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Abstract

E4ective annotation and content-based search for videos in a digital library require a preprocessing step of detecting,
locating and classifying scene transitions, i.e., temporal video segmentation. This paper proposes a novel approach—
spatial–temporal joint probability image (ST-JPI) analysis for temporal video segmentation. A joint probability image
(JPI) is derived from the joint probabilities of intensity values of corresponding points in two images. The ST-JPT,
which is a series of JPIs derived from consecutive video frames, presents the evolution of the intensity joint probabilities
in a video. The evolution in a ST-JPI during various transitions falls into one of several well-de:ned linear patterns.
Based on the patterns in a ST-JPI, our algorithm detects and classi:es video transitions e4ectively.
Our study shows that temporal video segmentation based on ST-JPIs is distinguished from previous methods in the

following way: (1) It is e4ective and relatively robust not only for video cuts but also for gradual transitions; (2)
It classi:es transitions on the basis of prede:ned evolution patterns of ST-JPIs during transitions; (3) It is e>cient,
scalable and suitable for real-time video segmentation. Theoretical analysis and experimental results of our method are
presented to illustrate its e>cacy and e>ciency. ? 2002 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Digital libraries are important for their ability to man-
age huge amounts of heterogeneous data, such as text,
sound, images and even digital videos. Among all the
data forms that are stored and managed by digital li-
braries, digital videos are the most informative because
of their high information throughput.
Conventionally, a digital video is often considered as

merely a large collection of digital images in chronologi-
cal order, with images completely independent at one
another. This challenges attempts of storing and mani-
pulating videos in digital libraries since a typical one
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and a half hour movie consists of 162,000 frames, with
0:9 Mbyte per frame (true color and 640×480 resolu-
tion). With the growing number of videos in digital
libraries, storage and manipulation become prohibitive
tasks.
Fortunately, videos usually have a high-level structure

that facilitates storage and manipulation tasks. A video is
composed of a series of video scenes. Every video scene
consists of a varying number of frames, which visually
relate to one another by sharing objects, background,
luminance, etc. Di4erences among frames belonging to
same video scene are caused by video content movement,
camera motion and zooms, but are often insigni:cant.
The number of frames comprising a video scene di4ers
greatly from scene to scene, but is often large.
A video index that is based on video scenes should be

very compact, and at the same time keep the narrative
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evolution of a video [1]. With the help of such an in-
dex, video manipulation tasks, such as fast browse and
content-based search, can be performed on a very com-
pact image space. Thus temporal video segmentation,
which divides a video into a series of video scenes, is a
critical preprocessing step for e4ective video manipula-
tion [2].
Temporal video segmentation is often accomplished

by detecting video transitions, which are procedures
changing one scene to another. One scene can change
into another scene by following various patterns, and
transitions produce various visual e4ects in videos. Fre-
quently used video transitions include cuts, fade in=fade
out, cross dissolve, dither dissolve, etc.
Three tasks must be accomplished by a temporal

video segmentation algorithm: reporting the appearances
of video transitions; locating the transition’s starting
and ending position; and classifying the transitions ac-
cording to prede:ned transition categories. These are
non-trivial tasks, not only because of the ambiguous dis-
tinction between transitions and other video e4ects but
also because of the variety of characteristics that appear
in various types of transitions.
A large number of color histogram-based algorithms

[3–8] have been proposed to segment color video
streams. In these algorithms, histograms of consecutive
video frames are generated for distance comparison.
A pair of consecutive video frames with large frame
distance is classi:ed as a video transition.
Swain and Ballard [9] estimated frame distance using

histogram intersection, de:ned as

Intersection(h1; h2)=
∑N

i=1 min(h1[i]; h2[i])
N

; (1)

where h1 and h2 are the histograms derived from two
image frames.
Chi-square test histogram distance, which is de:ned as

�2 =




1
N 2

N∑
i=1

(h1[i]− h2[i])2

h2[i]
if h2[i] �=0;

1
N 2

N∑
i=1

(h1[i]− h2[i])2

h1[i]
if h2[i]= 0;

(2)

is used by Nagasaka and Tanaka [6] to normalize his-
togram bin distances. Frame distances are sharpened by
the chi-test.
Proposed by Niblack et al. [7], histogram similarity

is interesting for its ability to reLect similarity between
colors according to human perception. The similarity be-
tween histogram h1 and h2 is de:ned by

Similarity(h1; h2)= (h1 − h2)tA(h1 − h2);
where A=[aij] is a similarity matrix and weights aij
reLect the similarity between colors for bin i and j of
a histogram. The weights can be determined by human
perceptual similarity or by L1 distance, aij =1−dij=dmax,

where dij denotes the L1 distance between bin i and j
of the histogram, and dmax denotes the distance between
black and white color.
Drew et al. [4] develop a normalized chromaticity

based algorithm to address the issue of global illu-
mination variations inside one clip. Two-dimensional
histograms for chromaticity images are used, where
chromaticity is de:ned by

r=
R

R+G + B
; g=

G
R+G + B

:

The idea behind this is that changes in the brightness of
the frame may not be correlated with the content change.
As well, chromaticity removes shading, in a Lambertian
model.
Bouthemy et al. [10] analyze the temporal evolution

of the size of the support associated with the estimated
dominant motion. Transitions are detected by a down-
ward jump of corresponding supports, followed by an up-
ward jump of corresponding supports. If the two jumps
are detected to be successive, a cut is reported. If they are
separated by one or several frames, a gradual transition
is reported. The dominant image motion is represented
by a two-dimensional a>ne model.
An integrated method was presented by Ford et al.

[11,12] for detecting and classifying transitions in
uncompressed video sequences. Multiple estimation
strategies for frame distances are used: color histogram
distance, statistics-based distance, and pixel di4erence
distance. Frame distance estimates are integrated by a
fuzzy logic system to generate the :nal results. This
method works for cuts, fade-in=fade-out, wipes and
dissolves.
Zabih et al. [13] described an intensity edge feature-

based algorithm where scene transitions are detected
based on the emergence or disappearance of edges.
When one scene changes into another, the intensity
edges of the :rst scene gradually disappear and the edges
of second scene emerge. A global motion computation
is used to compensate camera or object motion, and the
ways in which edges emerge and disappear relate to the
type of transition—good detection and class:cation re-
sults are obtained for a variety of scene transitions. The
disadvantage of this method is that it only works for few
types of gradual transitions.
Ngo et al. [14] presented a spatial–temporal method

for detecting gradual scene changes. Spatially, a strip
(or just a row or column) from each video frame is ex-
tracted. Over time, the strips form a spatial–temporal im-
age, i.e., a video slice. Good results were obtained by
using a Markov energy model to locate the trajectories
of wipes in the spatial–temporal image. For dissolves,
the variance in the slice will change and form a concave
upward parabola.
Most of the above algorithms work well for cuts [1],

but their reliability for gradual transition detection is



Z.-N. Li et al. / Pattern Recognition 35 (2002) 1847–1867 1849

very low. Distance estimates for consecutive frames
derive from statistics for various visual cues or the statis-
tics of distances between corresponding macro-blocks.
However, transition pattern information is lost when
computing statistics for low-level or intermediate-level
visual cues and as well these methods have di>culty
distinguishing transitions from other video e4ects, such
as camera movements. Further classi:cation results are
often not available, and hard-coded thresholds are often
required by these algorithms.
Li and Wei [15] introduced a spatial–temporal joint

probability analysis for temporal video segmentation: the
time behavior of joint probability images derived from
gradual transitions is analyzed. Here we provide further
development and implementation of the theory and anal-
ysis in the paradigm.

2. Video transitions

Temporal video segmentation is usually accomplished
by detecting, locating and classifying video transitions,
i.e., boundaries between consecutive video shots. A video
shot is a sequence of frames that were continuously cap-
tured by a camera without interruption. During a video
shot, video contents can be a4ected by object movements
and camera pans, tilts or zooms—these are not viewed as
video transitions: a video transition is an arti:cial e4ect
that connects two consecutive video shots. Some other
arti:cial e4ects, such as captions, also have impact on
the video contents. Transitions di4er from these in the
following way: a transition is a boundary between two

Fig. 1. A cross transition: the duration is from Frame 0 to Frame T.

Fig. 2. A dither transition: the duration is from Frame 0 to Frame T.

visually independent video shots with a narrative change,
while an arti:cial e4ect other than a transition occurs in
a single video shot by means of some added visual e4ect,
without a narrative change.
Various kinds of transitions exist, and each transition

type is distinctively associated with a certain transition
pattern. A transition can be characterized as one of two
kinds of transitions: instantaneous cuts and gradual tran-
sitions. An instantaneous cut changes one video shot into
another one abruptly without any intermediate transition
procedure.

2.1. Cross transition and dither transition

One video shot can gradually change into another in
one of the following two ways:

• Cross transition: Every pixel value gradually changes
from one video shot to another. Fig. 1 illustrates the
visual e4ect of a cross transition.

• Dither transition: A small portion of pixels abruptly
change from pixels values from the :rst shot to those
of the second shot every moment. With time, more and
more pixels change until all of the pixels change into
the second video shot. Fig. 2 illustrates four frames in
a dither transition.

The above classi:cation is based on the way in which
pixels change from one shot to another. Gradual tran-
sitions can also be classi:ed according to their visual
e4ects. Table 1 lists some frequently used transitions.
Mathematical de:nitions for these two types of transition
are given below.
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Table 1
Transitions in digital video

Abrupt Gradual transitions
transitions

Cross transitions Dither transitions

Cut Cross dissolve Dither dissolve
Fade-in=fade-out Various types of wipes
Additive dissolve Non-additive dissolve

De�nition 1 (Cross transition). Given two video shots
A and B, a cross transition obeys

Dt(x; y)= �(t)At(x; y) +  (t)Bt(x; y); t ∈ [0; T ]; (3)

where Dt(x; y); At(x; y) and Bt(x; y) are the pixel values
of frame t at position (x; y) for transition shot D, shot
A and shot B, respectively. �(t) and  (t) are transition
functions and are often de:ned as linear functions

 (t)=
t
T

and �(t)=1− t
T
:

The so-called “fade-in” and “fade-out” are transitions
generated from one video shot. They can be viewed as
special cases of cross transitions with At(x; y)=0 and
Bt(x; y)=0, respectively.

Fig. 3. Transition functions for additive dissolve.

Fig. 4. An additive dissolve.

It is worth mentioning that the transition functions can
be non-linear functions. Furthermore, the sum of �(t) and
 (t) may not equal 1 for a few types of transitions. For
example, the transition functions for an additive dissolve,
illustrated in Fig. 3, are de:ned by

�(t)=

{
1 t ∈ [0; T2 );

2(1− t
T ) t ∈ [ T2 ; T ];

(4)

 (t)=




2t
T

t ∈ [0; T2 ];

1 t ∈ ( T2 ; T ]:
(5)

Because the sum of �(t) and  (t) is not bounded by 1,
the transition video may saturate, as illustrated in Fig. 4.

De�nition 2 (Dither transition). Given two video shots
A and B, a dither transition obeys

Dt(x; y) = (1− �(x; y; t))At(x; y) + �(x; y; t)Bt(x; y);

t ∈ [0; T ]; (6)

where Dt(x; y); At(x; y) and Bt(x; y) are the pixel values
of frame t at position (x; y) for transition shot D, shot A
and shot B, respectively. The transition function �(x; y; t)
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Fig. 5. A non-additive dissolve.

is de:ned by

�(x; y; t)=

{
1 (x; y)∈ St ;

0 (x; y) �∈ St ;
(7)

where St is a subset of S , the pixel coordinate space.
S is related to St by

S =
T⋃
t=0

St

and ∀t1; t2 ∈ [1; T ], if t1 �= t2, then

(St1 − St1−1) ∩ (St2 − St2−1)=":

Like cross transitions, most dither transitions use lin-
ear transition functions, i.e., an equal number of pixels
change every moment; this implies

|St1 − St1−1|= |St2 − St2−1|:
Note that the transition functions only determine the

number of pixels that are changed each moment. They do
not give any spatial information for which pixels change.
The positions of such pixels can be random, e.g., in the
dither dissolves, shown in Fig. 2. However, if the tran-
sition functions follow one of several prede:ned spatial
patterns, then they describe a wipe, which is a frequently
used dither transition.
A non-additive dissolve is a very special dither tran-

sition, illustrated in Fig. 5. The condition for a pixel to
change from video shot A to shot B is illustrated in Fig.
6 by the shaded area. A point (B(x; y); A(x; y)) in the
rectangle (Fig. 6) corresponds to those pixels with lu-
minance B(x; y) and A(x; y) in B and A, respectively. A
front-line l rotates counterclockwise across the rectangle
from #=0 to $=2, and leaves the shadow area behind.
The value of # linearly increases with the progress of
time. If the intensity of a pixels falls into the shadow area
at a certain moment, its value in the transition D equals
the value at corresponding position in video shot B. Oth-
erwise, its value equals the value of video shot A. The
transition function St is de:ned by

St =
{
(x; y) | arctan

(
At(x; y)
Bt(x; y)

)
∈
(
0;

t$
2T

)}
:

Fig. 6. Conditions for a pixel to change in a non-additive
dissolve.

3. ST-JPI for video segmentation

3.1. Joint probability image

As a measure of intensity co-occurrence between two
images, joint probabilities of two images have been used
together with independent component analysis (ICA) to
e4ectively separate reLections from paintings [16]. In
this paper, joint probabilities are viewed as a similarity
estimate between two images. For simplicity, luminance
images [17] are used in discussions:

Y =0:299R+ 0:587G + 0:114B:

The transition detection method developed here is
based on luminance images. It can readily be extended
to RGB color space images.
Joint probability images were proposed by Li and Wei

[15] for use in video segmentation:

De�nition 3 (Joint probability image). Suppose A and
B are two images of the same size. Let A(x; y) and B(x; y)
be the luminance of image A and B at the position (x; y),
respectively. A joint probability image (JPI) is a matrix
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Fig. 7. Illustration of the behavior of JPIs.

with element value:

JPIA;B(i1; i2) = P(A(x1; y1)= i1; B(x2; y2)= i2; (x1; y1)

= (x2; y2)) (8)

where P(A(x1; y1)= i1; B(x2; y2)= i2; (x1; y1)= (x2; y2))
is the probability that luminance i1 and i2 appear at the
same position in image A and image B, respectively.

Each pixel of a joint probability image corresponds
to an intensity pair in two images. Its value can be
calculated by counting its co-occurrence as a pair at
any position of the two images. Spatial information for
co-occurrence intensity pairs is not preserved. The sum
of all the components in a JPI equals 1. The distribution
of the values in a JPI maps the correlation between two
images.
Fig. 7 depicts two extreme cases: a JPI for two identical

images and a JPI for two independent images. In the :rst
case, the JPI shows a diagonal line, and in the second the
JPI consists of a uniform distribution.
Because of the continuity of image contents, video

frames within a single video shot highly relate to one
another. A JPI derived from two frames belonging to the
same video shot usually has a narrow distribution along
the diagonal line. However narrative and visual content
changes occur between two consecutive video shots, and
then a uniform distribution is expected in the JPI. This
strong impact of a transition on JPI behavior is the basis
of our transition detection method.

3.2. Spatial–temporal joint probability image

A single JPI, which is derived from a pair of video
frames, illustrates the correlation of two tiny intervals
in a video. A spatial–temporal joint probability image
(ST-JPI), which consists of a series of JPIs in chrono-
logical order, reLects the temporal evolution of video
contents. An ST-JPI for a video D can be expressed as

ST-JPI T0 ;T1

= {JPI T0 ;t | JPI T0 ;t = JPIDT0 ;Dt ; t ∈ [T0; T1]} (9)

The image DT0 that is shared by all the JPIs is the base
image of the ST-JPI .
The evolution pattern of the JPIs directly relates to the

e4ects in the video. The frames within a same video shot
highly relate to one another because of the continuity of
visual contents. Across two video shots, images are vi-
sually independent of one another. If a video cut hap-
pens at a certain frame between frame 0 and T , where an
ST-JPI is derived, the JPIs before the cut have very lim-
ited dispersion from the diagonal line. For video frames
after the cut, uniform JPIs are usually obtained. The shift
from narrow dispersion JPIs to uniform JPIs happens in-
stantaneously at the position where a cut appears. By es-
timating the uniformity of JPIs, cuts can be detected and
reported.

3.3. Spatial–temporal pattern of gradual transitions

The above scenario works well for cuts, but for gradual
transitions it is too coarse to produce good results. The
dispersion of JPIs gradually extends to a uniform one
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Fig. 8. Spatial–temporal JPIs in a cross transition.

Fig. 9. Spatial–temporal JPIs in a dither transition.

when one video shot changes into another video shot. The
process can take a long time determined by the length of
the transition.
For convenience of discussion, some initial assump-

tions are made. The situations when the assumptions are
not satis:ed will be discussed later. Suppose a gradual
transition D is generated from two video shots A and
B between frame 0 and frame T , where ST-JPI 0; T is
generated, let us assume:

• The transition D has a linear transition function.
• The transition is generated from two static video shots.
i.e., no movement exists in either original video shot
during the period of the transition.

• For the dither transitions, the choices of pixels changed
are entirely independent of the pixel’s visual charac-
teristics, such as luminance.

Consider a pixel set, which is formed by the pixels with
intensity i0 in video shot A; its corresponding point in
JPI 0;0 falls on the diagonal line, and is denoted by M in
Figs. 8 and 9.
In JPI 0; T , which is the last JPI of the ST-JPI, the point

M splits into a number of small points. Two of those
points are denoted by m1 and m2 in Figs. 8 and 9, which
correspond to intensity i1 and i2 in video shot B. Between
the :rst and last JPIs, the JPIs gradually evolve from the

:rst JPI to the last one with the progress of time. The
evolution pattern of an ST-JPI is determined by the type
of the transition.
For a cross transition, the intensities of pixels corre-

sponding to intensity i0 in video shot A and intensity i1
in the video shot B linearly increase from i0 to i1. Their
corresponding point m1 in the ST-JPI forms a straight
line as illustrated by Fig. 8. And the mass (pixel count)
of m1 does not change with the progress of time. Because
of the rich color existing in a video, a large number of
straight lines with di4erent slopes exist in an ST-JPI.
For a dither transition, a portion of pixels abruptly

changes from video shot A to B at each moment. The
pointM , which represents pixels with intensity i0 in both
A and D, gradually loses the pixels that have di4erent
intensities in A and B. With a linear transition function,
its mass linearly decreases. Statistically, the intensities
into which the pixels change are likely to distribute ac-
cording to the intensity distribution of the video shot B.
The point m1, which corresponds to intensity i0 and i1
in A and B, respectively, gradually accumulates the pix-
els. With a linear transition function, its mass linearly
increases as illustrated by Fig. 9. With time, the point
m1 and M form straight lines without slope. Because of
the rich color in a video, a large number of straight lines
exist in an ST-JPI.
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Fig. 10. Sample JPIs of an ST-JPI for a cross transition. (a) JPI30;30. (b) JPI30;60. (c) JPI30;90.

Fig. 11. Sample JPIs of an ST-JPI for a dither transition. (a) JPI30;30. (b) JPI30;60. (c) JPI30;90.

Figs. 10 and 11 illustrate several sample JPIs from
ST-JPIs for a cross transition and a dither transition, re-
spectively. The evolution pattern for a cross transition is
reLected by expansion of the breadth of the JPI distribu-
tion. However, the evolution pattern for a dither transi-
tion is reLected by the linear increase of the masses of
the pixels that do not fall on the diagonal line and the
linear decrease of masses of the pixels that fall on the
diagonal line.
Explicitly, the spatial–temporal pattern of an ST-JPI

for a cross transition is expressed by

Theorem 3.1 (Spatial–temporal pattern of cross transi-
tion). Given an ST-JPI 0; T derived from a video D with
a cross transition between frame 0 and T, ∀t ∈ [0; T ] and
∀i0 ∈ [0; Imax];

if i∈ [(1− t=T )i0; (1− t=T )i0 + (t=T )Imax],

JPI0; t(i0; i)= JPI0; T

(
i0; i0 +

T
t
(i − i0)

)
(10)

if i �∈ [(1− t=T )i0; (1− t=T )i0 + (t=T )Imax],

JPI0; t(i0; i)=0: (11)

The cutting lines between Eqs. (10) and (11), which
are i=(1− t=T )i0 and i=(1− t=T )i0 +(t=T )Imax, are the

left and right boundaries of the parallelograms illustrated
in Fig. 10. Their width ((t=T )Imax) increases linearly with
the progress of time t.
Explicitly, the spatial–temporal pattern of an ST-JPI

for a dither transition is expressed by

Theorem 3.2 (Spatial–temporal pattern of cross transi-
tion). Given an ST-JPI 0; T derived from a video D with
a dither transition between frame 0 and T; ∀t ∈ [0; T ]
and ∀i0; i∈ [0; Imax]; we have

JPI0; t(i0; i)

=

{
t
T JPI0;T (i0; i) i �=i0;
JPI0;0(i0; i0)+ t

T (JPI0;T (i0; i0)−JPI0;0(i0; i0)) i=i0:
(12)

This theorem predicts the behavior of the ST-JPI gen-
erated from a dither transition. The masses of the points
on the diagonal line linearly decrease and the masses of
the points that are not on the diagonal line linearly in-
crease.
Examination of the above models might suggest a

dissolve–detection algorithm based on line-detection in
the ST-JPI. Considering the required detection of possi-
bly a large number of lines, this approach is less than
desirable. Further analysis in the rest of this section dis-
closes the evolution pattern of an ST-JPI for a gradual
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Fig. 12. Pattern evolution of cross transition. (a) Strip i1 of JPI30;50. (b)Strip i1 of JPI30;70. (c) Strip i1 of JPI30;90.

Fig. 13. Pattern evolution of dither transition. (a) Strip i1 of JPI30;50. (b)Strip i1 of JPI30;70. (c) Strip i1 of JPI30;90.

transition and leads to an approach based on a pattern
match. Figs. 12 and 13 illustrate the pattern evolution of
cross and dither transitions.
The theorems show that an ST-JPI that is derived

from a cross or dither transition is entirely determined
by JPI0; T , the last JPI of the ST-JPI. An ST-JPI can be
generated for a potential gradual transition. A cross tran-
sition model ST-JPI can be predicted by the last JPI,
with Eqs. (10) and (11). A dither transition model ST-JPI
can be predicted by the last JPI, using Eq. (12), and
the predicted model is compared with the ST-JPI. If the
ST-JPI matches the cross transition model, a cross tran-
sition is reported. If the ST-JPI matches the dither tran-
sition model, a dither transition is reported. If the ST-JPI
matches neither the dither nor the cross transition model,
the pattern match fails and no transition is reported.

3.4. Joint probability uniform transform

As we have seen, every JPI of an ST-JPI generated
from a gradual transition shares the same pattern, but
their widths or altitudes change with the progress of time.

Before pattern matching is performed, they should be
uni:ed into patterns with an identical width and altitude.
For the cross transition, which is illustrated in Fig. 12,
the widths of (a) and (b) should be expanded to the width
of (c). For the dither transition, which is illustrated by
Fig. 13, the altitudes of (a) and (b) should be expanded
to the altitude of (c).

De�nition 4 (Cross uniform transform). Given an ST-
JPI 0; T derived from a videoD; a cross uniform transform
UC is de:ned as

JPIUC
0; t (i0; j)= JPI0; t

(
i0; i0 + (j − i0)

T
t

)
: (13)

De�nition 5 (Dither uniform transform). GivenanST-
JPI 0; T derived from a video D; a dither transform
UD is de:ned as

JPIUD
0; t (i0; j)=




T
t
JPI0; t(i0; j) if j �= i0;

0 if j= i0:
(14)
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Fig. 14. Joint probability projection vector of a joint probability image.

Obviously an ST-JPI from a cross transition after a
cross uniform transform becomes a sequence of identical
JPIs. And an ST-JPI from a dither transition after a dither
uniform transition also becomes a sequence of identical
JPIs. The dither uniform transform throws away the pix-
els on the diagonal line. This operation does not lose any
useful pattern information, because the pixels on the di-
agonal lines always behave in an exactly opposite way
from each other.

3.5. Joint probability projection vector

Illustrated in Figs. 12 and 13 by i1, the center of the pat-
tern is determined by the corresponding luminance in the
base image of the strip. For the convenience of the pattern
matching, the center of the pattern should be normalized
to a position that is independent of the luminance.
The pattern matching operation can be performed on

every strip of an ST-JPI. The number of the strips in an
ST-JPI equals the number of the luminance levels of the
video. The e>ciency of this method can be signi:cantly
increased by cutting the ST-JPI into a few slices and
performing pattern matching on each slice. Each slice of
an ST-JPI consists of a number of strips with di4erent
corresponding intensities in the base image.
The pattern of a slice can be obtained by computing

a joint probability projection vector (JPPV), which is
de:ned by

De�nition 6 (Joint probability projection vector).
Given a joint probability image JPI 0; t ; and luminance
I1; I2 ∈ [0; Imax]; its joint probability projection vector is

VI0 ; I1 ;t(k)

=




I1∑
i=I0

JPI0; t (i; (1− k
Imax

i) k ∈ [0; Imax − 1];

I1∑
i=I0

JPI0; t (i; Imax−i
Imax

k + i) k ∈ [1− Imax ; 0):

(15)

Fig. 14 illustrates the procedure of deriving a joint
probability projection vector from a JPI: projecting all
JPI pixels to the upper or lower boundary of the JPI.
If a pixel is on the upper-left side of JPI, i.e., i¿j, the
original point of the projection is (0; 0), and the pixel is
projected to the upper boundary of the JPI. Otherwise,
the projection will be made from the point (Imax ; Imax)
to the lower boundary of JPI.
It is obvious that the temporal evolution pattern is pre-

served after this projection. The center of the pattern,
which represents identical luminance, is now at V (0),
regardless of what the corresponding intensities are.

Theorem 3.3. Given a cross transition D; an ST -JPI0; T
generated from D and any intensities I0; I1 ∈ [0; Imax] its
joint probability projection vectors satisfy

VI0 ; I1 ;t(k)=VI0 ; I1 ;T

(
k
T
t

)
:

Theorem 3.4. Given a dither transitionD; an ST -JPI0; T
generated fromD and any intensities I0; I1 ∈ [0; Imax]; its
joint probability vectors VI0 ; I1 ;t satisfy

VI0 ; I1 ;t(k)

=




t
T VI0 ; I1 ;T (k) if k �=0;

VI0 ; I1 ;0(0)+
t
T (VT0 ;I1 ;T (0)−VI0 ; I1 ;0(0)) if k =0:

(16)

Observing that overall luminance di4erences often ex-
ist between the two original video shots that generate the
transition, either the upper-left or lower-right part of a JPI
often is sparse. Figs. 15 and 16 illustrate a few JPPVs
derived from cross and dither transitions. For cross tran-
sitions, the width of the distribution pattern is di4erent.
For dither transitions, the amplitude of the distribution
pattern is di4erent. The patterns are slightly inLuenced
by motions in the video.
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Fig. 15. Joint probability projection vectors for a cross transition. (a) The JPPV of JPI0;15. (b) The JPPV of JPI0;30.

Fig. 16. Joint probability projection vectors for a dither transition. (a) The JPPV of JPI0;15. (b) The JPPV of JPI0;30.

3.6. Pattern matching

The last step of transition detection is evaluat-
ing whether the uniform joint probability projection
vectors in an ST-JPI are identical to a transition
model prediction. The JPPVs of the last JPI in the
ST-JPI are usually used as the model prediction.

De�nition 7 (Similarity between a JPPV and its
model prediction). Given a JPPV, Vi; t1 ; its similarity
with transition model prediction Vi;T is

Vi; t1 � Vi;T =(Vi; t1 − Vi;T )
tA(Vi; t1 − Vi;T ); (17)

where A=[aij] is a distance matrix [18]. The weight
aij denotes the distance between component i and
j of the projection vector. A Gaussian function, aij =
1−e−(i−j)2=2-2 , can be used to determine this similarity
matrix. In our implementation, -=10. Making use of
the similarity matrix determined by the Gaussian func-
tion increases the robustness of the measure to error
caused by quantization and motions in the video, and
still keeps enough resolution to distinguish transitions
from other video e4ects.

The value of this similarity is always between 0 and
1. Value 0 represents a perfect match, and indicates that
all the projection vectors compared are identical. If the
distance is smaller than a preset threshold, a transition
is successfully detected. Its type is determined by the
uniform transform used.
We use this distance measure because it tolerates noise.

There also exist some other measures that can be used to
measure distances, such as intersection, which is de:ned
by

Vi; t ⊗ Vi;T =
∑Imax

i=0 min(Vi; t(j); Vi;T (j))∑Imax
i=0 Vi; t(j)

: (18)

The intersection is sensitive to video movements and
quantization errors. With a deliberate Gaussian smooth-
ing process, its performance may be signi:cantly im-
proved.
The similarity between an ST-JPI and the transi-

tion model is de:ned as the average of the similarities
obtained from all the JPPVs:

S(ST-JPI 0; T )=
∑T

t=0

∑Imax
i=0 Vi; t � Vi;T

TImax
: (19)
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Fig. 17. JPPC of a joint probability image.

4. Fast video segmentation algorithm

The ST-JPI pattern matching only succeeds when the
entire ST-JPI is derived from the frames with in the range
of a transition. Even a few frames that are not part of
transition can cause a mismatch. Usually a video con-
sists of a huge number of frames. For e>ciency reasons
it is undesirable to generate ST-JPIs and perform pattern
matching everywhere, so a preprocessing step that high-
lights potential transitions is required before activating
the ST-JPI pattern match.
The joint probability projection centroid (JPPC) is

proposed as a distance estimate between two images.
Since it is a single number that can be obtained with
quick computation, JPPCs are suitable for preprocessing
(Fig. 17).

De�nition 8 (Joint probability projection centroid).
label8Given a joint probability image JPI ; its joint
probability projection centroid is

JPPCJPI =
Imax∑
i=0

Imax∑
j=0

(JPI(i; j) · w) (20)

where w is the distance between (Imax ; Imax)=(0; 0) and
the projection of (x; y), and can be computed by

w=




j − i
i

j¿ i;

i − j
Imax − j

j¡ i:
(21)

The value of a JPPC is between 0 and 1. It is a measure
of the width of a JPI’s dispersion. Value 0 means the JPI
is derived from identical images. A large JPPC suggests
the JPI is derived from independent images. When JPPCs
are computed for JPIs in an ST-JPI, an abrupt change
from a small JPPC to a large one suggests a cut.
Abrupt changes of JPPCs are usually absent for a grad-

ual transition. For a cross transition, the pattern keeps

the same altitude; however its width increases linearly.
As a result, the JPPCs increase linearly. Fig. 18(a) illus-
trates a series of JPPCs computed from a cross transition.
For a dither transition, the width of the pattern does not
change. However the altitude of the pattern increases lin-
early. As a result, the JPPCs increase linearly. Fig. 18(b)
illustrates a series of JPPCs computed from a dither tran-
sition. The motions in the videos have a minor inLuence
on the linear pattern.

Theorem 4.1. Given a video; D; with a linear cross or
dither transition between frame 0 and T . JPPCJPI0; t and
JPPCJPI0; T represent JPPCs for JPI0; t and JPI0; T ; re-
spectively. ∀t ∈ [0; T ]; we have;

JPPCJPI0; t =
t
T

JPPCJPI0; T : (22)

The linear patterns for cross and dither transitions
are exactly the same. Although the above does not
distinguish cross and dither transition and is only a
necessary condition for a transition, and it works well as
a :lter. With a line-detection algorithm, this pattern can
be detected without many di>culties.
Some assumptions about characteristics of video are

made to facilitate the discussion of a video segmentation
algorithm:

• A gradual transition should last at least 16 frames,
which is equivalent to about half a second of video.

• The interval between two transitions should be longer
than 32 frames, which is equivalent to about 1 s of
video.

Our algorithm can be divided into six major steps:

1. Quickly browsing the video by calculating the JPPCs
of pairs of frames at 32 frame distances: Dt and Dt+32.
If the JPPC is smaller than a preset threshold, then
the frames belong to a same video shot. No transitions
exist within these 32 frames.

2. If a JPPC is found larger than the threshold, the al-
gorithm activates a binary search. For each step, the
binary search attempts to divide the range that is in-
vestigated, and continue the binary search in the half
with the larger JPPC, if the criteria of a cut are satis-
:ed. The cut criteria are that there is a signi:cant dif-
ference between the JPPCs of the two half parts and
the larger one is not less than 75% of the JPPC of
JPIDt ;Dt+32. If these criteria are always satis:ed and
binary search succeeds to detect a large JPPC of two
consecutive frames, a cut is reported. If the criteria are
not satis:ed at some stage with a reasonable duration,
say eight frames, there is a possibility that a gradual
transition happens here.

3. An ST-JPI is generated within this duration. The JP-
PCs are calculated one by one. A progressive mean
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Fig. 18. JPPCs for a gradual transition (duration: frame 20–50). (a) Cross transition. (b) Dither transition.

square error (MSE) line detection [19] is performed.
If JPPCs :t into a straight line (i.e., MSE less than a
threshold), a potential transition is reported.

4. The duration usually is only a portion of a transition.
The full duration of the transition is discovered by
progressively expanding the ST-JPI in both forward
and backward directions.

5. Based on the ST-JPI, the JPPVs are generated and
normalized by uniform transitions. The similarity is
calculated. If it is less than the preset threshold, a
transition is detected. Its category corresponds to the
uniform transition used.

4.1. Discussion

Transitions can be classi:ed into more speci:c cate-
gories based on transitions’ visual e4ects. A cross tran-
sition can be a cross dissolve, fade in or fade out. If the
:rst JPI of an ST-JPI shows a horizontal line, a fade-in
is detected. If the last JPI of an ST-JPI shows a vertical
line, a fade-out is detected.
A dither transition randomly changes a certain num-

ber of pixels at each moment, and the ways to choose
the changing pixels vary. As one of the dither transitions,
a wipe changes pixels following a pre-speci:ed spatial
pattern. The ST-JPI does not retain such spatial informa-
tion; thus it lacks the ability to distinguish wipe patterns.
A solution for this problem is to divide the screen into
four parts, as illustrated in Fig. 19. An ST-JPI can be de-
rived from each portion of the screen. Pattern matching
can be performed on each portion of the screen. A dither
transition will be detected at each portion of the screen.
For a dither dissolve, four dither transitions occur at ex-
actly the same time. For a wipe, four dither transitions
often fall into a regular chronological order determined
by the wipe direction. The relation between the wipe di-
rection and the chronological order is shown in Fig. 20.
A spatial–temporal chromatic histogram image based al-
gorithm, which works for general wipes, was proposed
in Ref. [20].

Fig. 19. Screen division for wipe detection.

Not all transitions have linear transition functions. For
a transition with prede:ned non-linear transition func-
tions, the uniform transform can always be adjusted to
unify the frames. Even for a transition without a prede-
:ned transition function, or with an unknown transition
function, the JPPC ratio between JPI0; T and JPI0; t can
be used to unify JPI0; t . This strategy eliminates the re-
quirement of previous knowledge of transition functions.
Its drawback is that the errors of the JPPCs are intro-
duced into the uniform transform and increase the pattern
matching error.
Additive dissolve is another type of challenging tran-

sition, because it may saturate. When saturation occurs,
the pattern information is lost. Fortunately, if the lumi-
nance of two video scenes is not very high, we still have
enough information to perform pattern matching. Fig. 21
illustrates two strips of an ST-JPI for an additive transi-
tion. The left strip corresponds to the middle luminance
in the base image. Enough space exists for the pattern to
show up in the ST-JPI. The right strip corresponds to a
frame close to the high end of the luminance. The tran-
sition quickly saturates in this strip.
It was assumed that the choice of changing pixels at

each moment is independent of visual characteristics,
e.g., the pixels’ intensities. This assumption is not true
for a few dither transitions. For example, a non-additive
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Fig. 20. Temporal patterns for wipes with various directions: the shadow areas represent a dissolve at corresponding block.
(a) Left-to-right wipe. (b) Upper-left to bottom-right wipe.

Fig. 21. Illustration of the behavior of JPIs: two slices of the ST-JPI of an additive transition.

Fig. 22. Illustration of the behavior of JPIs: two slices of the ST-JPI of a non-additive transition.

dissolve (shown in Fig. 5) changes pixels with certain
intensity co-occurrences at each moment. Its spatial–
temporal pattern is illustrated by Fig. 22.
Finally, motion can signi:cantly a4ect the tran-

sition patterns. Besides transitions, object and cam-
era movements also cause video content changes
and a4ect the behavior of an ST-JPI. Fortunately,
object and camera movements tend to be mod-
erate and have modest inLuences on the behav-
iors of ST-JPIs. The JPIs for dither transitions
tend to be more sensitive to motions. Fig. 23(a)
illustrates a JPPV that is inLuenced by movement. Ide-
ally the JPI0;15 should keep the pattern information in
two parts: the vector components with non-zero index;
component V [0] holds pixels that are not changed. How-
ever, various numbers of pixels that are not changed do
not fall into V [0], as expected, because of motions. They
are very likely to fall into components close to zero
(Fig. 23). Based on this scenario, the components

close to zero are often considered unreliable and are
discarded.

5. Experimental results

5.1. Experimental results

Two parameters, recall and precision, are often used to
evaluate the e>cacy of a video segmentation algorithm.
They are de:ned by

Recall=
D

D+U
; Precision=

D
D+ F

;

where D denotes the number of transitions that are de-
tected, U denotes the number of transitions that are not
detected, and F denotes the number of false alarms made
by the algorithm. Recall and precision reLect the com-
pleteness and correctness of a transition report. A good
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Fig. 23. JPPVs of a dither transition. (a) The JPPV for JPI0;15. (b) The JPPV for JPI0;30.

Table 2
Transition detection experiment results

D U F Recall Precision
(%) (%)

Cut 43 1 2 97 96
Cross transition 14 3 1 82 93
Dither transition 9 3 2 75 81

transition–detection algorithm should balance precision
and recall and obtain high values for both of them.
Experiments have been performed on several digital

videos to evaluate the e>cacy of the algorithm. One dig-
ital video, which is recorded from television, is used as
the training set to optimize the thresholds. The test videos
consist of a variety of contents, such as sports and bat-
tle:elds. Fast object and camera movements frequently
appear in the videos. Furthermore, arti:cial e4ects, such
as captions, often show up in the videos. The algorithm
accurately detects, locates and classi:es almost all cuts
and most of the gradual transitions. Table 2 illustrates
statistics of the experimental results. It shows that our
algorithm detected almost all the cuts and most of the
gradual transitions. It performs well for both recall and
precision. Fig. 24 illustrates a segmentation result for a
speci:c digital video. The text shows the detected tran-
sitions, reporting the transition types and durations. Key
frames between each transition is shown as a thumbnail.
For these results, thresholds are determined by the

training set, for the di4erent types of transitions and dif-
ferent extent of motions. Then these same thresholds are
used for all experiments on test videos.
Timing results for the non-optimized code we used

were dominated by disk I=O for reading and writing
video. For the examples shown, it took about 2–2:5 min
to process a video clip. However, in theory the algorithm
is very fast because it only needs to bu4er 8 frames. The
algorithm can work on any length video for the same
reason.

Tests were performed on several arti:cial video tran-
sitions with di4erent degrees of motion. For each test,
a transition that lasts for 30 frames were generated
from two video shots. To estimate the motions in the
two original video shots, JPPCs of the consecutive
frames of the two video shots were derived (Fig. 25(a)
and (b)). The averages of those JPPCs were used as
the quantitative estimation of motion. The JPPCs be-
tween the :rst frame in the transition video and every
following frame (Fig. 25(c)) were generated. The po-
tential transition was detected by line-detection. An
ST-JPI was generated by sampling one frame in ev-
ery three frames during the potential transition. The
ST-JPI was divided into eight slices and a JPPVs was
derived for each slice. The uniform transforms were
used to unify all the JPPVs. Each slice was com-
pared with the corresponding slice of the last JPI and
a similarity was derived. For each sample frame, its
similarity with the last frame in ST-JPI was computed
by the weighted average of similarities derived with
Eq. (17), where the weights are the percentages of the
pixels that fall in the corresponding slices. The aver-
age was used as the similarity of this pattern match-
ing.

5.2. Performance under di;erent motion conditions

Figs. 25 and 26 illustrate the tests performed on the
arti:cial video Bird and the video Tennis, respectively.
For the video Bird, in which modest motions appear,
the pattern matching result is very good. Because of the
strong motions in the video Tennis, the pattern matching
result deteriorates.
Table 3 illustrates several tests performed on video

shots with di4erent degrees of motions: Static, Bird, Sport
and Tennis. The results show that the pattern matching
results gradually deteriorate with the increase of the mo-
tions in videos. The di4erences in the timing results are
so small that they do not suggest any di4erence in cost
for di4erent videos and di4erent kinds of pattern match.
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Fig. 24. An example of video segmentation.

The pattern match time is only a small portion of total
processing time. The major computer costs is incurred
by generating JPIs. Further improvements in e>ciency
should be obtained through e>cient methods for gener-
ating JPIs.

5.3. Comparative results: histogram intersection vs.
similarity

Both histogram intersection and similarity can be used
as a measure of the similarity between an ST-JPI and
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Fig. 25. Relation between algorithm performance and motion (Bird, cross transition). (a) JPPCs of consecutive frames in video I. (b)
JPPCs of consecutive frames in video II. (c) JPPCs compared with the :rst frame. (d) Similarities (sample frames: the last frame).

Fig. 26. Relation between algorithm performance and motion (Tennis, cross transition). (a) JPPCs of consecutive frames in video I.
(b) JPPCs of consecutive frames in video II. (c) JPPCs compared with the :rst frame. (d) Similarities (sample frames: the last frame).
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Table 3
Relations between algorithm performance and motion in video. All results reported are for a Pentium-III machine with speed 500 MHz

Motion by Similarity (S) Total processing Pattern matching
JPPC (-=10) time (ms) time (ms)

Cross transition Static 0 0.0002 440 120
Bird 13.70 0.0022 391 110
Sports 26.05 0.0165 430 100
Tennis 35.12 0.0604 360 90

Dither transition Static 0 0.0004 350 120
Bird 13.70 0.0059 481 101
Sports 26.05 0.0273 480 150
Tennis 35.12 0.0719 420 150

Table 4
Comparative results for gradual transitions: similarity vs.
intersection

Motion Similarity Intersection
by JPPC (S) (-=10) (I)

Cross Static 0 0.0002 0.7558
transition Bird 13.70 0.0022 0.6686

Sports 26.05 0.0165 0.7550
Tennis 35.12 0.0604 0.6788

Dither Static 0 0.0003 0.7348
transition Bird 13.70 0.0059 0.5276

Sports 26.05 0.0237 0.6496
Tennis 35.12 0.0719 0.6376

Total processing time (ms) 441 341
Pattern matching time (ms) 81 1

the one under the transition model. Table 4 illustrates a
performance comparison of them. For similarity, 0 is a
perfect match; for intersection, 1 is a perfect match. The
performance of intersection appears to be poor. Even for
perfect transitions derived from static video, its perfor-
mance is still not satisfactory.

5.4. Comparative results: Y vs. RGB

The above tests are performed on luminance images.
This can readily be extended to RGB color space images.
Table 5 illustrate the comparison of performance on lu-
minance images and RGB color images. Motion of the
videos in RGB space are estimated by

JPPCRGB = 0:299JPPCR

+0:587JPPCG + 0:114JPPCB:

The similarities between the ST-JPI and transition model
SRGB are calculated by

SRGB=0:299SR + 0:587SG + 0:114SB:

Apparently, these two results are very comparable,
with RGB taking nearly three times as much time, as
expected.

6. Conclusion and future work

6.1. Conclusion

Video segmentation is an important preprocessing step
for digital video processing. Although a variety of re-
search work has been conducted for this problem, an
e>cient method for detecting, locating and classifying
gradual transitions was still not available. This paper
addresses this problem through spatial–temporal joint
probability analysis. Spatial–temporal joint probabilities
accurately characterize the temporal evolution of the vi-
sual characteristics of digital videos. Spatial–temporal
joint probabilities derived from a video transition show a
certain pattern of behavior determined by the transition
type. The patterns are so regular that they can be reliably
distinguished from video e4ects other than transitions.
Patterns for various transitions di4er with one another,
and thus are very distinguishable.
In this paper, we build our transition method on the

basis of spatial–temporal joint probability images, which
are visual sketches of joint probabilities. Through per-
forming a pattern match on an ST-JPI with prede:ned
pattern models, transitions are detected and classi:ed. To
speed up the video segmentation process, a fast algorithm
is designed and presented.
The main contributions of this paper are:

1. Mathematical models are de:ned for two types of
gradual transitions, i.e., cross transition and dither
transition. All gradual transitions can be characterized
as one of the two types of transitions.

2. The spatial–temporal joint probability image is pro-
posed for modelling the evolution patterns of gradual
transitions. The ST-JPI patterns for both types of grad-
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Table 5
Comparative results for gradual transitions: Y vs. RGB

Motion in Y Similarity Motion in RGB Similarity
by JPPCY (SY ) by JPPCRGB (SRGB)

Cross transition Static 0 0.0002 0 0.0004
Bird 13.70 0.0022 15.45 0.0036
Sports 26.05 0.0165 28.68 0.0216
Tennis 35.12 0.0604 38.72 0.0617

Dither transition Static 0 0.0004 0 0.0006
Bird 13.70 0.0059 15.45 0.0085
Sports 26.05 0.0237 28.68 0.0257
Tennis 35.12 0.0719 38.72 0.0586

Total processing time (ms) 421 1171
Pattern matching time (ms) 81 360

ual transitions are analyzed. An ST-JPI based pattern
matching method is proposed for detecting and classi-
fying transitions. A fast algorithm that can detect most
transitions is designed.

3. Tests are performed on the videos that are gener-
ated from video shots with various degrees of cam-
era and=or object movements. Both experimental re-
sults and error analysis demonstrate the relationship
between the quality of the proposed video segmenta-
tion technique and movements in the video.

Good experimental results demonstrate that ST-JPI
based transition detection is a promising method for tem-
poral video segmentation.

6.2. Future work

Although the algorithm based on spatial–temporal
joint probability images works relatively well, compared
to previous methods, it does have some limitations. Fu-
ture research work should be conducted on the following
aspects.

• Perhaps the most serious limitation of the method is
that it can be inLuenced by object and camera move-
ments. Movements in video have some temporal con-
tinuity. By estimating movements in video before and
after potential transitions, prediction of movements in
the two individual video shots can be made. With the
help of this motion information, motion compensation
can greatly improve the quality of ST-JPI.

• Our fast algorithm is built on the basis of line-detection,
and thus only works for transitions with linear tran-
sition functions. If knowledge of transition functions
is available for these transitions, the line-detection al-
gorithm can be adjusted to detect all those prede:ned
functions. If a transition function is not known, an
estimation of the transition function can be made by

computing the ratios between projection centroids, as
reported above. But the estimation of the transition
functions can be inLuenced by the motions in the
video, and thus the reliability of a later pattern match
is a4ected.

• A few types of dither transition schemes determine
pixels to be changed on the basis of pixel value. Their
transition pattern is strongly related to video content.
Our algorithm is likely to fail for those dither tran-
sitions, although regular patterns still appear in those
ST-JPIs. Individual ST-JPI patterns can be de:ned for
each special dither transition, and our pattern match
should include such patterns in order to detect all types
of dither transitions.

Appendix

Algorithm (ST-JPI-based video segmentation)

Input: A video stream O
Output: A report of the transitions in the video.
Every transition is speci:ed by three parameters:
Type, Location and Duration

Method: (3; 4, and 5 represent prede:ned thresholds.)
t0 = 0
While ( t0¡ length of video O ){

if JPPCJPIOt0 ;Ot0+32
¿3{ =∗ possible shot change ∗=

set time t= t0 and range r=16
While (r¿ 0){

if max (JPPCJPIOt ;Ot+r ; JPPCJPIOt+r ;Ot+2r
)

¿ 0:75 · JPPCJPIOt0 ;Ot0+32
if (r=1) report a transition:

Type= cut; Location = r;
Duration =1

Break;
else if (JPPCJPIOt ;Ot+r ¿
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JPPCJPIOt+r ;Ot+2r
)

then r= r=2
else t= t + r; r= r=2

}
if (r¿ 2){ =∗ it is not a cut. ∗=

Derive JPPCJPIOt ;Ot+i from image Ot and
Ot+i ; i∈ [1; r];

Calculate the best :t straight line, and
the mean square error (MSE)

if MSE¿4 then no transition found
t0 = t0 + 32
Continue.

Do {
r= r + 1
Derive JPPCJPIOt ;Ot+r from pairs of
images Ot and Ot+r ;

} while (distance of JPPCJPIOt ;Ot+r from
line 1¡4)

Initialize i=0
Do {

i= i − 1
Derive JPPCJPIOt ;Ot−i

from image Ot

and Ot−i ;;
} while (distance of JPPCJPIOt ;Ot−i

from
line l¡ 4)

Generate JPPVs from the ST-JPI
Do cross uniform transition
Calculate Similarity
If Similarity ¡5 then Report a transition:

Type= cross Transition;
Location = t − i;
Duration = r + i

t= t + r + 1
Continue
Do dither uniform transition and
calculate Similarity

if Similarity ¡5 then Report a transition:
Type=Dither transition;
Location = t − i;
Duration = r + i

t= t + r + 1
}

}
}
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