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ABSTRACT

Space-time graph neural networks (ST-GNNs) are recently devel-
oped architectures that learn efficient graph representations of time-
varying data. ST-GNNs are particularly useful in multi-agent sys-
tems, due to their stability properties and their ability to respect com-
munication delays between the agents. In this paper we revisit the
stability properties of ST-GNNs and prove that they are stable to
stochastic graph perturbations. Our analysis suggests that ST-GNNs
are suitable for transfer learning on time-varying graphs and enables
the design of generalized convolutional architectures that jointly pro-
cess time-varying graphs and time-varying signals. Numerical ex-
periments on decentralized control systems validate our theoretical
results and showcase the benefits of traditional and generalized ST-
GNN architectures.

Index Terms— ST-GNNs, GNNs, stability anaysis, graph per-
turbations, transfer learning

1. INTRODUCTION

Stability analysis of graph neural networks (GNNs) was studied ex-
tensively in literature [1–5] and affirms that small changes in input
graphs translate into small, bounded changes in the outputs. It also
provides a characterization of the design parameters, e.g., the depth
and width of GNNs, that preserve stability. The acquired gain, when
stability holds, is the ability to transfer learned GNNs between differ-
ent graphs of the same size without re-training the models. Stability
is a notion that is different from GNN transferability, which consid-
ers transfer learning to graphs of larger sizes [6–8]. Together, they
allow executing GNNs on underlying graphs that are different from
those used in training and determine which architectures are more
robust to graph changes.

GNNs are aligned with applications in distributed controllers
[9–11] and wireless systems [12–14]. Both tasks are challenging,
since the underlying graph varies rapidly over time and the signals
endure delays while being propagated between agents. To deal with
signal delays, we leveraged diffusion equations to introduce space-
time graph neural networks (ST-GNNs) in [15]. Specifically, we for-
mulated a diffusion equation over a space-time domain that respects
propagation time between nodes. This allowed the proposed space-
time convolutions to aggregate each node’s present data along with
outdated information from its neighbors. During training ST-GNNs
learn to weigh the outdated information and offset their negative im-
pact on the model’s predictions. Our analysis also proved that the
new architecture is stable to graph and time perturbations. However,
the challenge of facing dynamic graphs during training is still to be
addressed.

The first work to approach this challenge is [16] that studied
dynamic graphs modelled as stochastic processes and showed that
GNNs are stable to stochastic graph perturbations. However, their

analysis focuses on signals that are fixed over time, which is imprac-
tical in certain applications. In this paper, we bridge this gap and
study both signals and graphs that vary over time. We extend our
previous work in ST-GNNs to accommodate time-varying graphs
and prove their stability to stochastic graph perturbations. Our con-
tributions can be summarized as follows:

(C1) We prove the stability of STGFs and ST-GNNs to stochastic
graph perturbations. Our result implies that ST-GNNs can
handle transfer learning to time-varying graphs.

(C2) Motivated by our stability analysis, we introduce general-
ized STGFs and generalized ST-GNNs that are tailored to
jointly process time-varying graphs and time-varying signals
and study their spectral properties.

(C3) We conduct experimental examination of ST-GNNs and gen-
eralized ST-GNNs distributed controller settings.

Due to the limited space, all the proofs are relegated to an extended
version of the paper.

2. SPACE-TIME GRAPH NEURAL NETWORKS

Consider an undirected graph G = (V, E) with a set of N nodes V
and a set of edges E ⊆ V ×V . We define discrete-time signals xi(t)
at each node i, which can be concatenated to a space-time graph
signal X ∈ RN×T . Then SX and XC define the 1-hop diffusion of
the space-time signal in space and time respectively. Note that S ∈
RN×N is the graph shift operator (GSO), which usually represents
the graph adjacency or Laplacian, and C ∈ {0, 1}N×N is a circulant
matrix that models the time shift operator (TSO). Then we can define
the k-hop space-time diffusion as SkXCk, which allows us to define
the space-time graph filter (STGF) as the following convolutional
operator

Y =

K∑
k=0

hkS
kXCk, (1)

where the coefficients {hk}Kk=0 and the number of filter taps K are
design parameters. The operation in (1) respects the time delays
that occur in sharing information between the neighbors. Indeed,
the GSO and TSO are jointly applied to ensure that the signals are
shifted in space and time before being aggregated over the graphs.

We design ST-GNNs as a cascade layers that deploy the STGF
in (1) followed by a nonlinear activation function σ. To distinguish
the layers’ intermediate outputs we use subscript l and superscript f
to denote the l-th layer and the f -th feature of the signal respectively.
The output of the l-th layer is expressed as

Xf
l = σ

( F∑
g=1

K∑
k=0

hfgkl S
kXg

l−1C
k
)
. (2)
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We assume that the number of the features F is fixed across all lay-
ers. We further refer to the ST-GNN’s output, i.e., the output of the
last layer L, as Φ(X;S,H) withH = {hfgkl }

f,g
k,l being the set of all

learnable parameters. Note that, we represent the underlying graph
with a fixed GSO S, which is not always the case in practise. In the
following section, overcome this limitation we show how (1) can be
modified to accommodate time-varying graphs.

3. GENERALIZED SPACE-TIME GNNS

In various applications the graph is changing over time. In multi-
agent systems, for instance, the graph dynamics are time varying due
to link dropping and re-wiring. As a result, we observe a sequence
of GSOs {Sk, . . . ,S0}. The diffusion of graph signals over this
sequence is modeled as

Sk . . .S0X =: Sk:0X.

Since STGFs perform a weighted sum of diffused signals as shown
in (1), a generalized form of the STGF’s output can be derived as

Ỹ =

K∑
k=0

hkSk . . .S0XCk =

K∑
k=0

hkSk:0XCk, (3)

with S0 being the identity matrix I. Equation (1) is obviously a
special case with SK = · · · = S1 = S. Like ST-GNNs in (2), we
define the output of the l-th layer of the generalized ST-GNN as

X̃f
l = σ

( F∑
g=1

K∑
k=0

hfgkl Sk:0X̃
g
l−1C

k
)
. (4)

The following lemma shows the frequency response of (3).

Lemma 1 (Generalized STGF frequency response). For a space-
time graph filter with coefficients {hk}Kk=0 running over a sequence
of K GSOs as in (3), the generalized frequency response is

h(λ, ω) =

K∑
k=0

hke
jkω

k∏
κ=0

λκ, (5)

where λ = [λ1, . . . , λK ]>, λ0 = 1, and λk is the analytic variable
corresponding to the eigenvalue of Sk.

The proof of Lemma 1 is delegated to the journal version, due
to space limitations. We observe that the frequency response is a
multi-variate function in the graph-frequency variables λk, ∀k, and
the time-frequency variable ω.

In practice, we usually need to transfer generalized ST-GNN to
different time-varying graphs that are not observed during training.
Therefor a natural question that arises is “under which conditions is
transfer learning doable?” We tackle give a definitive answer to this
question by analyzing the deviation in the outputs between ST-GNNs
and generalized ST-GNNs. Bounded deviations, imply that learned
models can be transferred between different sequences of graphs.

4. STABILITY TO STOCHASTIC GRAPH
PERTURBATIONS

To analyze the deviation between ST-GNNs and genaralized ST-
GNNs, we first define a model for time-varying graphs. In partic-
ular, we study a sequence of random graphs {Gk}Kk=1 sampled from
a nominal graph G according to the following criteria.

Definition 1 (Random Edge Sampling). Given a graph G = (V, E),
we define a random graph RES(G, p) with a realization Gk =
(V, Ek) such that an edge (i, j) ∈ E exists in Ek with probability p,
i.e.,

P[(i, j) ∈ Ek] = p, ∀(i, j) ∈ E . (6)

Definition 1 implies that Gk is constructed by sampling edges
from the nominal graph with probability p. From Definition 1, it
follows that the relation between the nominal GSO S and the random
GSO Sk can be written as

Sk = S + Ek, (7)

where Ek models the deviation between the two GSOs. In (7), The
size of the deviation Ek is controlled by the edge-drop probability
1− p. Higher probabilities account for dropping more edges, which
in turn results in higher perturbation size ‖Ek‖2. Probability p can
be viewed as a measure of similarity between the nominal graph G
and a random realization Gk.

With relation (7) in place, we next aim to compute the differ-
ence in STGF’s outputs when running over either S or the sequence
SK:0 with each GSO having been constructed according to Defini-
tion 1. To achieve this, we introduce Lemma (2), which defines a
smoothness measure of the multi-variate filter in (5).

Lemma 2. Consider the generalized frequency response h(λ, ω) in
Lemma 1, and let λ1 = [λ11, . . . , λ1K ]T and λ2 = [λ21, . . . , λ2K ]T

be two multivariate graph-frequency vectors. The variability in the
frequency response is then quantified as

h(λ1, ω)− h(λ2, ω) = ∇Tλh(λ1,2, ω) · (λ1 − λ2), (8)

where∇λh(λ1,2, ω) =
[
∂h(λ(1),ω)

∂λ1
, . . . , ∂h(λ

(K),ω)
∂λK

]T
is the Lips-

chitz gradient, and λ(k) = [λ11, . . . , λ1k, λ2(k+1), . . . , λ2K ]T con-
tains the first k entries of λ1 along with the last K − k entries of
λ2.

The proof of Lemma 2 follows the proof of Lemma 1 in [16].
The Lipschitz gradient in (8) can be seen as a general measure of
filter-response variability, which is usually quantified by the deriva-
tives in univariate filters. Using the Lipschitz gradient, we define a
class of smooth filters, namely generalized integral Lipschitz filter,
in the following definition.

Assumption 1. [Generalized Integral Lipschitz filter] An STGF with
the generalized frequency response in Lemma 1 is generalized inte-
gral Lipschitz if there exists a constant CL > 0 such that for any
graph-frequency vectors λ1 and λ2 it holds that for all ω

‖∇λh(λ1,2, ω)‖2 ≤ CL, (9)

‖λ1 �∇λh(λ1,2, ω)‖2 ≤ CL, (10)

where ∇λh(λ1,2, ω) is the Lipschitz gradient defined in Lemma 2,
and � is the Hadamard product.

The condition in (9) indicates that the frequency response
h(λ, ω) does not change faster than linear since we have

|h(λ1, ω)− h(λ2, ω)| = |∇Tλh(λ1,2, ω) · (λ1 − λ2)|

≤ ‖∇Tλh(λ1,2, ω)‖2 · ‖λ1 − λ2‖2
≤ CL‖λ1 − λ2‖2.



The first inequality follows from triangle inequality while the first
and third lines are direct application of Equations (8) and (9) re-
spectively. On the other hand, the condition in (10) states that the
variability in the frequency response should be low at higher eigen-
values. In other words, filters that meet (10), albeit stable, have a
near-flat response at higher frequencies and therefore have poor dis-
criminibilty between high graph frequencies. Under the two condi-
tions, Theorem 1 characterizes the stability properties of STGFs.

Theorem 1 (STGF Stability). Consider an STGF with coefficients
{hk}Kk=0 running over a sequence of K identical GSOs S with
output Y as in (1). Consider a sequence of K realizations of
RES(G, p) with GSOs {Sk}Kk=1 under which the filter output Ỹ is
captured in (3). Let Sk = S + Ek, for k = 1, . . . ,K, and S0 = I.
If Assumption 1 holds, the expected difference between the filter
outputs satisfies

E[‖Ỹ −Y‖2F ] ≤ C(1− p)‖X‖2F +O
(
(1− p)2

)
, (11)

where C = αNC2
L, and the scalar α is either the maximum node

degree if S is the adjacency or 2 if it is the Laplacian.

Theorem 1 affirms that the bound depends on some graph and fil-
ter parameters as well as the probability of edge drop 1−p. It comes
with no surprise that N and 1− p contribute to the stability constant
since holding either of them fixed and increasing the other leads to
dropping more edges while constructing the random graph realiza-
tion Gk. Thus the distance between the GSOs S and Sk increases
and affects the stability of the model. We also observe that filters
with lower CL are more robust to perturbations. The constant CL
describes the variability in the filter response (cf. (9)) and smaller
values of CL indicates that the filter response changes slowly. This
implies that the filter smoothness is key to provoke stability.

To analyze the stability of ST-GNNs, we consider a class of non-
linearities σ that is Lipschitz continuous as stated in Assumption 2.

Assumption 2. The nonlinearities σ are Lipschitz-continuous func-
tions with a Lipschitz constantCσ > 0 such that, for any two vectors
x1 and x2, we have

‖σ(x1)− σ(x2)‖2 ≤ Cσ‖x1 − x2‖2. (12)

This assumption is satisfied by the activation functions usually
used in GNNs, e.g., ReLU and hyperbolic tangent (tanh) functions.
When Assumptions 1 and 2 hold, the stability of ST-GNNs is deter-
mined by Theorem 2.

Theorem 2 (ST-GNN Stability). Consider an L-layer ST-GNN
Φ(X;S,H) with F features per layer and F input and output fea-
tures. Let the STGF with coefficients {hfgkl }

fg
kl at each layer satisfy

Assumption 1 and have a unit norm, i.e., |h(λ, ω)| ≤ 1. Also,
consider the same ST-GNN runs over a sequence of K realizations
of RES(G, p) with output Φ̃(X;S,H). If the nonlinear activation
functions satisfy Assumption 2, the expected difference between the
outputs is bounded by

E
[
‖Φ̃(X;S,H)−Φ(X;S,H)‖2F

]
≤ C(1− p)‖X‖2F+O

(
(1− p)2

)
,

(13)

where C = αNL2C2
LC

2L
σ F 2L with α being the same constant in

Theorem 1.

Besides all the factors that control the stability of STGFs, Theo-
rem 2 includes some design factors, e.g., the number of features F ,
the number of layers L, and the Lipschitz constant of the nonlineari-
ties Cσ . It is worth noting, however, that the bound grows exponen-
tially with the number of layers, which suggests that deep networks
are less robust to perturbations. This result is in line with other works
that recommend the use of GNNs with only a few layers [17]. The
authors in [18] even show that a single-layer GNN with multi-tap fil-
ters has a performance that is comparable, or even superior, to that of
multi-layer single-tap GNNs. For our considered tasks, we have also
observed that a small number of layers is sufficient to ensure stabil-
ity without sacrificing performance/expressivity. Detailed study of
the expressive power of GNNs can be found in [19].

5. NUMERICAL SIMULATIONS

We consider the flocking problem in [20], where the objective is to
coordinate a swarm of agents to move together at the same velocity
and avoid collisions. The problem has a closed-form optimal solu-
tion (see [21]). However, this solution requires access to data from
all the agents and therefore does not allow decentralized settings. On
the other hand, solutions that rely on gathering information from lo-
cal neighborhood are harder to find. ST-GNNs can close this gap by
learning a decentralized policy using imitation learning.

To construct a dataset, each agent is associated with a time se-
quence of positions pi ∈ R2×T and velocities vi ∈ R2×T as node
features. The agent is also associated with optimal accelerations
ui ∈ R2×T as node predictions, which are pre-computed with a
centralized algorithm. The node features are computed at each time
step t via the system dynamics as soon as the model predicts the ac-
celeration ûi(t−1), as described in [20]. The agents form a commu-
nication network that varies over time. The underlying graph G(t)
contains an edge between nodes i and j if and only if they are within
the communication range of each other, i.e., ‖pi(t)−pj(t)‖2 ≤ R.
Since the graph depends on the present positions of the agents, we
cannot forecast the graph sequence before training/execution. For
our experiments, the dataset contains 400 examples for training, 80
for validation, and another 80 for testing.

We train an ST-GNN that consists of one layer withK = 3, F =
64 and tanh activation function. We then implement a local layer at
each node to predict the agent accelerations ûi(t). We use ADAM
[22] with learning rate 5×10−4 and forgetting factors β1 = 0.9 and
β2 = 0.999 in order to optimize the MSE between the optimal ui(t)
and the predicted ûi(t). We train our model over 30 epochs and
used validation input-output pairs to choose the one that minimizes
the velocity variation among the agents,

cost =
N∑
i=1

∥∥∥∥∥vi − 1

N

N∑
j=1

vj

∥∥∥∥∥
2

F

,

averaged over the validation dataset.
In our first experiment, we train an ST-GNN on a fixed graph

and test it over a sequence of random graphs sampled according to
definition 1. Contrary to [20], we train our model on the average
of the graph sequence. But since we cannot forecast the graphs be-
fore training as we mentioned before, we use the agent’s positions
computed with the optimal accelerations to compute the graph se-
quence and, in turn, their average. During execution, we sample a
graph sequence from the average graph with a sampling probability
p ∈ {1, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7}. Note that the sampled graph
sequences no longer represent the agent’s proximity since we decide



Fig. 1: Relative cost induced by stochastic perturbations with differ-
ent sampling probabilities p for N = 20 (top), N = 50 (middle),
and N = 80 (bottom).

on the fixed graph before training and we sample randomly from it at
execution. Fig. 1 shows that the relative cost increases linearly with
the edge-drop probability 1 − p, matching the result of Theorem 2.
We also train an STGF with K = 4 and F = 32 and verify the lin-
ear bound of Theorem 1. We, however, observe that ST-GNNs show
less relative cost compared to STGFs even though we used a lower
number of features with the latter. We attribute this observation to
the tanh activation function being a nonexpansive mapping (i.e., we
have Cσ ≤ 1).

We train a generalized ST-GNN, where the graphs are formed
according to the communication networks between the agents. The
graphs are constructed based on a communication range of R = 2m
as described at the beginning of this section and as in [20]. Thus
the graphs are time varying during both training and execution. Fig.
2 illustrates snapshots of the output of a generalized ST-GNN for
two test examples with unseen time-varying graphs of sizes N = 20
and N = 50 nodes. The snapshots were taken at the beginning
and end of a time interval of 2s. We observe that all the agents
managed to move with the same velocity and in the same direction
by the end of the time interval. This indicates that the trained ST-
GNN is successfully transferred to unseen graphs, which validate
our theoretical results.

(a) t = 0s
(b) t = 1.99s

Fig. 2: Snapshots of two test examples: (top) N = 20 and (bottom)
N = 50. The dots represent the agents, the gray lines illustrate the
underlying graphs, and the dark arrows show the agents’ velocity.

6. CONCLUSIONS

The paper studied the stability of ST-GNNs to stochastic graph per-
turbations and showed that we can transfer learned models over time-
varying graphs. Our analysis also enabled us to design generalized
ST-GNNs that can be trained over time-varying graphs. We con-
cluded that the stability bound is controlled by some graph, filter,
and design parameters. The bound increases linearly with the graph
size as well as the size of graph perturbations, represented by the
edge-drop probability. It also depends on the Lipschitz constant of
STGFs and the nonlinearities. Among all those parameters, only the
Lipschitz constant of the filters cannot be decided before training
since the filter is learnable. The stability can though be enhanced
by forcing the filter to have a low Lipschitz constant during training,
which is left as a future work.
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