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Figure 1. Neural Scene Rasterization. Our method renders urban driving scenes (1920×1080) at high quality and >100 FPS by
leveraging neural textures and fast rasterization. We reconstruct driving scenes in Bay Area and show the rendering at four streets on the
map. Please refer to our project page https://waabi.ai/neuras/ for more results on driving scenes as well as drone scenes.

Abstract

We propose a new method for realistic real-time novel-
view synthesis (NVS) of large scenes. Existing neural ren-
dering methods generate realistic results, but primarily
work for small scale scenes (< 50m2) and have difficulty
at large scale (> 10000m2). Traditional graphics-based
rasterization rendering is fast for large scenes but lacks re-
alism and requires expensive manually created assets. Our
approach combines the best of both worlds by taking a
moderate-quality scaffold mesh as input and learning a neu-
ral texture field and shader to model view-dependant effects
to enhance realism, while still using the standard graphics
pipeline for real-time rendering. Our method outperforms
existing neural rendering methods, providing at least 30×
faster rendering with comparable or better realism for large
self-driving and drone scenes. Our work is the first to en-
able real-time rendering of large real-world scenes.

*Indicates equal contribution. †Work done while an intern at Waabi.

1. Introduction

Synthesizing and rendering images for large-scale
scenes, such as city blocks, holds significant value in fields
such as robotics simulation and virtual reality (VR). In these
fields, achieving a high level of realism and speed is of
utmost importance. VR requires photorealistic renderings
at interactive frame rates for an immersive and seamless
user experience. Similarly, robot simulation development
requires high-fidelity image quality for real world transfer
and high frame rates for evaluation and training at scale,
especially for closed-loop sensor simulation [51].

Achieving both speed and realism in large-scale scene
synthesis has been a long-standing challenge. Recently, a
variety of neural rendering approaches [34, 44, 45] have
shown impressive realism results in novel view synthesis
(NVS). These methods fall into two primary paradigms:
implicit and explicit-based approaches. Implicit-based ap-
proaches [34, 6, 37, 65] represent scene geometry and ap-
pearance with multi-layer-perceptrons (MLPs) and render
novel views by evaluating these MLPs hundreds of thou-
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sands of times via volume rendering. Explicit-based ap-
proaches [44, 45] reconstruct a geometry scaffold (e.g.,
mesh, point cloud), and then learn image features that are
blended and refined with neural networks (NN) to render
a novel view. Both implicit and explicit methods require
large amounts of NN computation to perform NVS. As a
consequence, these approaches have primarily focused on
reconstructing objects or small-scale scenes (< 50m2), and
typically render at non-interactive frame rates (< 5 FPS).

Several recent methods have enabled rendering at higher
frame rates (> 20 FPS) while maintaining realism through
several strategies such as sub-dividing the scene [35, 69,
50, 54, 41], caching mechanisms [17, 21, 69, 22], and op-
timized sampling [60, 36, 25]. However, these approaches
still focus primarily on single objects or small scenes. They
either do not work on large scenes (> 10000m2) or far-
away regions due to memory limitations when learning and
rendering such a large volume, or have difficulty maintain-
ing both photorealism and high speed. One area where large
scenes are rendered at high speeds is in computer graph-
ics through rasterization-based game engines [23]. How-
ever, to render with high quality, these engines typically re-
quire accurate specifications of the exact geometry, light-
ing, and material properties of the scene, along with well-
crafted shaders to model physics. This comes at the cost
of tedious and time-consuming manual efforts from ex-
pert 3D artists and expensive and complex data collec-
tion setups for dense capture [15, 19]. While several re-
cent methods have leveraged rasterization-based rendering
in NVS [9, 13, 3, 40, 31, 24], they have only been demon-
strated on small scenes.

In this paper, we introduce NeuRas, a novel neural raster-
ization approach that combines rasterization-based graph-
ics and neural texture representations for realistic real-time
rendering of large-scale scenes. Given a sequence of sen-
sor data (images and optionally LiDAR), our key idea is
to first build a moderate quality geometry mesh of the
scene, easily generated with existing 3D reconstruction
methods [64, 46, 70, 35]. Subsequently, we perform ras-
terization with learned feature maps and Multi-Layer Per-
ceptrons (MLPs) shaders to model view-dependent effects.
Compared to computationally expensive neural volume ren-
dering, leveraging an approximate mesh enables high-speed
rasterization, which scales well for large scenes. Compared
to existing explicit-based geometry methods that use large
neural networks to perform blending and image feature re-
finement, we use light-weight MLPs that can be directly ex-
ported as fragment shaders in OpenGL for real-time render-
ing. We also design our neural rasterization method with
several enhancements to better handle large scenes. First,
inspired by multi-plane and multi-sphere image representa-
tions [73, 4], we model far-away regions with multiple neu-
ral skyboxes to enable rendering of distant buildings and

sky. Additionally, most NVS methods focus on rendering
at target views that are close to the source training views.
But for simulation or VR, we need NVS to generalize to
novel viewpoints that deviate from the source views. To
ensure our approach works well at novel viewpoints, we
utilize vector quantization [20, 55] to make neural texture
maps more robust and to store them efficiently.

Experiments on large-scale self-driving scenes and drone
footage demonstrate that NeuRas achieves the best trade-
off between speed and realism compared to existing SoTA.
Notably, NeuRas can achieve comparable performance to
NeRF-based methods while being at least 30× faster. To
the best of our knowledge, NeuRas is the first method of its
kind that is capable of realistically rendering large scenes
at a resolution of 1920 × 1080 in real-time, enabling more
scalable and realistic rendering for robotics and VR.

2. Related Work
Explicit-based synthesis: Classical 3D reconstruction
methods such as structure-from-motion and multi-view
stereo [47, 48, 2] have been extensively utilized to recon-
struct large-scale 3D models of real-world scenes. How-
ever, texture mapping applied during the reconstruction pro-
cess often produces unsatisfactory appearance due to reso-
lution limitations and lack of view-dependence modelling.
To address the challenges of NVS, image-based rendering
methods employ the reconstructed geometry as a proxy to
re-project target views onto source views, and then blend
the source views heuristically or by using a convolutional
network [8, 44, 12, 9, 56]. These methods typically require
a large amount of memory and may still have visual aberra-
tions due to errors in image blending. Alternatively, point-
based methods [26, 3, 40] use per-point feature descrip-
tors and apply convolutional networks to produce images.
However, these methods are inefficient in rendering due to
large post-processing networks and often exhibit visual ar-
tifacts when the camera moves. Similarly, multi-plane im-
ages [14, 73, 16, 33] or multi-sphere images [4] are applied
for outdoor-scenes rendering in real-time, but they can only
be rendered with restricted camera motion. Our work builds
on these techniques by leveraging an explicit geometry, but
then utilizes UV neural texture maps and fast rasterization
to boost speed and realism.

Implicit-based synthesis: In recent years, implict neural
field methods, especially NeRF [34], have become the foun-
dation for many state-of-the-art NVS techniques. NeRF
represents the scene as an MLP that is optimized based
on camera observations. To accelerate reconstruction time,
several methods have been proposed [35, 68, 50, 11, 28],
but cannot achieve real-time rendering for high resolution.
To accelerate rendering speed, “baking” methods [41, 17,
69, 21, 60] typically pre-compute and store the neural field
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Figure 2. NeuRas pipeline. We first rasterize screen-space feature buffers from the scene representation. Then a learned MLP shader takes
the rasterized feature buffers and view-direction as inputs and predicts a set of rendering layers. Finally the rendered layers are composited
to synthesize the RGB image.

properties for rendering. However, these methods require
a large amount of memory and disk storage, limiting their
applicability mainly to small objects. Several recent works
share similar ideas with our approach of utilizing the graph-
ics pipeline to accelerate neural rendering while maintain-
ing realism. MobileNeRF [13] also uses an explicit mesh
with UV feature representations and an MLP baked in
GLSL. However, its grid-mesh representation limits its scal-
ability to large scenes due to memory constraints, and its
hand-crafted mesh configurations fail to adapt to complex
outdoor scenes. Similarly, BakedSDF [67] requires a high-
resolution mesh that occupies a significant amount of space
even for smaller scenes, and MeRF [42] bakes NeRF to tri-
plane images, which reduces memory consumption but lim-
its its scalability to large scenes. In contrast, our approach
only requires a moderate-quality mesh as a proxy and uses a
quantized UV texture feature, which can be easily extended
to large scenes to achieve high realism in real-time.

Large-scene synthesis: Several methods have been pro-
posed to extend NeRF for large-scene synthesis. BlockN-
eRF [52] and MegaNeRF [54] divide large scenes into mul-
tiple spatial cells to increase the model capacity. Recent
work GP-NeRF [72] further improves the training speed by
using hybrid representations. READ [26] uses LiDAR point
cloud descriptors followed by a convolutional network to
synthesize autonomous scenes. BungeeNeRF [62] employs
a learnable progressive growing model for city-scale scenes.
These methods typically struggle with high computational
costs, especially for real-time rendering. For interactive vi-
sualization, URF [43] bakes mesh while MegaNeRF applies
techniques like caching and efficient sampling, but the real-
ism drops significantly. To the best of our knowledge, our
approach is the first to demonstrate realistic rendering in
real-time for such large-scale scenes.

3. Neural Scene Rasterization

In this section, we describe NeuRas, which aims to per-
form real-time rendering of large-scale scenes. Given a
set of posed images and a moderate-quality reconstructed

mesh, our method generates a scene mesh with neural tex-
ture maps and view-dependent fragment shaders. Using
the initial mesh, we first generate a UV parameterization
to learn neural textures on. We then jointly learn a discrete
texture feature codebook and view-dependent lightweight
MLPs that can effectively represent scene appearance. Fi-
nally, we bake the texture feature codebook and the MLPs
into a set of neural texture maps and a fragment shader that
can be run in real time with existing graphics pipelines.
We now first introduce our approach for representing large-
scale scenes (Sec. 3.1), then describe how we render and
learn the scene (Sec. 3.2-3.3), and finally how we export
our model into real time graphics pipelines (Sec. 3.4).

3.1. Scene Representation

In this paper our focus is on rendering large-scale out-
door scenes. In order to handle potentially infinite depth
ranges (e.g., sky, vegetation, mountain, etc.) as well as
nearby regions, we utilize a hybrid approach. The entire 3D
scene is partitioned into two regions: an inner cuboid region
(foreground) modelled by a polygonal mesh textured with
neural features, and an outer cuboid region (background)
modelled by neural skyboxes. Such a hybrid scene rep-
resentation allows us to model fine-grained details in both
close-by regions and far-away regions, and enables render-
ing with a remarkable degree of camera movement.

Foreground representation: For the foreground region,
we leverage an explicit geometry mesh scaffold to learn
and render neural textures. Our approach can be applied
on various sources of mesh, for example we can leverage
existing neural reconstruction methods [64, 35] or SfM [47]
(see supp. materials for details). Initially, the reconstructed
mesh could contain over tens of millions of triangle faces,
which represents the geometry well, but may have self-
intersections and duplicate vertices. We thus preprocess
it to reduce computational cost and improve UV mapping
quality. We first cluster nearby vertices together and per-
form quadric mesh decimation [18] to simplify the mesh
while preserving essential structure, and then perform face
culling to remove non-visible triangle faces (w.r.t. source



camera views). Finally we utilize a UV map generation
tool [39] to unfold the mesh to obtain the UV mappings
for each of its vertices. The resulting triangle mesh M =
{v, t, f} consists of vertex positions v ∈ RN×3, vertex UV
coordinates t ∈ RN×2, and a set of triangle faces f . Based
on the generated UV mapping, we initialize a learnable UV
feature map T ∈ RV×U×D to represent the scene appear-
ance covered by the mesh. Using neural features instead
of a color texture map enables modelling view-dependent
effects during rendering (see Sec. 3.2).

Background representation: It is challenging to model
the far-away background regions with polygonal mesh be-
cause of the complexity and scale of that region.

As an alternative, we draw inspiration from the concept
of multi-plane images [73, 16, 33] and multi-sphere im-
ages [4] to represent the background region using neural
skyboxes.

The neural skyboxes represents the scene as a set of
cuboid layers, and each layer Si = {S1

i , · · · ,S6
i } contains

6 individual feature maps that each represents one plane of
the cuboid. The feature maps represent both geometry and
view-dependent appearance of the scene. Our neural sky-
boxes can represent a wide range of depths and can be inte-
grated in existing graphics pipelines [23], enabling efficient
rendering.

3.2. Rendering Large Scenes

Fig. 2 shows an overview of our rendering pipeline.
Our NeuRas framework is inspired by the deferred shad-
ing pipeline from real-time graphics [53]. We first rasterize
the foreground mesh and neural skyboxes with neural tex-
ture maps to the desired view point, producing a set of im-
age feature buffers. The feature buffers are then processed
with MLPs to produce a set of rendering layers, which are
composited to synthesize the final RGB image. We now
describe this rendering process in more detail.

Foreground rendering: Given the camera pose and in-
trinsics, we first rasterize the mesh into screen space, ob-
taining a UV coordinate (u, v) for each pixel (x, y) on the
screen. We then sample the UV feature map T ∈ RV×U×D

using the rasterized UV coordinates and obtain a feature
buffer F0 ∈ RH×W×D:

F0(x, y) = BilinearSample(u, v,T), (1)

where V × U is the UV feature map resolution, H × W
is the rendering resolution, and D is the feature dimension.
In addition to a feature buffer, the rasterization also gener-
ates a opacity mask O0 ∈ RH×W to indicate if a pixel is
covered by the polygonal mesh. To render the RGB image,

we concatenate the rendered feature with the view direction
d(x, y) and pass through a learnable MLPs shader fθT :

I0(x, y) = fθT (F0(x, y),d(x, y)) , (2)

where θT is the MLP parameters, I0(x, y) is the rendered
RGB color for pixel (x, y).

Background rendering: To render the neural skybox fea-
ture layers {Si}Li=1 representing distant background re-
gions, we project camera ray shooting each pixel (x, y) and
compute its intersection points {pi}Li=1 with layers 1 to L,
from near to far. Next, we sample the features {fi}Li=1 cor-
responding to the intersection points on the neural skybox
feature map at each layer, generating a set of feature buffers
Fi ∈ RH×W×D, where i = 1, · · · , L. This step can be effi-
ciently performed with the OpenGL rasterizer. We then use
a learnable MLPs shader fθS to process the feature buffers
and outputs the opacity map Oi ∈ RH×W and RGB color
map Ii ∈ RH×W×3 for each layer:

Oi(x, y), Ii(x, y) = fθS (Fi(x, y),d(x, y)) , (3)

where θS represents the parameters of the MLPs. The
MLPs shader first processes the input feature Fi(x, y), and
outputs opacity Oi(x, y) and an intermediate feature vec-
tor. The feature vector is then concatenated with d(x, y),
the view direction of camera ray, and passed to the last lay-
ers that output the view-dependent color Ii(x, y).

Compositing foreground and background: To synthe-
size the final RGB image, we composite the rendered layers
from the foreground mesh {I0(x, y),O0(x, y)} and neural
skyboxes {Ii(x, y),Oi(x, y)}Li=1 by repeatedly composit-
ing the RGB and opacity layers, from near to far:

I(x, y) =

L∑
i=0

Ii(x, y) ·Oi(x, y) ·
i−1∏
j=0

(1−Oj(x, y)). (4)

The term Ii(x, y) · Oi(x, y) represents the color contribu-
tion of the current layer i, and

∏i−1
j=1(1−Oj(x, y)) denotes

the fraction of the color that will remain after attenuation
through the layers in front. This compositing process en-
sures that the RGB values are correctly blended.

Quantized texture representation: To encourage the
sharing of latent features in visually similar regions such as
roads and sky, we apply vector quantization (VQ) to regu-
larize the neural texture maps. This allows these features to
be supervised from a large range of view directions which
improves view-point extrapolation performance. Further-
more, it also significantly compacts the feature representa-
tions, reducing the offline storage space. We follow [55]
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Figure 3. Quantized feature representation. For each entry in
the feature map, we map it to the closest learnable latent code ek

in the codebook E .

and maintain two codebooks ET and ES, each consists of
K learnable latent code ek ∈ RD, with k = 1, · · · ,K.
In the forward pass, we quantize the UV feature map
TE ∈ RV×U×D and neural skyboxes feature maps SE ∈
RL×V×U×D by mapping each feature to its closest latent
code in the codebook:

TE(v, u) = argmin
ek∈ET

∥T(v, u)− ek∥,

SE(l, v, u) = argmin
ek∈ES

∥S(l, v, u)− ek∥,
(5)

where v, u are the spatial coordinates of the feature map,
and l is the layer index of the neural skyboxes. Fig. 3 shows
the feature map quantization process. We use the quantized
features to compute the synthesized image in Eqn. 4.

3.3. Learning NeuRas

We jointly optimize the feature map T, S, the code-
book ET, ES, as well as the parameters θT, θS of the MLP
shaders by minimizing the photometric loss and perceptual
loss between our rendered images and camera observations,
as well as the VQ regularizer. Our full objective is:

L = Lrgb + λpercLperc + λvqLvq. (6)

In the following, we discuss each loss term in more detail.

Photometric loss: Lrgb measures the ℓ2 distance between
the rendered and the observed images, the loss is defined as:

Lrgb = ∥I− Î∥2, (7)

where I is the rendered image from Eqn. 4 and Î is the cor-
responding observed camera image.

Perceptual loss: We use an additional perceptual loss [71,
57] to enhance the rendered image quality. This loss mea-
sures the “perceptual similarity” that is more consistent with
human visual perception:

Lperc =

M∑
i=1

1

Ni

∥∥∥Vi(I)− Vi(̂I)
∥∥∥
1
, (8)

where Vi denotes the i-th layer with Ni elements of the pre-
trained VGG Network [49].
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Figure 4. Rendering realism vs efficiency. Our method achieves
the best tradeoff between realism and speed. The size of the mark-
ers indicates the memory consumption required for rendering.

VQ loss: To update the codebook E , we follow [55] and
define the VQ loss term as:

Lvq = ∥sg[T]−TE∥22 + ∥sg[S]− SE∥22
+ β∥sg[TE ]−T∥22 + β∥sg[SE ]− S∥22,

(9)

where sg[·] denotes the stop-gradient operator that behaves
as the identity map at forward pass and has zero partial
derivatives at backward pass. The first two terms form
the alignment loss and encourage the codebook latents to
follow the feature maps. The last two terms form the
commitment loss which stabilizes training by discourag-
ing the features from learning much faster than the code-
book. It is noted that the quantization step in Eqn. 5 is non-
differentiable. We approximate the gradient of the feature
maps T,S using the straight-through estimator [7], which
simply passes the gradient from the quantized feature to the
original feature unaltered during back-propagation.

3.4. Real Time Rendering

To enable NeuRas to render in real time, we convert
our scene representations and MLPs to be compatible with
the graphics rendering pipeline. The mesh, skyboxes, and
texture representations are all directly compatible with the
OpenGL, while the learned MLPs fθT and fθS are con-
verted to fragment shaders in OpenGL. During each render-
ing pass, the triangle mesh M and the skyboxes {Si}Li=1

are rasterized to the screen as a set of fragments, and each
fragment is associated with a feature vector that is bilinearly
sampled from the neural texture maps. The fragment shader
then maps each fragment’s features to RGB color and opac-
ity. To ensure correct alpha compositing, the scene mesh
and cuboids are sorted depth-wise and rendered from back
to front, following the procedure outlined in Eqn. 4.

4. Experiments
In this section, we introduce our experimental setting,

and then compare our approach with state-of-the-art NVS
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Figure 5. Qualitative results on driving scenes. Compared to existing novel view synthesis approaches, NeuRas produces competitive
realism and achieves real-time rendering (> 100 FPS).

Methods Interpolation Lane Shift Resources

MSE↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ @2m FID↓ @3m Memory (MB) ↓ FPS↑
Instant-NGP [35] 0.0035 24.76 0.79 • 0.40 134.20 135.75 7491 3.2
ENeRF [28] 0.0034 • 24.92 • 0.77 0.34 190.96 243.93 7285 • 5.1 •
UniSim [64] 0.0030 • 26.28 • 0.78 • 0.26 • 92.78 • 100.63 • 7623 1.4

Multi-View Warping [10] 0.0095 20.55 0.64 0.39 164.09 177.19 1441 • 50 •
FVS [44] 0.0089 20.87 0.71 0.29 • 116.36 • 122.87 • 15243 0.3

Ours 0.0030 • 25.45 • 0.75 • 0.31 • 105.64 • 111.63 • 4538 • 120 •
Table 1. State-of-the-art comparison on PandaSet. Our method synthesizes novel views (1920×1080) in real time with high visual
quality on urban driving scenes. We mark the methods with best performances using gold •, silver •, and bronze • medals.

methods on large-scale driving scenes and drone footages.
We demonstrate that our neural rendering system achieves
the best balance between photorealism and rendering effi-
ciency. We then ablate our design choices, showing the
value of the neural shader and vector quantization for im-
proved realism and extrapolation robustness. Finally, we
show NeuRas can speed up various NeRF approaches in a
plug-and-play fashion by leveraging their extracted meshes
for real-time NVS of large scenes.

4.1. Experimental Setup

Datasets: We conduct experiments primarily on two pub-
lic datasets with large-scale scenes: PandaSet [63] and
BlendedMVS [66]. PandaSet is a real-world driving dataset
that contains 103 urban scenes captured in San Francisco,
each with a duration of 8 seconds (80 frames, sampled at
10Hz) and a coverage of around 300 × 80m2 meters. At
each frame, a front-facing camera image (1920×1080) and
360 degree point cloud are provided. We select 9 scenes

on Pandaset that have few dynamic actors for NVS evalua-
tion. Since our focus is on static scenes, the dynamic actor
regions are masked out during evaluation by projecting the
3D bounding boxes into images. The BlendedMVS dataset
offers a collection of large-scale outdoor scenes captured by
a drone and also provides reconstructed meshes generated
from a 3D reconstruction pipeline [1]. We select 5 large
scenes for evaluation which are diverse and range in size
from 200× 200m2 to over 500× 500m2.

Baselines: We compare our approach with two types of
novel view synthesis (NVS) methods: (1) Implicit-based
neural fields: Instant-NGP [35], ENeRF [29], UniSim [64].
Instant-NGP introduces a multi-resolution hashing grid and
tiny MLP for fast training and inference. UniSim and EN-
eRF leverage the LiDAR or depth information for efficient
ray generation (sparse grids) and efficient sampling along
each ray. (2) Explicit-based approaches: multi-view warp-
ing [10] uses the mesh to project nearby source images to
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Figure 6. Qualitative results on drone scenes. Compared to existing novel view synthesis approaches, NeuRas produces competitive
realism results and achieves real-time rendering (> 400 FPS) on drone scenes.

Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑
Instant-NGP [35] 24.40 0.780 0.241 8.7
UniSim [64] 24.37 0.792 0.204 4.9

Multi-View Warping [10] 21.11 0.738 0.248 65
Ours 24.19 0.790 0.176 462

Table 2. State-of-the-art comparison on BlendedMVS.

target views, and FVS [44] further uses neural networks to
blend the source images.

Implementation details: In our implementation, we uti-
lized a UV feature size of 8192×8192 with 12 channels for
the neural texture component. Additionally, we employed 6
skyboxes placed at a distance ranging from 150m to 2.4km
from the inner cuboid center. The MLP consists of 3 layers,
with each layer comprising of 32 hidden units. Both code-
books have a size of 1024. We trained the model using the
Adam optimizer with a learning rate of 0.01 for 20K iter-
ations. We use a single machine equipped with an A5000
GPU for all reported runtimes and memory usage bench-
marking, including the baselines. Further implementation
details are provided in the supp. materials.

4.2. Fast Rendering on Large-scale Scenes

Driving scenes on PandaSet: For self-driving, we need
to simulate the camera images at significantly different
viewpoints (interpolation and extrapolation). We evaluate
the interpolation setting following [27]: sub-sampling the
sensor data by two, training on every other frame and test-
ing on the remaining frames. We report PSNR, SSIM [58],

and LPIPS [71]. Moreover, we evaluate a more challenging
extrapolation setting (Lane Shift) following [64] by simu-
lating a new trajectory shifted laterally to the left or right
by 2 or 3 meters. We report FID [38] since there is no
ground truth for comparison. We use the neural meshes re-
constructed by UniSim [64] for the experiments.

As shown in Fig. 4, our approach strikes the best trade-
off between rendering quality and rendering speed. Table 1
shows all the metrics, specifically, our method only sacri-
fices 0.8 PSNR compared to the best approach while main-
taining > 100 FPS (80× faster than UniSim, 40× faster
than Instant-NGP). In contrast, implicit-based neural fields
obtain slightly better (UniSim) or worse (InstantNGP, EN-
eRF) PSNR with much lower inference speed. Compared
to geometry-based approaches such as multi-view warping
and FVS, NeuRas achieves better realism and faster render-
ing speed. Furthermore, the qualitative results presented in
Fig. 5 demonstrate that our method exhibits comparable or
superior visual realism when compared to the baselines.

Drone scenes on BlendedMVS: We leverage the pro-
vided reconstructed meshes in BlendedMVS as our geome-
try scaffold and evaluate interpolation setting (i.e., random
50−50 train-validation split). As shown in Table 2, NeuRas
strikes a good balance between rendering quality and speed.
Fig. 6 shows qualitative comparisons with state-of-the-art
NVS methods. Except for view-warping, which has visible
artifacts, it is difficult to discern differences between our
method and slower neural rendering methods.



Methods PSNR↑ SSIM↑ LPIPS↓
No MLP 24.48 0.664 0.374
MLP-shader w/o viewdir 25.01 0.728 0.316
MLP shader 25.34 0.738 0.308

Table 3. Ablation on MLP shader. Metrics are reported on the
log-53 in PandaSet.

Methods Interpolation Lane Shift Storage ↓
PSNR↑ LPIPS↓ FID↓@2m FID↓@3m (MB)

w/o VQ 25.46 0.317 81.5 98.3 4644
w/ VQ 25.34 0.308 78.2 95.3 394

Table 4. Ablation on vector quantization. Vector quantization
improves extrapolation and reduces storage, with minimal impact
on realism. Metrics are reported on log-53 in PandaSet.

Ours with mesh-50K (PSNR: 26.14) Ours with mesh-500K (PSNR: 26.65)

Figure 7. Qualitative comparison between using mesh with 50K
and 500K vertices

Method Ablation: We ablate our design choices for
NeuRas on neural shader and vector quantization (VQ). As
shown in Table 3, using an MLP-backed fragment shader
can improve realism in generating view-dependent results.
It can also help compensate for artifacts in the geometry.
Please refer to supp. for visual comparison. In Table 4, we
show vector quantization significantly reduce the disk stor-
age while maintaining similar realism. Besides, adding VQ
helps regularize the neural texture maps thus resulting in
better perceptual quality especially in extrapolation results
(indicated by smaller FID in the lane-shift setting).

Mesh Ablation: We also demonstrate that NeuRas can
perform well with coarser low poly-count meshes in Fig 7.
Given the geometry mesh extracted with UniSim [64], we
perform triangle decimation [18] to achieve desired vertex
counts, and then learn the texture maps with NeuRas. Our
approach achieves similar visual quality despite the low res-
olution mesh, desmonstrating the value of the neural tex-
tures.

Comparison against real-time NeRFs: When compar-
ing our method with real-time rendering approaches such as
SNeRG [21], PlenOctrees [69], and MobileNeRF [13], we
encountered difficulties in applying these methods to large
scenes and achieving satisfactory results. These challenges
included low-resolution representation, out-of-memory er-
rors, limited model capacity, high training cost, and poor
geometry. We therefore compare against these methods on

Methods Chair Lego FPS↑PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF [34] 33.00 0.967 0.046 32.54 0.961 0.050 0.02
Mip-NeRF [5] 37.14 0.988 0.011 35.74 0.984 0.013 0.02
TensoRF [11] 35.76 0.985 0.022 36.46 0.983 0.018 1.5
NSVF [30] 33.19 0.968 0.043 32.29 0.973 0.029 0.84

SNeRG [21] 33.24 0.975 0.025 33.82 0.973 0.022 176
PlenOctree [69] 33.19 0.970 0.039 32.12 0.965 0.046 270
MobileNeRF [13] 34.02 0.978 0.025 34.18 0.975 0.025 720

Ours 33.15 0.975 0.036 30.66 0.951 0.061 461

Table 5. Comparison with real-time NeRFs on synthetic
dataset. Despite being designed for large-scale scenes, our
method still achieves comparable performance when rendering
small objects.

Methods PSNR↑ SSIM↑ LPIPS↓ FPS↑
InstantNGP [35] 23.55 0.75 0.23 8.2
Ours + InstantNGP 20.26 0.52 0.31 455

UniSim [64] 23.30 0.76 0.21 4.7
Ours + UniSim 21.19 0.65 0.23 336

Table 6. Speed up neural radiance fields. NeuRas is able to speed
up popular NeRFs even if the geometry is not high-quality. The
metrics are reported on Church in BlendedMVS.

object-level scenes in Table 5. We use VoxSurf [61] to ex-
tract the geometries for NeuRas. Please see supp. for more
details. While we focus on the real-time rendering for large
scenes, our approach has reasonable performance on small-
objects from NeRF synthetic dataset [34].

4.3. Speeding-up NeRFs

We highlight that NeuRas can speed up popular NeRF
approaches. We consider two representative approaches:
Instant-NGP (camera supervision, density geometry) and
UniSim (camera + depth supervision, SDF geometry). We
use marching cubes [32] to extract the geometry for a se-
lected scene in BlendedMVS and then adopt NeuRas for
real-time rendering. As shown in Table 6 and Fig 8, our ap-
proach dramatically speeds up rendering performance while
maintaining reasonable photorealism. Please see supp. ma-
terials for visual comparison and more analysis.

4.4. Limitations

Our method has several limitations, including the use
of opaque meshes, which poses challenges in accurately
modeling semi-transparent components such as fog and wa-
ter. Additionally, while our neural shader design improves
the robustness of the model w.r.t. geometry quality, render-
ing performance may still suffer when dealing with meshes
with severe artifacts in Fig. 9. Our method cannot fix se-
vere mesh artifacts and incorrect boundaries, which requires
a fully differentiable rasterization pipeline. Additionally,
our approach has difficulty rendering completely unseen re-
gions that are far from the training views. Scene completion



Instant-NGP render Instant-NGP mesh NeuRas with Instant-NGP mesh UniSim render UniSim mesh NeuRas with UniSim mesh

FPS 462FPS 4.69FPS 462FPS 8.70

Figure 8. Speed up neural radiance fields with NeuRas. We use Marching Cubes [32] to extract the geometry from the trained radiance
fields model and then adopt NeuRas for real-time rendering. For each example, we show radiance field rendering in the left, extracted
mesh in the middle, and NeuRas rendering in the right. NeuRas can significantly speed up the rendering speed while maintaining a similar
rendering photorealism even with poor geometry scaffold (e.g. Instant-NGP [35]).

Intricate structures Boundary between foreground and background Lack detail at higher zoom levels.

Figure 9. Limitations of NeuRas. From left to right: Difficulties in modelling intricate structures such as power lines in the sky, artifacts
at the boundary of foreground mesh and skybox due to missing geometry at the top of building, and lack of details at high zoom levels.

may help address this. Moreover, the current implementa-
tion uses only one UV texture level, which can cause alias-
ing or blurriness when scaling extensively, such as when
moving very close to or far away from an object. Using
a multi-level texture representation such as mipmaps [59]
could mitigate these issues. More analysis is available in
the supp. materials.

5. Conclusion

In this paper, we present NeuRas, a novel approach for
realistic real-time novel view synthesis of large scenes. Our
approach combines the strengths of neural rendering and
traditional graphics to achieve the best trade-off between
realism and efficiency. NeuRas utilizes a scaffold mesh as
input and incorporates a neural texture field to model view-
dependent effects, which can then be exported and rendered
in real-time with standard rasterization engines. NeuRas
can render urban driving scenes at 1920 × 1080 resolu-
tion at over 100 FPS while delivering comparable realism
to existing neural rendering approaches. We hope NeuRas
can open up possibilities for scalable and immersive expe-

riences for self-driving simulation and VR applications.
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