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“Everything is related to everything else, but near things are more
related than distant things” - 1st Law of Geography (Tobler 1970).

Abstract—Are users of an online social network interested
equally in all connections in the network? If not, how can we
obtain a summary of the network personalized to specific users?
Can we use the summary for approximate query answering?

As massive graphs (e.g., online social networks, hyperlink
networks, and road networks) have become pervasive, graph
compression has gained importance for the efficient processing
of such graphs with limited resources. Graph summarization
is an extensively-studied lossy compression method. It provides
a summary graph where nodes with similar connectivity are
merged into supernodes, and a variety of graph queries can be
answered approximately from the summary graph.

In this work, we introduce a new problem, namely personalized
graph summarization, where the objective is to obtain a summary
graph where more emphasis is put on connections closer to a
given set of target nodes. Then, we propose PEGASUS, a linear-
time algorithm for the problem. Through experiments on six
real-world graphs, we demonstrate that PEGASUS is (a) Effec-
tive: node-similarity queries for target nodes can be answered
significantly more accurately from personalized summary graphs
than from non-personalized ones of similar size, (b) Scalable:
it summarizes graphs with up to one billion edges, and (c)
Applicable to distributed multi-query answering: it successfully
replaces graph partitioning for communication-free multi-query
processing.

Index Terms—Graph summarization, Graph compression, Per-
sonalization, Graph query answering

I. INTRODUCTION

A graph is an abstract data structure, and it naturally
represents a wide range of data, including hyperlink networks
[1], [2], online social networks [3], [4], collaboration networks
[5], and co-purchasing networks [6]. Such real-world graphs
grow rapidly as data modeled by them are accumulated at an
unprecedented pace.

As a result, many real-world graphs are too large to fit in
main memory, while real-time processing of various complex
graph queries requires them to be resident in main memory
of a single machine. Real-time answering of complex queries
on graphs often requires fast random access into memory,
and thus, if graphs are disk-resident and/or distributed across
multiple machines, answering such queries incurs significant
I/O overhead, preventing real-time processing.

As a promising approach to address the above challenge,
graph summarization [4], [7]–[12] has received much attention
among many graph-compression techniques [1], [3], [13]–[17].
Its objective is to compress a given graph G in a lossy way

𝐮𝐮 𝐯𝐯

(a) Input graph

𝐮

(b) Summary graph personalized to
the node u

𝐯

(c) Summary graph personalized to
the node v

Fig. 1. An illustrating example of personalized graph summarization.
From the input graph (top), two summary graphs are obtained. Supernodes
group nodes, and each superedge between two supernodes indicates dense
connections across the nodes in them. Similarly, the self-loop of each supernode
indicates dense connections within the supernode. Note that one summary
graph (middle) is personalized to the the node u, accurately preserving the
edges near u. The other (bottom) is personalized to the the node v, which
focus relatively more on the edges near v.

while satisfying a given space budget, which is typically the
amount of main memory in a machine. The output, which
we call summary graph, is in a form of a graph where each
node indicates a group of nodes in G and each edge between
two groups indicates the presence of edges between a large
fraction of pairs of nodes in the two groups. Note that we use
the term “graph summarization” to refer to this specific way
of compression throughout this paper, while the term has been
used to refer to a number of related but different concepts [18].

A key benefit of graph summarization is that a variety of
graph queries can be directly be approximately answered from
the output, in addition to many other benefits, including the
interpretability of its output, the scalability its solvers, and
its combinability with other graph-compression techniques.1

This is because, the neighborhood query (i.e., retrieving the
neighbors of a given node) can be approximately answered
directly from a summary graph, and many graphs algorithms,
including node degrees [10], clustering coefficients [10],
eigenvector centrality [11], hops between nodes, and random
walk with restart, access graphs only by the neighborhood
query (see Appendix A for examples).

In this work, we introduce a new problem called personalized
graph summarization. It is motivated by the fact that people
often have different levels of interest in different parts of

1Since an output is in the form of a graph, it can be further compressed
using any graph-compression techniques.
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Fig. 2. PEGASUS is effective, linearly scalable, and applicable to
distributed multi-query answering. (a) PEGASUS successfully personalizes
summary graphs, (b) PEGASUS is linear in the number of edges, scaling
to one billion edges. (c) PEGASUS answers RWR queries accurately in a
distributed but “communication-free” manner. See Sect. V for details.

a graph, following Tobler’s first law of geography [19]:
“everything is related to everything else, but near things are
more related than distant things.” For example, users in online
social networks are more interested in connections of their
close friends than in those of strangers. Moreover, travelers
navigating a road network are more interested in the roads
near them than in those far from them.

Given a graph G, a set of target nodes T , and a space budget
k, personalized graph summarization is to find a summary
graph of G that is personalized to T while satisfying the
budget k. We formulate it as an optimization problem whose
objective, namely personalized error, weighs error differently
depending on the distance between the location of error and
T . Specifically, the weight of error at closer locations is larger,
requiring the output summary graph to be focused more on
parts closer to target nodes T (see Fig. 1 for an example).

Our algorithmic contribution is to design PEGASUS
(Personalized Graph Summarization with Scalability), a linear-
time algorithm for the personalized summarization problem.
It is largely based on SSUMM, which is the state-of-the-art
algorithm [7] for non-personalized graph summarization, with
an improved balance between exploration and exploitation.
Through extensive experiments, we demonstrate that PEGASUS
provides personalized summary graphs (see Fig. 2(a)) from
which three types of node-similarity queries for target nodes
are answered significantly more accurately than from non-
personalized summary graphs of similar size obtained by
previous solvers [7], [9]–[11].

Application to Distributed Multi-Query Answering. Much
effort has been made to minimize the communication between
machines when answering queries on graphs distributed over
multiple machines [20]–[23]. We demonstrate that PEGASUS
can be useful for “communication-free” distributed multi-query
answering. Specifically, we assume approximate multi-query
answering by multiple machines that act independently without
I/O overhead over the network. To this end, using PEGASUS,
we produce multiple personalized summary graphs with focuses
on different regions of the input graph with a mapping function
from nodes to summary graphs. The summary graphs are loaded
in different machines, and we assign each query to machines
on which the queries can be processed accurately, based on
the mapping function. We demonstrate through experiments
that three types of node-similarity queries are answered more
accurately without communication from multiple summary

TABLE I
FREQUENTLY-USED SYMBOLS AND THEIR DEFINITIONS.

Symbol Definition

G = (V,E) input graph with nodes V and edges E
{u, v} ∈ E edge between nodes u ∈ V and v ∈ V
A(G) adjacency matrix of G

G = (S, P ) summary graph with supernodes S, superedges P
Su ∈ S supernode containing the node u ∈ V
{A,B} ∈ P superedge between supernodes A ∈ S and B ∈ S
ΠS set of possible unordered pairs of supernodes(
A
2

)
set of size-2 subsets of A

Ĝ = (V, Ê) reconstructed graph with nodes V , edges Ê
A(Ĝ) reconstructed adjacency matrix of Ĝ

T ⊆ V target node set
α degree of personalization
k desired size in bits of the output summary graph

A ∪B supernode into which supernodes A and B are merged
θ threshold for adaptive thresholding
L list for adaptive thresholding
β parameter for adaptive thresholding
{C1, . . . , Cq} candidate groups
tmax maximum number of iterations

graphs than from partitions of graphs (see Fig. 2(c)).
We summarize our contribution as follows:

• Problem Formulation: We introduce a new problem, person-
alized graph summarization, and demonstrate the usefulness
of personalizing summary graphs (see Fig. 2(a)).

• Algorithm Design: We propose PEGASUS, a linear-time
algorithm for the problem. We show empirically that it scales
to a graph with one billion edges (see Fig. 2(b)).

• Extensive Experiments: Using six real-world graphs, we
exhibit the effectiveness of PEGASUS and its applicability
to distributed multi-query answering (see Fig. 2(c)).

The source code and the datasets are available at [24].
In Sect. II, we introduce some concepts and formally define

the personalized graph summarization problem. In Sect. III,
we present PEGASUS. In Sect. IV, we discuss its application
to distributed multi-query answering. In Sect. V, we evaluate
PEGASUS. After reviewing related studies in Sect. VI, we
draw a conclusion in Sect. VII.

II. CONCEPTS & PROBLEM DEFINITION

In this section, we introduce basic concepts and formalize our
new problem, namely the personalized graph summarization
problem. The frequently-used notations are listed in Table I.

A. Basic Concepts
Input Graph. An input graph G = (V,E) consists of a set
of nodes V = {1, 2, ..., |V |} and a set of edges E ⊆

(
V
2

)
. We

assume that G is undirected without self-loops for simplicity.
The adjacency matrix A(G) ∈ R|V |×|V | of G encodes the
connectivity in G as follows:

A(G)
uv :=

{
1, if {u, v} ∈ E,
0, otherwise,

∀u ∈ V,∀v ∈ V.

Summary Graph. A summary graph G = (S, P ) of G =
(V,E) consists of a set of supernodes S and a set of superedges
P , and the set S is a partition of V . That is, supernodes are
disjoint sets whose union is V , and equivalently, each node



belongs to exactly one supernode. We use Su ∈ S to denote the
supernode containing each node u ∈ V . The summary graph G
is undirected and it may have self-loops. Thus, P ⊆ ΠS holds
where ΠS :=

(
S
2

)
∪ {{A,A} : A ∈ S} denotes the set of all

possible unordered pairs of supernodes. We use {A,B} ∈ P
to denote the superedge that joins A ∈ S and B ∈ S.
Reconstructed Graph. From a summary graph G = (S, P ),
we can reconstruct a graph Ĝ = (V, Ê) with the set of
nodes V and the set of reconstructed edges Ê ⊆

(
V
2

)
. In

the reconstructed graph Ĝ, there exists an edge between nodes
u and v (i.e., {u, v} ∈ Ê) if and only if the supernodes
containing them (i.e., Su and Sv) are adjacent in G (see Fig. 3
for an example). That is, the reconstructed graph Ĝ from G
is defined as the graph whose adjacency matrix satisfies

A(Ĝ)
uv =

{
1, if u 6= v and {Su, Sv} ∈ P ,
0, otherwise,

∀u ∈ V,∀v ∈ V.

Note that, a self-loop {A,A} ∈ P indicates that each pair of
nodes in A (i.e.,

(
A
2

)
) is adjacent in Ĝ.

(Non-personalized) Graph Summarization. Given (a) a
graph G and (b) a budget on the number of supernodes [11]
or the number of bits to encode G [7], graph summarization
aims to find the summary graph G to minimize the difference
between G and the reconstructed graph Ĝ (e.g., Manhattan
distance between their adjacency matrices), while satisfying
the budget. A variety of graph queries can be answered directly
from G without reconstructing Ĝ entirely (see Appendix A).

B. Problem Formulation
It is easy to imagine cases where people (e.g., users in

online social networks and travelers navigating a road network)
have different levels of interest in different parts of a graph.
With this intuition, we generalize graph summarization [7],
[11] to personalized graph summarziation, where we aim to
find a summary graph personalized to given target nodes, as
formalized in Problem 1 (see Fig. 1 for an example).
Problem 1 (Personalized Graph Summarization).
• Given:

– a graph G = (V,E)
– a set of target nodes T (⊆ V )
– a size budget k > 0

• Find: a summary graph G = (S, P )
• to Minimize: personalized error RE(T )(G)
• Subject to: Size(G) ≤ k.

Below, we describe RE(T )(G) and Size(G).
Personalized Error. We design peronsalized error as a
weighted reconstruction error in the form of

RE(T )(G) :=

|V |∑
u=1

|V |∑
v=1

W (T )
uv |A(G)

uv −A(Ĝ)
uv |. (1)

Based on the first law of geography [19], i.e., “everything is
related to everything else, but near things are more related
than distant things,” we design the personalized weight W (T )

uv
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Fig. 3. Two illustrating examples of graph summarization. Note that
merging supernodes with similar connectivity (e.g., A and B) yields a more
concise and accurate summary graph than merging those with dissimilar
connectivity (e.g., A and D). For restoration in (b), the superedge between
A ∪D and B ∪ C is interpreted as {a, b}, {a, c}, {b, d}, and {c, d}, The
self-loops on A ∪D and B ∪ C are interpreted as {a, d} and {b, c}, resp.

on each node pair {u, v} so that it depends on the number of
hops between them and the target node set T as follows:

W (T )
uv :=

α−(D(u,T )+D(v,T ))

Z
, (2)

where D(u, T ) := mint∈T #hops(u, t) is the minimum
number of hops between u and any target node, Z is the
constant that makes the average weight 1,2 and α ≥ 1 is a
constant that controls the degree of personalization. That is,
the closer an edge is to target nodes, the larger its weight is.
In other words, we aim to find a summary graph of G with
greater focuses on parts closer to target nodes.
Graph Size. For the size Size(G) of a summary graph G, we
use the number of bits to encode G = (S, P ) as in [7]. We
assume an encoding method that requires 2 · log2 |S| bits to
encode each superedge (i.e., log2 |S| bits per incident supern-
ode) and log2 |S| bits to encode the supernode membership of
each node v ∈ V . That is,

Size(G) := 2|P | log2 |S|+ |V | log2 |S|. (3)

Similarly, the size of an input graph G = (V,E) in bits is

Size(G) := 2|E| log2 |V |. (4)

III. PROPOSED METHODS: PEGASUS

In this section, we present PEGASUS (Personalized Graph
Summarization with Scalability), our proposed algorithm for
Problem 1. We first outline PEGASUS. Then, we present the
cost function based on which PEGASUS performs greedy
search. After that, we describe the detailed procedures of greedy
search. After making a comparison with SSUMM [7], which
PEGASUS is largely based on, we analyze the time and space
complexity. It should be noted that PEGASUS is a heuristic
without approximation guarantees. 3

2Z :=

(∑V
u=1 α

−D(u,T )
)2
−
(∑V

v=1 α
−2×D(v,T )

)
|V |(|V |−1)

is the average person-
alized weight over all possible pairs of nodes.

3Most graph-summarization algorithms [7], [9], [11] are heuristic without
approximation guarantees. While S2L [10] guarantees a constant approximation
ratio, empirically, SSUMM outperforms S2L [7].
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Fig. 4. A pictorial description of PEGASUS with an illustrative toy example. Supernodes are colored according the groups that they belong to (i.e.,
shingles) at each iteration. Note that supernodes are merged only among those in the same group.

Algorithm 1: Overview of PEGASUS

Input: (1) input graph G = (V,E), (2) size budget k,
(3) target node set T , (4) degree of personalization α,
(5) parameter for adaptive thresholding β,
(6) max. number of iterations tmax,

Output: summary graph G = (S, P )
1 S ← {{u} : u ∈ V }; P ← {{{u}, {v}} : {u, v} ∈ E}
2 t← 1; θ ← 0.5; L← an empty list
3 while t ≤ tmax and Size(G) > k do
4 C ← generate candidate groups . Sect. III-C
5 for each group Ci ∈ C do
6 greedily merge nodes in Ci with the threshold θ

(update S, P , and L) . Sect. III-D
7 end
8 θ ← bβ × |L|c-th largest entry in L . Sect. III-E
9 L← an empty list; t← t+ 1

10 end
11 if Size(G) > k then
12 sparsify G further . Sect. III-F
13 end
14 return G = (S, P )

A. Overview (Alg. 1)

We provide the pseudocode of PEGASUS in Alg. 1 and
an illustrative example in Fig. 4. Given an input graph
G = (V,E), a size budget k, a target node set T , the degree
of personalization α, a parameter for adaptive thresholding
β, and the maximum number of iterations tmax, PEGASUS
produces a summary graph G = (S, P ) personalized for T .
First, it initializes the supernode set S so that each node u ∈ V
composes a singleton supernode Su (line 1). For each edge
{u, v} ∈ E, we create a superedge between supernodes Su

and Sv (see Fig. 3 for examples). Then, PEGASUS updates G
by repeating the following steps until its size meets the budget
or the maximum number of iterations is reached (line 3).

• Candidate Generation (line 4, Sect. III-C): PEGASUS
divides S into groups of supernodes with similar connectivity
whose merger is likely to reduce the personalized cost (i.e.,
our objective function described in Sect. III-B). The groups
are updated in every iteration.

• Merging and Addition (line 6-7, Sect. III-D): Within each
group, PEGASUS repeats merging supernodes and selectively
adding superedges incident to the merged supernode.

During the above process, PEGASUS balances exploitation and
exploration using the threshold θ, and θ is updated adaptively
(line 8), as described in detail in Sect. III-E. If the size of G
still exceeds the budget k, PEGASUS sparsifies G until the
budget is met (lines 12-13), as described in detail in Sect. III-F.

B. Personalized Cost Function
In this subsection, we introduce the cost function that

PEGASUS uses while performing greedy search.
Total Cost. In order to decide a pair of supernodes to be
merged, both the size (i.e., Eq. (3)) of summary graphs after
mergers and the personalized error (i.e., Eq. (1)) needs to be
taken into consideration. We define the personalized cost of
each summary graph G as

Cost(T )(G) := Size(G) + log |V | ·RE(T )(G). (5)

Note that log |V |·RE(V )(G) equals the number of bits required
to encode the difference between the input graph G and the
graph Ĝ reconstructed from G; and log |V | · RE(T )(G) can
be regarded as its personalized version.4 Since both the size
and the personalized error are interpreted as the number of
bits, aiming to minimize their sum in Eq. (5) aligns with the
minimum description length (MDL) principle [25].
Cost Decomposition. We define the cost for each unordered
pair of supernodes {A,B} ∈ ΠS (see Sect. II-A for ΠS) as

Cost
(T )
AB(G) :=

2 log2 |S| · 1P ({A,B}) + log2 |V | ·RE
(T )
AB(G), (6)

where 1P ({A,B}) = 1 if {A,B} ∈ P and 0 otherwise; and
RE

(T )
AB is the personalized error between A and B, i.e.,

RE
(T )
AB(G) :=

∑
u∈A

∑
v∈B

W (T )
uv |A(G)

uv −A(Ĝ)
uv |. (7)

Recall that, by definition of ΠS , A may equal B, and in such
a case, RE(T )

AB(G) =
∑

u 6=v∈AW
(T )
uv |A(G)

uv −A(Ĝ)
uv |.

Then, the personalized cost in Eq. (5) is decomposed into
the cost for each supernode pair as follows:

Cost(T )(G) = |V | log2 |S|+
∑

{A,B}∈ΠS

Cost
(T )
AB(G). (8)

Additionally, we define the cost for each supernode A ∈ S as

Cost
(T )
A (G) :=

∑
B∈S

Cost
(T )
AB(G). (9)

Cost Reduction. Let merge(A,B;G) be the summary graph
obtained if supernodes A ∈ S and B ∈ S are merged in the
summary graph G = (S, P ) (see Sect. III-D for details), Then,
the reduction in the personalized cost in Eq. (5) is

∆Cost(T )(A,B;G) := Cost
(T )
A (G) + Cost

(T )
B (G)−

Cost
(T )
AB(G)− Cost(T )

A∪B(merge(A,B;G)), (10)
4∑|V |

u=1

∑|V |
v=1 |A

(G)
uv −A

(Ĝ)
uv | entries in the adjacency matrices are flipped,

and due to symmetry, only a half of them needs to be specified. Encoding the
location (i.e., row and column) of each of them requires 2 · log |V | bits.



where (Cost
(T )
A (G) +Cost

(T )
B (G)−Cost(T )

AB(G)) is the sum
of costs for supernodes A and B in G (after removing
duplicates), and Cost

(T )
A∪B(merge(A,B;G)) is the cost for

the merged supernode A ∪B after merging A and B. Based
on ∆Cost(T )(A,B;G) and (Cost

(T )
A (G) + Cost

(T )
B (G) −

Cost
(T )
AB(G)), we define the relative cost reduction as

∆Cost
(T )

(A,B;G) :=

∆Cost(T )(A,B;G)

Cost
(T )
A (G) + Cost

(T )
B (G)− Cost(T )

AB(G)
. (11)

As described in the following subsection, PEGASUS uses
Eq. (11) when deciding supernodes to be merged.

For two nodes with dissimilar connectivity patterns, if they
are distant from target nodes (that is, if the personalized weights
of their incident edges are small), the absolute cost reduction
in Eq. (10) can be small, while the relative cost reduction in
Eq. (11) should be large. Thus, when Eq. (10) is used, such
nodes can be easily merged (myoypically even when there exist
pairs of nodes with similar connectivity patterns), and thus
summary graphs with large personalized error can be obtained.
We demonstrate experimentally in the online appendix [24] that
using Eq. (11) results in better summary graphs where queries
can be answered accurately, compared to using Eq. (10).

C. Candidate Generation

In this subsection, we describe the candidate generation step,
which accelerates PEGASUS by reducing the search space.
PEGASUS groups supernodes with similar connectivity (so
that only pairs of nodes within the same group are considered
to be merged) based on the following grounds:

• It is impractical to consider all pairs of supernodes, whose
number is

(
S
2

)
, whenever deciding a node pair to be merged.

• Uniform sampling is likely to result in pairs of supernodes
whose merger does not reduce the personalized cost much.

• Generally, if supernodes with similar connectivity are merged,
encoding their connectivity together using superedges incurs
little reconstruction error. For example, in Fig. 3, merging
supernodes A and B (and C and D), which share exactly
the same neighbors does not incur any reconstruction error,
while merging A and D (and B and C) with dissimilar
connectivity leads to missing or incorrect edges.

In order to group supernodes with similar connectivity, we
refer to the fact that the probability of two nodes having the
same shingle [26] is equal to the jaccard similarity of their
neighbor sets. Specifically, we extend the notion of shingles to
supernodes and define the shingle of each supernode U ∈ S as

F (U) := min
u∈U

(
min

v∈Nu∪{u}
f(v)

)
, (12)

where Nu is the set of neighboring nodes of u ∈ V in the input
graph G and f : V → {1, 2, ..., |V |} is a uniform random hash
function. Note that two supernodes are more likely to have the
same shingle if their members’ connectivities are more similar.

Algorithm 2: Merging and Addition Step
Input: (1) current summary graph G = (S, P ),

(2) candidate group Ci, (3) adaptive threshold θ,
(4) target node set T , (5) degree of personalization α,
(6) input graph G = (V,E), (7) current list L

Output: updated summary graph G and list L
1 #fails← 0
2 while |Ci| > 1 and #fails ≤ log2 |Ci| do
3 I ← sample |Ci| pairs of supernodes in Ci
4 {A,B} ← argmax

{X,Y }∈I
∆Cost

(T )
(A,B;G) . Eq. (11)

5 if ∆Cost
(T )

(A,B;G) ≥ θ then
6 remove A and B from S and Ci
7 add A ∪B to S and Ci
8 remove superedges incident to A or B from P
9 add superedges incident to A ∪B to P selectively to

minimize Cost(T )
A∪B(G) . Eq. (9)

10 #fails← 0
11 else
12 add ∆Cost

(T )
(A,B;G) to L . Eq. (11)

13 #fails← #fails+ 1
14 end
15 end
16 return G = (S, P ) and L

Example 1 (Shingle). In Fig. 3, suppose that f(a) = 5, f(b) =
4, f(c) = 3, f(d) = 2, and f(e) = 1 in the input graph (left-
most). After initialization, F (A) = min(f(a), f(c), f(d)) = 2,
and F (B) = min(f(b), f(c), f(d)) = 2. Similarly, F (C) =
F (D) = F (E) = 1. After merging A with B and C with D,
F (A ∪ B) = min(f(a), f(b), f(c), f(d)) = 2 and similarly
F (C∪D) = 1. Note that supernodes with similar connecitivity
(e.g., A and B; and C and D) have the same shingle.

Then, the supernodes with the same shingle are grouped
together as a candidate group. PEGASUS further divides each
candidate group recursively by repeating the above process
at most a constant (spec., 10) times. After that PEGASUS
ensures that the size of each candidate group is at most a
constant (spec., 500) by randomly dividing larger groups. We
use C = {C1, C2, . . . , Cq} to denote the candidate groups,
which are used in a later step (see Sect. III-D). In different
iterations, PEGASUS draws a hash function f using different
random seeds, and as a result, obtains different candidate groups
to further explore the search space.

D. Merging and Addition (Alg. 2)

In this subsection, we describe how PEGASUS merges
supernodes within each candidate group Ci (see Sect. III-C) in
a greedy manner and creates superedges accordingly. See Alg. 2
for the pseudocode. PEGASUS first draw |Ci| pairs of supern-
odes uniformly at random within Ci (line 3). Then, it chooses
a pair, which we denote by {A,B}, that maximizes the relative
reduction in the personalized cost (i.e., Eq. (11) in Sect. III-B)
(line 4) If the relative reduction ∆Cost

(T )
(A,B;G) is at least

the threshold θ (see Sect. III-E for how to decide θ) (line 5),
then the chosen pair is merged (lines 6-7). When A and B are
merged, the superedges incident to A or B are removed from P
as they are no longer valid (line 8). For the merged supernodes



A∪B, PEGASUS adds superedges incident to it selectively to
P so that the personalized cost Cost(T )

A∪B(G) (see Eq. (9)) for
A ∪B is minimized, while fixing all non-incident superedges
(line 9). It should be noted that, since each supernode is s set
of subnodes, merging the two supernodes A and B results in
A∪B (i.e., the union of the two sets). Specifically, PEGASUS
adds each potential superedge {(A∪B), X} to P if and only if
it decreases the personalized cost Cost(T )

(A∪B)X(G) (see Eq. (6))
for it. It should be noted that X can be A ∪ B, and thus a
self-loop can be added to A ∪B. The detailed procedure with
the time complexity are provided in Lemma 1 and its proof.
We denote the updated G by merge(A,B;G).

Lemma 1. For any supernodes A,B ∈ S in a summary graph
G, the time complexity of updating G to merge(A,B;G) is

O

(∑
u∈A
|Nu|+

∑
v∈B
|Nv|

)
,

where Nx is the set of neighbors of a node x ∈ V in the input
graph G.

Proof. A proof can be found in the online appendix [24].

For each candidate group Ci, PEGASUS repeats the above
process until (a) only one supernode is left in the group or
(b) it fails to merge supernodes log(|Ci|) times in a row. That
is, if the relative reduction by a chosen pair is smaller than
the threshold θ, log(|Ci|) times in a row, PEGASUS concludes
that no promising supernode pairs are left in Ci. The relative
reduction smaller than θ is stored in a list L (line 12), which is
later used to adjust θ, as described in the following subsection.

E. Adaptive Thresholding

In this subsection, we present how PEGASUS adjusts the
threshold θ for relative reduction, which is used in line 5 of
Alg. 2. The threshold θ balances exploitation and exploration.
Specifically, if θ becomes smaller, supernode pairs are merged
more aggressively within the candidate groups in the current
iteration. However, if θ becomes larger, PEGASUS merge pairs
less aggressively, considering the possibility that better pairs
can be found within the candidate groups in future iterations.
Recall that PEGASUS obtains different candidate groups in
different iterations.

PEGASUS intializes θ to 0.5 and adjusts it adpatively based
on the relative reductions stored in L (line 12 of Alg. 2).
Specifically, PEGASUS sets θ for the next iteration to the bβ×
|L|c-th largest entry in L and then clears L (lines 8-9 of Alg. 1).
The larger the parameter β is, the faster θ decreases, with a
greater emphasis on exploitation. The empirically effect of β
is shown in Sect. V-E. Recall that relative reductions in L are
smaller than θ for the current iteration (see Sect. III-D). Hence,
PEGASUS gradually decreases θ over iterations, gradually
putting more emphasis on exploitation.

F. Further Sparsification

If the size of the summary graph G stills exceeds the
budget k after tmax iterations (line 11 of Alg. 1), PEGASUS

greedily drops superedges in P (line 12) until the budget
is met. Specifically, superedges dropped in increasing order
of Cost(T )

AB(G) (Eq. (6) in Sect. III-B), where {A,B} ∈ P
denotes a dropped superedge.

G. Comparison with SSUMM [7]

PEGASUS is largely based on SSUMM [7], which is a state-
of-the-art algorithm for non-personalized graph summarization,
with the following major differences:
• Personalizability: PEGASUS yields a summary graph per-

sonalized to given target nodes, while SSUMM produces
a non-personalized one. To this end, PEGASUS aims to
minimize the personalized error (i.e., Eq. (1)), and it
generalizes the reconstruction error, which SSUMM aims to
minimize. Specifically, if W (T )

uv = 1 for all u 6= v ∈ V , then
Eq. (1) becomes equal to the reconstruction error.

• Applicability to Query Answering: PEGASUS can generate
multiple summary graphs with focuses on different regions
of a graph, while SSUMM cannot. Based on the focused
regions, we can choose a summary graph where a given
query can be answered accurately (see Sect. IV).

• Adaptive Thresholding: In order to balance exploitation and
exploration, PEGASUS controls the threshold θ adaptively
based on statistics collected at runtime (see Sect. III-E),
while SSUMM relies on a fixed rule. Specifically, SSUMM
sets θ(t) to (1 + t)−1 if t < tmax and to 0 otherwise.

• Minor Differences: PEGASUS uses new computational
tricks for rapidly computing personalized error between two
supernodes, which are not required in SSUMM, and to this
end, maintains additional information (see Eqs. (13-15) in the
online appendix [24]). When converting reconstruction error
between two supernodes into the number of bits, SSUMM
assumes the best of two encoding schemes (entropy coding
and error corrections5), while for simplicity, PEGASUS
assumes error corrections (see Eq. (5) and Footnote 4).

Notably, the experiments in Sect. V-B show that PEGASUS
outperforms SSUMM in non-persoalized cases (i.e., when T =
V ), as well as in personalized cases,

H. Complexity Analysis

In this section, we analyze the time and space complexity
of PEGASUS. We assume |V | = O(|E|) for simplicity.
Time Complexity: PEGASUS scales linearly with the size of
the input graph, as formalized in Theorem 1.

Theorem 1 (Linear Scalability of PEGASUS). The time
complexity of Alg. 1 is O(tmax · |E|).

Proof. We focus on showing that the differences of PEGASUS
from SSUMM, whose time complexity is O(tmax · |E|) (see
Theorem 3.4 of [7]), does not increase the time complexity.
According to Lemma 1, computing the cost reduction for
each supernode pair (based on which supernode pairs to be
merged are chosen) takes O(

∑
u∈A |Nu|+

∑
v∈B |Nv|) time,

5The number of bits required to encode the location (i.e., row and column)
of each erroneous entry in the reconstructed adjacency matrix.



Algorithm 3: Application of PEGASUS to Distributed
Multi-Query Answering

Input: (1) input graph G, (2) machines {M1,M2, . . . ,Mm}
(3) size budget k, (4) degree of personalization α,
(5) parameter for adaptive thresholding β
(6) max. number of iterations tmax,

Preprocessing:
1 {V1, V2, ..., Vm} ← GraphPartitioning(G, m)
2 for each Vi ∈ {V1, V2, ..., Vm} do
3 Gi ← PEGASUS(G, k, Vi, α, β, tmax)
4 Load Gi into the main memory of Mi

Distributed Multi-Query Answering:
5 for each arrived query on a node q do
6 Find i where q ∈ Vi
7 Assign the query to Mi, which answers the query

independently using Gi

as in SSUMM. Regarding adaptive thresholding, the b |L|10 c-
th largest entry in L (line 8 of Alg. 1) can be found in
O(|L|) time by the “median of medians” algorithm [27]. Since
the number of failures cannot exceed

∑q
i=1(|Ci| log |Ci|) =

O(|V | ·maxq
i=1 log |Ci|) = O(|V |), and thus O(|L|) = O(|V |)

holds. Recall that, as described in Sect. III-C, the size
of each candidate group is at most a constant, and thus
O(maxq

i=1 log |Ci|) = O(1). Thus, tmax updates of the
threshold θ take O(tmax·|V |) = O(tmax·|E|) time in total.

Space Complexity: PEGASUS retains an input graph G =
(V,E), a summary graph G = (S, P ), a hash function f : V →
{1, 2, ..., |V |}, a shingle function F : S → {1, 2, ..., |V |}, and
a list L. Additionally, it retains intermediate results of size
O(|V |+ |E|) (see the online appendix [24] for details). Since
|S| ≤ |V |, |P | ≤ |E|, and |L| = O(|V |) (see the proof of
Theorem 1), the space complexity is O(|V |+ |E|) = O(|E|).

IV. APPLICATION: “COMMUNICATION-FREE” DISTRIBUTED
MULTI-QUERY ANSWERING

In this section, we discuss an application of PEGASUS to
distributed multi-query answering.
Background. Real-time processing of various complex graph
queries requires fast random access into memory. Thus, if
graphs are distributed across multiple machines, answering such
queries incurs significant communication overhead, preventing
real-time processing. As a result, much effort has been made
to minimize communication overhead when answering queries
on graphs distributed over multiple machines [20]–[23].
Intuition. PEGASUS can be utilized for “communication-
free” distributed multi-query answering. Specifically, multiple
personalized summary graphs with different target node sets
are obtained by PEGASUS. Then, different summary graphs are
loaded on different machines, which act independently without
communication. If multiple queries are given, each query is
assigned to a machine on which it can be processed accurately.
Procedure. Assume m machines each of which has main
memory of size k are available. We first divide the node set
V into m subsets using the Louvain method [28], while any
graph-partitioning method (e.g., [29]–[35]) can be used instead.

TABLE II
SUMMARY OF SIX REAL-WORLD GRAPHS AND ONE SYNTHETIC GRAPH.

Name # Nodes # Edges Summary

LastFM-Asia (LA) [36] 7,624 27,806 Social
Caida (CA) [37] 26,475 53,381 Internet
DBLP (DB) [38] 317,080 1,049,866 Collaboration

Amazon0601 (A6) [6] 403,364 2,443,311 Co-purchase
Skitter (SK) [37] 1,694,616 11,094,209 Internet

Wikipedia (WK) [39] 3,174,745 103,310,688 Hyperlinks

Synthetic (ST) [40] 10,000,000 1,000,000,000 BA Model

Let the m subsets of nodes be V1, V2, ..., Vm. For each node set
Vi, we create a summary graph Gi personalized to Vi within
the budget k using PEGASUS, and Gi is loaded into the main
memory of the i-th machine. Given multiple graph queries, we
assign each query on a node q to the i-th machine satisfying
q ∈ Vi, and the machine answers the query using Gi without
communicating with other machines. Since Gi is personalized
to q, Gi is expected to maintain much information relevant to
q, and thus the answer from it is expected to be accurate. We
confirm this expectation experimentally in Section V-F. We
provide the pseudocode in Alg. 3.
Potential Alternatives. As a potential alternative for
communication-free distributed multi-query processing, m
overlapping subgraphs of size k can be distributed over the
main memory of m machines for query answering. In our
experiments in Sect. V-F, we first partition the node set V into
m subsets using graph-partitioning methods and compose each
i-th subgraph of size k (see Eq. (4)) using the edges closest
to each i-th subset. Each query on a node u is assigned to the
i-th machine where u ∈ Vi.

V. EXPERIMENTS

In this section, we review our experiments to answer Q1-Q4.
• Q1. Effectiveness: Does PEGASUS provide personalized

summary graphs?
• Q2. Scalability: Does PEGASUS scale linearly with the

number of edges in the input graph?
• Q3. Comparison with the State of the Art: Does PEGA-

SUS provide better summary graphs to target nodes than the
best non-personalized graph summarization methods?

• Q4. Effect of Parameters: How do α and β affect the
output summary graphs?

• Q5. Application: Is PEGASUS useful for communication-
free distributed multi-query answering?

A. Experimental settings

Machines. We performed our experiments on a desktop with
AMD Ryzen 7 3700X CPU and 128GB memory.
Datasets. We used six real-world graphs summarized in
Table II. We removed all self-loops and edge directions in
them and used only the largest connected components.
Implementations. We implemented PEGASUS, SSUMM [7],
and K-GRASS [11] in Java. We used the implementations
SAAGS [9] and S2L [10] provided by the authors, and they
were implemented in Java and C++, respectively. We set the
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(c) α = 1.75
Fig. 5. PEGASUS provides personalized summary graphs. The relative personalized error tends to decrease as we reduce the size of the target node set
(i.e., the summary graph is more focused) and grow the degree of personalization α.

size budget from 10% to 90% of the size in bits of the input
graph at the same interval and set the maximum number of
iterations to 20 for PEGASUS and SSUMM; and we set it from
10% to 90% of the number of supernodes at the same interval
for SAAGS, K-GRASS, and S2L. For PEGASUS, we set α
to 1.25 and β to 0.1 unless otherwise stated. For K-GRASS,
we used the SamplePairs method with c = 1.0, as suggested
in [11]. For SAAGS, we set the number of sample pairs to
log n and the used the count-min sketch with w = 50 and
d = 2. For S2L, we used the type of reconstruction error as
L1 without dimensionality reduction. For graph partitioning in
Sect. V-F, we implemented the Louvain method [28] in Java
and used BLP [41] and SHP (SHPI, SHPII, and SHPKL) [42]
implemented in NumPy by the authors of [43]. We set the
maximum number of iterations to 10 and used 8 shards.
Node-Similarity Queries. We considered the following three
types of node-similarity queries:

• Random Walk with Restart (RWR) [44]: The RWR score
of a node w.r.t. a query node q is the stationary probability
that a random walker stays at the node when it repeatedly
restarts at q. We set the restarting probability to 0.05.

• Length of the Shortest Path (HOP): The HOP of a node
w.r.t. a query noede q is the length of shortest paths from q
to the node. If there is no path between them, we used the
length of longest path in the given (sub)graph as the HOP.

• Penalized Hitting Probability (PHP) [45], [46]: The PHP of
a node u w.r.t. a query node q is defined as

PHPu :=

{
1 if u = q,

c
∑

v∈Nu

(
wuv

wu
· PHPv

)
if i 6= q,

where Nu is the set of neighbors of u, wuv is the weight of
the edge {u, v} (which is 1 if the graph is unweighted), and
wu is the weighted degree of u. We set c to 0.95.

The queries can be answered directly from a summary graph,
as described in Appendix A.
Evaluation Measures. We measured compression rates in bits.
That is, the compression rate of a summary graph G of a graph
G is Size(G)

Size(G) . As in [7], for the size in bits of weighted summary
graphs with the maximum weight ωmax, we used

|P |(2 log2 |S|+ log2 ωmax) + |V | log2 |S|.

For each query q, we measured the accuracy of an ap-
proximate answer vector x̂ ∈ R|V | by comparing it with the
ground-truth answer vector x ∈ R|V | in two ways:

PeGaSus SSumM BLP SHPI SHPII SHPKL Louvain

PeGaSus SSumM SAAGs S2L k-Grass

PeGaSus SSumM SAAGs S2L k-Grass

PeGaSus Regression Line

Regression Line, Linear Scalability (Slope = 1)

Linear Scalability (Slope=1)

22

24

26

28

218 220 222

Number of Edges

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

(a) Skitter (|T |=100)

22

24

26

28

218 220 222

Number of Edges

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

(b) Skitter (|T |= |V |
2

)

212

213

214

215

227 228 229

Number of Edges

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

(c) Synthetic (|T |=100)
Fig. 6. PEGASUS exhibits linear scalability. PEGASUS scales linearly with
the edge count, to one billion edges, regardless of the target node number.
Fig. 2(b) shows the result on the synthetic dataset when |T | = |V |

2
.

• Symmetric Mean Absolute Percentage Error (SMAPE) [47]
(the lower, the better):

SMAPE(x, x̂) :=
∑
u∈V

|xu − x̂u|
|xu|+ |x̂u|

,

If xu = x̂u = 0, 0 is used instead of |xu−x̂u|
|xu|+|x̂u| . Note that

SMAPE is well defined even when xu = 0 or x̂u = 0.
• Spearman Correlation Coefficients (SC) [48] (the higher

the better): It measures the Pearson correlation coefficient
between the rankings of the entries of x and the rankings
of the entries of x̂. It compares rankings, which are more
important than absolute values in many graph applications.

We report the average when multiple query nodes were used.

B. Q1. Effectiveness of PEGASUS (Fig. 5)

We demonstrate that PEGASUS provides summary graphs
personalized to target nodes. To this end, we sampled |T | target
nodes uniformly at random. Then, while varying the degree of
personalization α and the target node set T , we measured the
personalized error at u (i.e., Eq. (1) with T = {u}) relative
to that in non-personalized cases (i.e., when T = V ). Fig. 5
shows the result averaged over three test nodes when the size
budget was set so that the compression ratio is 0.5. The relative
personalized error tended to decrease as we decreased the size
of the target node set (i.e., the summary graph is more focused
to i) and increased the degree of personalization. These results
indicate that summary graphs are personalized effectively
by PEGASUS. Notably, even in non-personalized cases (i.e.,
when T = V ), PEGASUS outperformed SSUMM, as discussed
in Sect. III-G.

C. Q2. Scalability of PEGASUS (Fig. 6)

We show the linear scalability of PEGASUS. To this end,
we measured how the execution time depend on the number of
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Fig. 7. PEGASUS gives summary graphs where queries on target nodes are answered most accurately. o.o.t: out of time (> 48hours). o.o.m: out of
memory (> 128GB). The degree of personalization α is fixed to 1.25, and the size of the target node set is fixed to 100.

edges in the input graph, while fixing |T | to 100 or |V |2 . We
obtained the induced subgraphs of different sizes by randomly
sampling different numbers of nodes ranging from 10% to
100% at the same interval from the the Skitter dataset and a
synthetic graph (|V | = 107, |E| = 109). The synthetic graph
was generated by the the Barabási-Albert model [40], which
reflects several structural properties of real-world graphs. As
seen in Figs. 2(b) and 6, PEGASUS scaled linearly with the
number of edges, regardless of the target node number.

D. Q3. Comparison with the State of the Art (Figs. 7-8)

We compare PEGASUS with state-of-the-art non-
personalized graph summarization methods in terms of (a) the
accuracy of query answers, (b) the conciseness of summary
graphs, and (c) speed. We sampled 100 query nodes uniformly
at random and used them as the target node set T .

As shown in Fig. 7, RWR and HOP queries were
answered significantly more accurately from personalized
summary graphs obtained by PEGASUS than from non-
personalized ones obtained by all other algorithms. We obtained

similar results for PHP queries, as reported in the online
appendix [24]. For example, in the Amazon0601 dataset,
queries were answered up to 2.74× and 1.37× more accurate
in terms of SMAPE and SC (see Sect. V-A), respectively,
when the compression rate was 0.5.

As shown in Fig. 8, PEGASUS was one of the most
scalable algorithms, and queries were processed rapidly
on its output since it selectively adds superedges (see
Sect. III-D). Query processing took much longer on dense
summary graphs obtained by K-GRASS, S2L, and SAAGS,
which add superedges without selection.

E. Q4. Effects of Parameters (Figs. 9-11)

We analyze how the accuracy of the answers of node-
similarity queries (see Sect. V-A) obtained from personalized
summary graphs depends on parameters α and β. We sampled
100 query nodes uniformly at random and used them as the
target node set T , unless otherwise stated.
Effect of α. As seen in Fig. 9, the answers were most accurate
when the degree of personalization α was moderate (spec.,
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Fig. 8. PEGASUS is scalable, and it provides sparse summary graphs on which queries are processed efficiently. S2L and K-GRASS run out of time
(> 48 hours) or out of memory (> 128 GB) for large datasets; and SAAGS produces dense summary graphs where queries run out of time (> 48 hours). The
compression ratio is 0.5, and it takes almost the same time to process RWR queries and PHP queries.
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Fig. 9. Queries on target nodes can be answered more accurately from
personalized summary graphs (α > 1) than from non-personalized ones
(α = 1). The results are averaged over all datasets. Note that answers are
most accurate when the degree of personalization α is moderate.
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Fig. 10. The best-performing α decreases as the effective diameter of the
input graph increases. The best-performing alphas are chosen based on each
evaluation measure (i.e., SMAPE and SC) when the compression ratio is 0.3.

when it was 1.25 or 1.5); and they were less accurate when α
was higher and more global information was lost. Specifically,
α = 1.5 led to the best accuracy in the Wikipedia dataset,
whose effective diameter6 is remarkably small despite its huge
size. In the all other datsets, α = 1.25 led to the best accuracy.

In order to systematically analyze the relation between α and
the effective diameter, we generated 5 synthetic graphs of the
same size and edges but with different effective diameters using
the Watts-Strogatz model [49]. Specifically, we changed the
rewiring probability from 0 to 0.1 (spec., we tried 0, 0.0001,
0.001, 0.01, and 0.1), while fixing the number of nodes to
1, 000 and the number of edges to 10, 000, and as a result the

6We used the 90-percentile effective diameter [37], i.e., the minimum number
of hops such that 90% of nodes pairs are within the hops from each other.
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Fig. 11. Queries are answered most accurately when β is moderate, in
the majority of the cases. The largest entry in L (see Sect. III-E) is chosen
when β ≈ 0. The reported results are averaged over all datasets.

effective diameter varied from 3.71 to 44.95. In these synthetic
graphs, due to their large effective diameter, summary graphs
cannot be personalized effectively to distant nodes. Thus, we
sampled 100 adjacent nodes by BFS from a random node and
used them as query nodes and the target node set T . As shown
in Fig. 10, the best-performing degree of personalization
α decreased as the effective diameter increased. This is
because, when the effective diameter is large, a large fraction of
edges are distant from a target node set, and large α understates
their weight, which depends on the distance, too much.
Effect of β. As seen in Fig. 9, in the majority of cases, β = 0.1
resulted in the best accuracy, while the accuracy was not
sensitive to β as long as β was not too close to 0 or 1.

F. Q5. Application of PEGASUS (Fig. 12)

We demonstrate that PEGASUS can be useful for distributed
multi-query answering. We assumed eight machines and applied
PEGASUS and five graph partitioning algorithms [28], [41],
[42] to communication-free distributed multi-query processing,
as described in Sect. IV. We randomly chose 100 query nodes in
the Wikipedia dataset and 500 query nodes in the others dataset;
and the averaged results are reported. Recall that summary
graphs are not personalized only for query nodes. Their
target node sets together cover all nodes.

As seen in Fig. 12, in almost all settings, RWR and
HOP queries were answered significantly more accurately
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Fig. 12. PEGASUS is useful for “communication-free” distributed multi-query processing. Queries are answered more accurately from distributed
personalized summary graphs (PEGASUS) than from non-personalized summary graphs (SSUMM) or distributed subgraphs (the others). The degree of
personalization α is fixed to 1.25. In some datasets, compression rates cannot be lowered further due to imbalance among graph partitions.

from personalized summary graphs obtained by PEGASUS
than from subgraphs obtained by graph partitioning. We
obtained similar results for PHP queries, as reported in the
online appendix [24]. For example, in the Caida dataset,
answers were up to 2.52× and 1.25× more accurate in terms
of SMAPE and SC (see Sect. V-A), respectively, when the
compression rate was 0.5. A shortcoming of our approach is
that processing queries took longer on summary graphs than
on subgraphs, which are uncompressed (see Fig. 8).

VI. RELATED WORKS

Graph Summarization: While the term “graph summariza-
tion” refers to a specific way of compressing graphs [7], [10],
[11] in this work, it has been used also for a wide range of
related concepts, as surveyed in [18]. The most similar one is a
lossless graph-compression technique [4], [8], [12], [50], [51]
where the input graph is encoded “losslessly” by a summary
graph, positive edge corrections, negative edge corrections,
and optionally a hierarchy of nodes. Recently, LDME [52]

reduces the search space of supernode pairs to be merged
and accelerates the computation of saving and the update of
encoding. Fan et al. [53] proposed a lossless graph contraction
scheme that can be adapted for several types of graph queries
(e.g., traingle counting and shortest distance), while PEGASUS
focuses on the neighborhood query, which is the key building
block of many graph algorithms, as discussed in Appendix A.

Among recent lossy graph summarization methods, UDS [54]
uses memoization for summarizing a graph into the given num-
ber of supernodes while ensuring the proposed utility function
does not drop below a certain threshold. T-BUDs [55] use the
minimum spanning tree of the two-hop graph, outperforming
UDS in terms of speed and memory efficiency. GLIMPSE [56]
summarizes a knowledge graph to capture facts preferred by a
single user, who is not necessarily a node in the graph, based
on the user’s past queries. The summary is a ‘subgraph’ that
captures local information and discards the others.

Graph Partitioning: Graph partitioning is to decompose a
graph into subgraphs by partitioning nodes into groups for



certain goals (e.g., to minimize normalized cuts). Many
approaches, including label propagation [41], [43], [57], local
search [42], and eigen decomposition [58], have been developed
for VLSI circuit placement [59], sparse matrix factorization
[60], and storage sharding [42], [61], [62], etc.
Applications: Distributed Query Processing System: Dis-
tributed graph query processing systems can be divided into
two types depending on whether multiple queries can be
executed concurrently. Some systems [63]–[67] are designed
to handle one specific job at a time over the entire graph (e.g.,
PageRank and graph partitioning). They follow a vertex or
edge-centric [68] scatter-gather model with batch processing.
The others [20], [21], [69], where a graph storage and a query
processor exist on each machine, facilitate graph traversal over
small areas in the graph. However, if each query spans over
nodes on the boundary of graph partitions, a large amount of
inter-machine communication is inevitable, which eventually
slows down the query processing time. Several multi-queriable
distributed SPARQL engines [70], [71] were developed to
handle queries on RDF graphs. Mayer et al. [72] proposed Q-
graph for multi-query graph analysis that considers user-centric
graph applications. EdgeFrame [73], a graph-specialized Spark
DataFrame, caches the edge structure of a graph in compressed
form on all workers in the cluster, which circumvents the
inherent communication bottlenecks of worst-case optimal join
(WCOJ) [22], [74], [75] on distributed graphs. Different from
the previous studies, we consider completely removing inter-
machine communications, at the expense of exactness, using
personalized summary graphs, as an application of PEGASUS
to distributed multi-query processing (see Sects. IV and V-F).
Graph Visualization: Our work is also related to graph
visualization where the objective is to provide a pictorial
representation of the nodes and edges where users focus
the most. Rafiei [76] and Ellis et al. [77] use sampling and
magnification to focus on a specific part of a graph. GMine [78]
obtains hierarchical communities and offers multi-resolution
graph exploration. It extracts a subgraph of interest based on
the initial set of target nodes. While these tools focus on small
parts of graph for visualizations, PEGASUS summarizes the
entire graph with for compression and query processing.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we introduce the problem of finding summary
graphs personalized to given target nodes (Problem 1). We
formulate the problem as an optimization problem, and we
propose PEGASUS, a linear-time algorithm (Theorem 1) that
successfully summarizes a graph with one billion edges (Fig. 6).
Through extensive experiments using six real-world graphs and
three types of node-similarity queries, we show that PEGASUS
provides summary graphs from which queries on target nodes
are answered significantly more accurately than from non-
personalized summary graphs obtained by state-of-the-art graph
summarization methods (Fig. 7). We also demonstrate the
effectiveness of PEGASUS for communication-free distributed
multi-query answering. Specifically, we show that queries
are answered more accurately from distributed personalized

Algorithm 4: getNeighbors(G, q)
Input: (1) summary graph G = (S, P ), (2) query node q
Output: approximate neighbor N̂q of q in Ĝ

1 N̂q ← ∅
2 N̄Sq ← neighbors of Sq in G (i.e., ∀A where {A,Sq} ∈ P )
3 for each A ∈ N̄Sq do
4 N̂q ← N̂q ∪A
5 end
6 N̂q ← N̂q \ {q}
7 return N̂q

Algorithm 5: Number of Hops (HOPS) on G
Input: (1) summary graph G = (S, P ), (2) query node q
Output: distance vector d ∈ R|V |

1 Q← ∅; Q.insert(q);
2 d← −1; dq ← 0 . 1 = one vector of size |V|
3 while Q 6= ∅ do
4 u← Q.pop()
5 for each v ∈ getNeighbors(G, u) do
6 if dv = −1 then
7 Q.insert(v); dv ← du + 1

8 return d

Algorithm 6: Random Walk with Restart (RWR) on G
Input: (1) summary graph G = (S, P ),

(2) random walk probability p, (3) query node q
Output: RWR score vector rnew ∈ R|V |

1 V ←
⋃
A∈S A

2 rold ← 0 . 0 = zero vector of size |V|

3 rnew ← 1
|V | · 1 . 1 = one vector of size |V|

4 while rnew 6= rold do
5 rold ← rnew; rnew ← 0
6 for each u ∈ V do
7 N̂u ← getNeighbors(G, u)
8 rnewv ← rnewv + 1

|N̂u|
roldu , ∀v ∈ N̂u

9 rnew ← p · rnew
10 rnewq ← (1− p ·

∑
v∈V r

new
v )

11 return rnew

summary graphs than from distributed subgraphs (Fig. 12). The
source code and the data are available at [24] for reproducibility.
We leave the analysis of the hardness of Problem 1 and the
design of theoretically sound algorithms for future work.
Acknowledgements: This work was supproted by National Research
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Intelligence Graduate School Program (KAIST)).

APPENDIX

A. Query Answering

As described in Alg. 4, the approximate neighbors of a given
node u ∈ V can be retrieved directly from a summary graph
G. That is, the neighborhood query can be answered efficiently



on G, without restoring the entire graph. A wide range of
graph algorithms (e.g., BFS, DFS, Dijkstra’s, and PageRank)
access graphs only through neighborhood queries, and thus
also can be executed directly on G. Alg. 5 and Alg. 6 describe
how to answer RWR and HOP queries on G. Answers of
PHP queries, which are used in Sect. V, can be computed
from those of RWR queries (see [79] for details). In Sect. V,
on weighted summary graphs, RWR and HOP queries were
processed considering superedge weights.
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