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ABSTRACT

We propose a novel method for video error concealment,
which is essentially a combination of non-local grouping
of image patches and low-rank tensor approximation. The
proposed method, though does not require the knowledge of
Motion Vectors (MVs) as in traditional video concealment
techniques such as Boundary Matching Algorithm (BMA)
and its derivations, gives striking results in restoration of
sequences with high error rate without the key frames. The
method can also be customized to work on single images, for
example in image inpainting tasks.

Index Terms— Error concealment, inpainting, tensor,
low-rank approximation, BMA

1. INTRODUCTION

Data recovery is part of any modern image/video communi-
cation system. Visual data encoders working in block-based
fashion, hence any lost in data transmission or damage in stor-
age media results in corruptions of blocks or group-of-blocks,
which need to be restored. Numerous techniques had been
proposed for data restoration. Different methods require dif-
ferent involvement of the source coder, the sender/receiver,
the network or combinations of those entities [1]. Similar
to recent works in video concealment [2, 3, 4], in this paper
we focus on developing a source coder-independent receiver-
based technique, which means we only use information avail-
able at the receiver to recover lost data. This can also be seen
as post-processing technique that can be used to recover left-
over errors which schemes failed to deal with.

Video coders often use block motion compensation tech-
nique to eliminate redundancy in video sequences. The actual
information sent to the decoder are Motion Vectors (MVs)
and corrensponding block residues. Therefore it is natural to
exploit MVs for concealment. At an erroneous block (that
loses its MV), the Boundary Matching Algorithm (BMA) [2]
try to recover the MV by selecting a best candidate from the
set of neighbouring MVs and the zero MV, in terms of mini-
mum total variation of pixels values at the block’s boundary.
Variations of BMA [4, 3] either focus on finding a better MV

or developing more sophisticated boundary matching criteria.
Such methods have the advantage of fairly low complexity,
but on the other hand restrict themselves to one MV and only
one reference frame in the search for best recovering data.

We propose an error concealment method that does not
rely on recovering MV, therefore are also liberated from one
reference frame limitation as well as the Macro-Block (MB)
grid decided by the encoder. We are free to redefine the block
size, the grid and its displacement in each corrupted frame.
The number of reference frames is also a free parameter. In-
fact, more reference frames give better recovery results and
this number can be increased as much as the computational
capacity allows. In a nutshell, the proposed method groups
image patches in the corrupted frame with similar patches
searched from the entire reference frames to form 3-mode
tensors with missing data. This approach is inspired by the
success of denoising methods such as non-local mean or 3-D
transform-domain collaborative filtering [5, 6]. Those tensors
are then approximated using an algorithm derived from ten-
sor n-rank (Tucker) decomposition [7] to exploit the low-rank
nature in the 3rd dimension.

There is also an initial work on visual data restoration
from tensor completion view point [8]. In that paper, the
authors follow a different path by relying on tensor canoni-
cal rank, rather than the n-rank. The paper shows some im-
pressive preliminary results on image/video restoration, but it
implicitly assumes that data must have global low rank struc-
ture. In general, one can not make such assumption about
natural images and video sequence. In our work, we explic-
itly show how to form tensors with certain low-rank structure
from patches of visual data, and exploit that structure in our
proposed tensor approximation algorithm customized for this
type of tensors.

The paper is organized as follows: the next section ex-
plains the key elements of our proposal; section 3 shows
pseudo code of the algorithm; section 4 presents some exper-
imental results in video concealment and image inpainting;
section 5 concludes and discusses some ideas for future work.



2. TENSOR CONSTRUCTION AND CONCEALMENT

Before going into details, let us adopt some important nota-
tions in tensor algebra from [7].

An Nth-order (or N-mode) tensor X (in calligraphic let-
ter) is an N-dimensional array X ∈ RI1×I2×...×IN . Unfolded
matrix of X along the nth mode is denoted X(n). A tensor
can be decomposed to a sum of rank-1 tensors (canonical de-
composition) or a product of a core tensor with matrices cor-
responding to its modes (Tucker decomposition). In the later
form, a tensor is represented as

X = G ×1 A
(1) ×2 A

(2)...×N A(N) (1)

where G ∈ RR1×R2×...RN is the core tensor, and A(n) ∈
RIn×Rn is a matrix whose columns are eigen vectors in
mode-n. The mode-n product (operator ×n), between a ten-
sor X and a matrix U ∈ RRn×In is defined elementwise as
(X ×n U)i1...in−1jin+1...iN

=
∑In

in=1 xi1...in...iNujin

2.1. Block Matching for Tensor Construction

We slice each corrupted frame using a new MB grid, which is
shifted half a block size in each spatial dimension. Each miss-
ing MB is hence divided into 4 quarters (subblocks), and all
missing subblocks are put in queue. The order in which sub-
blocks are concealed is important. A smart queueing mech-
anism is implemented where missing subblocks with more
clean neighbors and closer to the missing boundary are pri-
oritized. As a result, subblocks in missing area are processed
from its boundary towards the center.

Once a missing subblock is selected, an image patch (MB
P 0) of size N ×N is formed that contains the missing quar-
ter and its clean/concealed neighbors (Figure 1). This MB is
used to search for similar MBs (P i) in the entire stock of R
reference frames. Figure 2 illustrates the grouping process.
Various criteria of MB similarity had been consider in [5, 6].
We chose Block Matching criteria because of its low compu-
tational complexity.

Si =
∥∥P 0

Ω − P i
Ω

∥∥
1

(2)

where Ω are the indices of clean/recovered pixels in P 0 (we
will use Ω later for indices of missing pixels).

P 0 and several MBs with best matching scores Si are
grouped into a 3-mode tensor X ∈ RN×N×K where P 0

is on top. Those P i should be scaled to have the same l2-
norm as P 0 (at indices Ω). A good practical choise of K is
K = R + 1 (if we assume one good match is found in each
reference frame).

2.2. Tensor n-rank Approximation

Ideally, X is formed by K identical patches, therefore

X = X l + E = P ×3 1 + E (3)
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Fig. 1. New MB grid in corrupted frame and P 0 selection
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Fig. 2. Tensor build by grouping similiar MBs

where X l has mode-3 rank equals 1 (and hence can be
represented as an outer product between an image patch and
a constant vector 1), and E is an error tensor (which is in gen-
eral sparse). If X l is factorized using Tucker decomposition

X l = G ×1 A
(1) ×2 A

(2) ×3 A
(3) (4)

then we can equate (3) and (4) to have

P = G ×1 A
(1) ×2 A

(2) and A(3) = 1 (5)

In practice, patches in X (being grouped from different
frames) are slightly different, or the actual number of identical
patches may be less thanK. Therefore, X l may have mode-3
rank larger than 1, but it’s still a low-rank structure.

These observations suggest us to use n-rank decompo-
sition technique to approximate X l. We base on the well-
known High-Order SVD (HOSVD) [9] while enforcing the
most important eigen vector in mode-3 to the constant vector
1 (normalized to unit l2-norm) in each HOSVD’s iteration.

3. THE ALGORITHM

After the tensor X is formed, the missing area
(
P 0
)

Ω
is

firstly filled with the mean area from similar patches. This



Algorithm 1 Concealment of an image patch w/ missing data
1. Form X from P 0,...,K−1 using Block Matching criteria
2. (X (:, :, 1))Ω =

(
1

K−1

∑K−1
i=1 P i

)
Ω

3. Choose mode ranks {R1, R2, R3}, tolerance σ;
Initialize A(1),A(2),A(3)

4. A(3) (:, 1) = [1, ..., 1]
T
/K

5. for n = 1,2,3
Y = X ×1 ...×n−1 A

(n−1)T ×n+1 A
(n+1)T ...

Yn ← unfold Y in mode n
A(n) ← first Rn principal component of Yn

end
6. G = X ×1 A

(1)T ×2 A
(2)T ×3 A

(3)T

7. X l = G ×1 A
(1) ×2 A

(2) ×3 A
(3)

8. If ‖X l −X‖F ≤ σ STOP, otherwise return to Step 4.
9. Recover missing area in P 0:

(
P 0
)

Ω
= (X l(:, :, 1))Ω

is in fact a good starting estimate of the original data and help
reduce the energy of the noise E significantly as compared to
approximating X directly with a zero (missing) subblock in
its P 0 patch.

The algorithm then finds a best rank-(R1, R2, R3) approx-
imation X l of X in a process call Alternating Least Square
(ALS) [7, 9]. In short, this is an iterative process that tries
to solve for one subset of free parameters (A(i) i=1,2,3 or G)
at a time while the others being fixed. At each iteration, the
first column of A(3) is enforced to the constant norm-1 vector
to guide the optimization to converge to the desired low-rank
estimate. Since we only assume mode-3 rank of X l is low,
R3 is chosen small (3 in practice), while (R1, R2) can be as
large as N . Algorithm 1 elaborates all the steps.

4. EXPERIMENTS

We show 2 experiments on video error concealment. In the
first one, the Bus CIF sequence is corrupted by random block-
missing at 15% error rate. The second one deals with missing
slices in a single frame of Foreman CIF sequence, with error
rate 50%. Both are compared with standard BMA method.
An experiment on object removal is setup to show our ap-
proach is also applicable to image inpainting, not only to
video concealment.

4.1. Corrupted sequence without key frames

Experiment is performed on the first 100 frames of Bus CIF
sequence. All frames are quantized in the DCT domain with
step size equals 8, therefore uncorrupted frames at the decoder
would have the average PSNR of 42dB. Both BMA and our
method are implemented in Matlab. At each frame, MVs re-
fer to previous frame and BMA is allowed to use previously
recovered frame as reference. Our method use 5 nearest previ-
ously recovered frames and 5 corrupted future frames in ten-

sor building step. MB size (and missing block size) is 8 × 8.
Overall, our method show a 2.47 dB PSNR improvement over
BMA on average. The PSNR curve is shown in Fig. 3(e),
while Fig. 3(a,b,c,d) shows the visual results at frame #21.
The red ovals indicate areas where BMA’s failures are obvi-
ously visible.

(a) Original frame (b) Corrupted frame

(c) BMA
PSNR = 29.19 dB

(d) Tensor approx.
PSNR = 33.05 dB
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Fig. 3. Recovery of Bus CIF sequence, with 15% random
block missing in every frame, no key frame exists

4.2. High error rate in an individual frame

This experiment attack the slice-missing situation. A frame is
divided into slices (each slice contains 18 MBs). 50% number
of slices are missing at random. BMA is using previously
reconstructed frame as reference, while tensor approximation
method uses 2 reconstructed frames before and 2 corrupted
frames after for tensor building. Blocksize is 16 × 16. The
restoration visual quality and PSNRs are shown in Fig. 4.



(a) Original frame (b) Corrupted frame

(c) BMA
PSNR = 24.68 dB

(d) Tensor approx.
PSNR = 33.24 dB

Fig. 4. Recovery of frame #37 in Foreman CIF sequence,with
50% random slice missing

4.3. Image inpainting

(a) Objects selection (b) Healing Brush tool (c) Tensor approx.

Fig. 5. Object removal experiment.

In this inpainting experiment, the objects (in red contours
in Fig. 5(a)) are selected in Adobe’s Photoshop. These selec-
tions are feeded as ‘missing’ maps to our algorithm. The im-
age itself is used as the only reference frame for tensor build-
ing. The image is sliced using a 8× 8 grid.

The result is compared with ouput from Healing Brush
Tool in Photoshop CS4 (which is supposed to use fairly mod-
ern technology).There is no ground-truth for objective PSNR
calculation, but our result is visually very competitive.

5. FUTURE WORK

In this paper, we propose a new successful method for error
concealment/inpainting using tensor approximation. There
are several perspectives that we plan to explore in near future
work to extend our results.

Firstly, the issues of how to select the best block size (ac-
cording to frame resolution) or how to build the best wrapping
MB around missing area should be investigated. More robust

tensor approximation technique will be developed to exploit
the sparse nature of the error.

To contrast our technique with BMA and its derivations,
in our experiment we ignore MVs and any smooth boundary
constraints. Adopting those methods as an initializing stage
will obviously improve our performance.

We will also perform experiments on a broader range of
data and compare with other state-of-the-art techniques to
have a better evaluation of our technique.
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