
elegant reformulation of∇θJ(θ)

∇θJ(θ) = ETθ [

T∑
t=0

R(τT)∇θlog πθ(at|st)], (2)

which is more tractable. One of the most celebrated policy-based
algorithms is REINFORCE [24], or Monte-Carlo policy gradient,
which samples a full trajectory from the environment to avoid com-
puting the expectation, and uses (2) to update the parameters using
the actual total return Gt =

∑T
t′=t rt′ in lieu ofR(τT).

Actor critic methods. The main drawback of Monte-Carlo meth-
ods is that they exhibit a high variance, due to so called credit as-
signment problem. This issue is usually addressed by subtracting a
baseline value bt from the return Gt to reduce the variance of the
gradient estimate while keeping the bias unchanged [28]. A choice
that provides several benefits is setting bt to the VF. The quantity
resultant from this subtraction is denoted as A(st) = Gt − V (st)
and is called advantage function. The price to pay in this case is

that a method to estimate the VFs is needed as well. This leads to a
two-step method (actor-critic) that involves the estimation of the pa-
rameters of the policy πθ (actor) as well as those of the VF (critic).
The parameters of the actor θ are updated via gradient ascent using

∇θJ(θ) =

T∑
t=0

A(st)∇θlog πθ(at|st), (3)

where A(st) = Gt − Vω(st), and Vω(st) is considered given. In
contrast, the parameters ω of the VF are obtained as

ω∗ = argmin
ω
L(ω) := argmin

ω

1

2

T∑
t=0

(Gt − Vω(st))
2. (4)

While some parametric models (4) can be solved in closed form, ω
are typically estimated using gradient descent methods of the form

ωh+1 = ωh − αω∇ωL(ωh), (5)

where h is the iteration index and αω is the gradient step.
Gaussian policies. In setups where the action state A is con-
tinuous and one-dimensional, a commonly adopted approach is
to model actions as samples of a univariate Gaussian distribution
at ∼ N (a|µ(st), σ(st)) [29, 30]. The problem of finding the op-
timal action associated with a state is reformulated as finding the
mean µ(st) and the standard deviation σ(st) associated with the
state. The functions µ : S 7→ R and σ : S 7→ R+ can be either
parametric or non-parametric, with a stronger preference in the lit-
erature for the former. Clearly, to find the gradient on the right-hand
side of (3) w.r.t. those parameters, one needs to resort to the chain
rule and find first the derivative of J w.r.t. µ and σ. Upon setting the
distribution of the policy to a Gaussian, this approach leads to the
following partial derivatives

∇µJ(µ, σ) =

T∑
t=0

A(st)
at − µ(st)

σ(st)2
, (6)

∇σJ(µ, σ) =

T∑
t=0

A(st)

(
(at − µ(st))

2

2σ(st)3
− 1

σ(st)

)
. (7)

Practical implementations often consider simpler models for σ(st).
For example, it is not uncommon to assume that σ is constant and
independent of the state st, reducing the problem to learn this single
value (or even fixing it using prior knowledge).

After describing the basics of policy methods in RL, we are
ready to introduce our scheme. The reader should notice that al-
though in this paper we have focused on Gaussian policies, the pro-
posed approach can be extended to other policy models.

3. POLICY GRADIENTS AND MATRIX FACTORIZATION

The state space S in most MDPs is discrete, either because the num-
ber of states is finite or because it represents the discretized (sam-
pled) version of a continuous space. As a result, we have a finite
number NS of states. Since each state is mapped to a mean and
standard deviation, the goal in this section is to provide a (low-rank
based) scheme that yields an efficient estimator for the NS mean and
standard deviation pairs.

The first step in our approach is to introduce a matrix represen-
tation of the states. In most applications states are multi-dimensional
and as a result, they can be indexed by a tuple of indexes. To keep

the exposition simple, suppose that two indices are used (either be-
cause there are only two dimensions, or because the different di-
mensions are clustered into two groups)1. With this in mind, define
Xµ ∈ RN×M as the matrix that collects the means associated with
each of the NS = N ·M states. The idea under this approach is
that every state s ∈ S is coded into two indices is ∈ {1, ..., N}
and js ∈ {1, ...,M} and, then, the mean associated with st is
simply obtained as µ(st) = [Xµ]ist ,jst . Analogously, we define
Xσ ∈ RN×M and set σ(st) = [Xσ]ist ,jst . If no structure is im-
posed on Xµ and Xσ , the estimation of µ and σ is non-parametric
and, as a result, the updates in (6) and (7) suffice to estimate the
policy.

However, such an approach would suffer from the curse of di-
mensionality. To avoid this, we impose additional structure on Xµ

and Xσ , forcing them to be low rank2. In particular, this entails in-
troducing the matrices Lµ ∈ RM×K , Rµ ∈ RK×N , Lσ ∈ RM×K

and Rσ ∈ RK×N , and write the mean and standard deviation ma-
trices as Xµ = LµRµ and Xσ = LσRσ . This model is still non-
parametric, but it helps alleviating the curse of dimensionality. The
implications of this design decision are twofold: i) the rank of Xµ

and Xσ is at most K, limiting the degrees of freedom of those ma-
trices (hence, facilitating its estimation from a limited number of
observations); and ii) the parameters to estimate are no longer the
entries of Xµ and Xσ , but the entries of Lµ, Rµ, Lσ and Rσ . To
see the latter point more clearly, note that the mapping from the state
to the parameters of the Gaussian under the low-rank models is given
by

µ(st)=

K∑
k=1

[Lµ]ist,k[Rµ]k,jst | σ(st)=
K∑

k=1

[Lσ]ist,k[Rσ]k,jst. (8)

The next step is to optimize/estimate the values of the entries of
Lµ, Rµ, Lσ and, Rσ . To that end, we resort to non-convex gradient-
based matrix factorization approaches [5] along with the expressions
for the gradients provided in (6)-(7). To be more specific, in our
approach the parameters θ are the entries of {Lµ,Rµ,Lσ,Rσ} and
our goal is to find an expression for the (entries of the) gradient in
(3). For simplicity, let us focus first on Lµ and Rµ. We aim at
finding the expression for the entries of ∇LµJ(Lµ,Rµ,Lσ,Rσ),
and ∇RµJ(Lµ,Rµ,Lσ,Rσ). To that end, we need to apply the
chain rule and combine the partial derivatives of the cost J w.r.t. µ
in (6) with the partial derivatives of the µ function in (8) w.r.t. each
entry of the matrices Lµ, and Rµ. The result of this is

∂J(Lµ,Rµ,Lσ,Rσ)

∂[Lµ]i,k
=

T∑
t=0

Ii=ist
A(st)

at − [LµRµ]ist ,jst
[LσRσ]2ist ,jst

[Rµ]k,jst (9)

∂J(Lµ,Rµ,Lσ,Rσ)

∂[Rµ]k,j
=

T∑
t=0

Ij=jst
A(st)

at − [LµRµ]ist ,jst
[LσRσ]2ist ,jst

[Lµ]ist ,k (10)

where Ii=ist
, and Ij=jst

are indicator functions. An analogous ap-
proach considering the derivatives of the cost J w.r.t. σ in (6), along

1Generalizations of this approach to (low-rank) tensor models are straigh-
forward and well-motivated, but for simplicity, we limit this conference paper
to the matrix case.

2Alternative schemes that promote low-rank via, e.g., nuclear norm regu-
larizers are also possible.

with the derivatives of σ w.r.t. the entries of Lσ and Rσ yields:

∂J(Lµ,Rµ,Lσ,Rσ)

∂[Lσ]i,k
=

T∑
t=0

Ii=ist
A(st)(

(at − [LµRµ]ist ,jst)
2

2[LσRσ]3ist ,jst
− 1

[LσRσ]ist ,jst

)
[Rσ]k,jst (11)

∂J(Lµ,Rµ,Lσ,Rσ)

∂[Rσ]k,j
=

T∑
t=0

Ij=jst
A(st)(

(at − [LµRµ]ist ,jst)
2

2[LσRσ]3ist ,jst
− 1

[LσRσ]ist ,jst

)
[Lσ]ist ,k (12)

Once the actor is properly set up, the last step is to define the
scheme to estimate ω, the parameters of the critic. As for the actor,
we use a matrix representation Xω ∈ RN×M for the VF and then
postulate that the VF matrix is low rank, so that it can be factor-
ized as the product of Lω ∈ RN×K and Rω ∈ RK×M with K ≪
min{N,M}. As a result, the functional expression of the critic takes
the form V (st) =

∑K
k=1[Lω]ist,k[Rω]k,jst. We then optimize the

critic using alternating gradient descent, with the partial derivatives
of the critic cost in (4) w.r.t. the entries of Lω and Rω being

∂L(Lω,Rω)

∂[Lω]i,k
=

T∑
t=0

Ii=ist
(Gt − [LωRω]ist ,jst)[Rω]k,jst (13)

∂L(Lω,Rω)

∂[Rω]k,j
=

T∑
t=0

Ij=jst
(Gt − [LωRω]ist ,jst)[Lω]ist ,k (14)

The algorithm. A low-rank policy gradient (LRPG) algorithm flows
from the definitions above. The agent samples a full trajectory using
the Gaussian policy πµ,σ = N (at|µ(st), σ(st)), where the mean
is µ(st) = [LµRµ]ist ,jst , and the standard deviation is σ(st) =
[LσRσ]ist ,jst . Then, the actor matrices Lµ, Rµ, Lσ , and Rσ are
updated via stochastic gradient ascent using (9)–(12). Finally, the
critic matrices Lω , and Rω are updated via stochastic gradient de-
scent using (13)–(14). The algorithm is depicted in Algorithm 1.

4. NUMERICAL EXPERIMENTS

We test LRPG in three standard continuous-action RL problems of
the toolkit OpenAI Gym [31]. The first scenario is the inverted pen-
dulum, where an agent tries to keep a pendulum upright. The sec-
ond one is the acrobot, which mimics a gymnast trying to swing
up. The third one is the Goddard problem, a rocket optimizing its
peak altitude ascending vertically. We test and compare NN-based
vs low-rank-based policy methods. The figures of merit reported
are i) parametrization-efficiency, ii) convergence rate, and iii) return
obtained by the estimated policy. Details can be found in [32].
Experimental setup. We compared the LRPG algorithm against
REINFORCE with VF-baselines (RVFB). In both scenarios, given
a state st, the action at is sampled from the normal distribution
N (a|µ(st), σ). For the sake of simplicity, σ does not depend on
st and the difference between the schemes resides in the model
to estimate the mean µ(st). While the parameters for LRPG
are the entries of Lµ and Rµ, the RVFB algorithm uses an NN
model µθ(st) = NNθ(st). Similarly, LRPG models the VF as
V (st) = [LωRω]ist ,jst , and RVFB as Vω(st) = NNω(st). Since
the three setups tested are continuous, LRPG discretizes the state

Algorithm 1 Low Rank Policy Gradient (LRPG)

Require: Initial policy and VF matrices L0
µ,R

0
µ,L

0
σ , R0

σ , L0
ω , and

R0
ω; learning rates αµ, ασ , αω; and maximum number of

episodes H .
for h = 0, ..., H do

Observe initial state s0
for t = 0, ..., T do ▷ Sample a trajectory τT

µst ← [LµRµ]ist ,jst
σst ← [LσRσ]ist ,jst
at ∼ N (a|µst , σst)
Take action at, and observe next state st′ , and reward rt
st ← st′

end for

Lh+1
µ ← Lh

µ + αµ∇LµJ(L
h
µ,R

h
µ,L

h
σ,R

h
σ) ▷ Actor update

Rh+1
µ ← Rh

µ + αµ∇RµJ(L
h
µ,R

h
µ,L

h
σ,R

h
σ)

Lh+1
σ ← Lh

σ + ασ∇LσJ(L
h
µ,R

h
µ,L

h
σ,R

h
σ)

Rh+1
σ ← Rh

σ + ασ∇RσJ(L
h
µ,R

h
µ,L

h
σ,R

h
σ)

Lh+1
ω ← Lh

ω + αω∇LωJ(L
h
ω,R

h
ω) ▷ Critic update

Rh+1
ω ← Rh

ω + αω∇RωJ(L
h
ω,R

h
ω)

end for

Env. LRPG RVFB
Parameters Return Parameters Return

Pendulum 160 99.34 4,098 98.81
Acrobot 16 94.45 386 94.25
Rocket 80 1.17 1,282 1.16

Table 1. Parameters vs. Median return.

space S. Note that the finer the discretization, the larger the number
of entries of Xµ and Xω . Imposing low rank can drastically reduce
the number of parameters while keeping a fine sampling resolution.
The number of total states is defined by the Cartesian product of
a regularly-sampled grid. On the other hand, NNs can deal with
continuous setups, but choosing the proper architecture is usually a
hard task. For the presented scenarios, we run 100 simulations of
each algorithm. In each episode, we measure the return per episode
Ř =

∑T
t=0 rt. In Fig. 1 the median Ř (across the 100 simulations)

is shown. We have exhaustively examined the space of all potential
fully-connected NN architectures to find the smallest one that solves
the problem. A summary of the parametrizations and associated
median returns is provided in Table 1.
Convergence properties. The rate of convergence of LRPG and
RVFB can be observed in Fig. 1. Here, we use the term convergence
loosely to refer to the fact that the return reaches a steady state. In
all scenarios, LRPG needs fewer episodes to converge to the final
policy than RVFB. The strength of this finding varies across scenar-
ios, being conspicuous in some of them. In the Pendulum scenario,
LRPG algorithm needs almost 500 episodes less to converge than
RVFB (5 times faster). Similarly, in the Goddard problem, LRPG
converges around episode 7, 000, while RVFB converges in episode
22, 000. Note, however, that this is not the case in the acrobot setup,
where LRPG converges only slightly faster than RVFB. The faster
convergence of LRPG is likely due to the fact that low-rank factor-
ized models are simpler and have fewer parameters to estimate (see
Table 1). Furthermore, trading off between convergence rate and
obtained return is significantly harder in NN-based setups since ex-
ploring and testing NN architectures is challenging.
Parametrization efficiency. As summarized in Table 1, LRPG
needs far fewer parameters than RVFB to estimate its associated

Fig. 1. Median return per episode in three standard RL problems:
(a) the pendulum, (b) the acrobot, and (c) the Goddard problem.

policy. In the pendulum and acrobot environments, the size of the
LRPG low-rank matrix-based models is approximately 4% of that
of the NNs in RVFB. In the case of the Goddard problem, the size
of the matrix model is around 6% of the size of the NN model. As
mentioned previously, no smaller fully-connected NN was found to
converge in these problems. Yet the policies estimated by LRPG
lead to higher returns in all scenarios. NNs tend to have problems
with local optima, especially in RL setups, and the space of all possi-
ble architectures is vast. Hence, the problem of finding the adequate
architecture not only affects the reward, but also the convergence
properties of the algorithm. In contrast, tuning the LRPG algorithm
boils down to designing the discretization and indexing of the state
space S, along with the rank of the model K.

5. CONCLUSIONS

This paper introduced a low-rank policy gradient (LRPG) algorithm,
which leverages matrix completion in (discrete) matrix-based Gaus-
sian policy models. This approach portrays a natural way of intro-
ducing parsimony in policy-based RL techniques. The low-rank pol-
icy is very efficient in terms of parameters, and it is easy to interpret.
LRPG was tested in three OpenAI Gym classical control environ-
ments, comparing it with standard NN-based schemes. The limited
but meaningful tests reveal that LRPG achieves high rewards, usu-
ally better than NN-based models, with a relatively small number
of parameters. Furthermore, it requires significantly less number of
episodes to converge to the final policy.

6. REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An In-
troduction. The MIT Press, 2nd Ed., 2018.

[2] D. P. Bertsekas, Reinforcement learning and optimal control.
Athena Scientific, 2019.

[3] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A.
Bharath, “Deep reinforcement learning: A brief survey,” IEEE
Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[4] C. Eckart and G. Young, “The approximation of one matrix by
another of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–
218, 1936.

[5] I. Markovsky, Low rank approximation. Springer, 2019.

[6] M. Udell, C. Horn, R. Zadeh, S. Boyd et al., “Generalized low
rank models,” Foundations and Trends® in Machine Learning,
vol. 9, no. 1, pp. 1–118, 2016.

[7] M. Mardani, G. Mateos, and G. B. Giannakis, “Decentralized
sparsity-regularized rank minimization: Algorithms and appli-
cations,” IEEE Trans. Signal Processing, vol. 61, no. 21, pp.
5374–5388, 2013.

[8] E. Tolstaya, A. Koppel, E. Stump, and A. Ribeiro, “Nonpara-
metric stochastic compositional gradient descent for q-learning
in continuous markov decision problems,” in 2018 Annual
American Control Conference (ACC). IEEE, 2018, pp. 6608–
6615.

[9] G. Lever, J. Shawe-Taylor, R. Stafford, and C. Szepesvári,
“Compressed conditional mean embeddings for model-based
reinforcement learning,” in Proceedings of the AAAI Confer-
ence on Artificial Intelligence, vol. 30, no. 1, 2016.

[10] A. M. Barreto, R. L. Beirigo, J. Pineau, and D. Precup, “Incre-
mental stochastic factorization for online reinforcement learn-
ing,” in Proc. AAAI Conf. Artificial Intelligence, 2016.

[11] N. Jiang, A. Krishnamurthy, A. Agarwal, J. Langford, and
R. E. Schapire, “Contextual decision processes with low bell-
man rank are pac-learnable,” in Proc. Intl. Conf. Machine
Learning-Volume 70. JMLR. org, 2017, pp. 1704–1713.

[12] A. Mahajan, M. Samvelyan, L. Mao, V. Makoviychuk,
A. Garg, J. Kossaifi, S. Whiteson, Y. Zhu, and A. Anandkumar,
“Tesseract: Tensorised actors for multi-agent reinforcement
learning,” in International Conference on Machine Learning.
PMLR, 2021, pp. 7301–7312.

[13] H. Y. Ong, “Value function approximation via low-rank mod-
els,” arXiv preprint arXiv:1509.00061, 2015.

[14] B. Cheng and W. B. Powell, “Co-optimizing battery storage for
the frequency regulation and energy arbitrage using multi-scale
dynamic programming,” IEEE Trans. Smart Grid, vol. 9.3, pp.
1997–2005, 2016.

[15] B. Cheng, T. Asamov, and W. B. Powell, “Low-rank value
function approximation for co-optimization of battery storage,”
IEEE Trans. Smart Grid, vol. 9.6, pp. 6590–6598, 2017.

[16] F. S. Melo and M. I. Ribeiro, “Q-learning with linear func-
tion approximation,” in Intl. Conf. Comp. Learning Theory.
Springer, 2007, pp. 308–322.

[17] B. Behzadian, S. Gharatappeh, and M. Petrik, “Fast feature
selection for linear value function approximation,” in Proc.
Intl. Conf. Automated Planning and Scheduling, vol. 29, no. 1,
2019, pp. 601–609.

[18] Y. Yang, G. Zhang, Z. Xu, and D. Katabi, “Harnessing struc-
tures for value-based planning and reinforcement learning,” in
International Conference on Learning Representations, 2020.

[19] D. Shah, D. Song, Z. Xu, and Y. Yang, “Sample efficient rein-
forcement learning via low-rank matrix estimation,” in Proc. of
the 34th International Conference on Neural Information Pro-
cessing Systems, ser. NIPS’20. Red Hook, NY, USA: Curran
Associates Inc., 2020.

[20] S. Rozada, V. Tenorio, and A. G. Marques, “Low-rank state-
action value-function approximation,” in 2021 29th European
Signal Processing Conference (EUSIPCO), 2021, pp. 1471–
1475.

[21] S. Rozada and A. G. Marques, “Tensor and matrix low-
rank value-function approximation in reinforcement learning,”
arXiv preprint arXiv:2201.09736, 2022.

[22] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari with deep rein-
forcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[24] R. J. Williams, “Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning,” Machine
learning, vol. 8, no. 3, pp. 229–256, 1992.

[25] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing,
vol. 71, no. 7-9, pp. 1180–1190, 2008.

[26] D. Lee, N. He, P. Kamalaruban, and V. Cevher, “Optimization
for reinforcement learning: From a single agent to cooperative
agents,” IEEE Signal Processing Magazine, vol. 37, no. 3, pp.
123–135, 2020.

[27] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function ap-
proximation,” Advances in neural information processing sys-
tems, vol. 12, 1999.

[28] E. Greensmith, P. L. Bartlett, and J. Baxter, “Variance reduc-
tion techniques for gradient estimates in reinforcement learn-
ing.” Journal of Machine Learning Research, vol. 5, no. 9,
2004.

[29] S. Levine and P. Abbeel, “Learning neural network policies
with guided policy search under unknown dynamics,” Ad-
vances in neural information processing systems, vol. 27, 2014.

[30] K. Ciosek and S. Whiteson, “Expected policy gradients,” in
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32, no. 1, 2018.

[31] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint
arXiv:1606.01540, 2016.

[32] S. Rozada, “Online code repository: Matrix low-rank ap-
proximation for policy gradient methods,” https://github.com/
sergiorozada12/matrix-low-rank-pg, 2022.

https://github.com/sergiorozada12/matrix-low-rank-pg
https://github.com/sergiorozada12/matrix-low-rank-pg

	 Introduction
	 Fundamentals of RL and notation.
	 Policy Gradients and Matrix Factorization
	 Numerical experiments
	 Conclusions
	 References

