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ABSTRACT

Representation of semantic context and local details is the es-
sential issue for building modern semantic segmentation mod-
els. However, the interrelationship between semantic context
and local details is not well explored in previous works. In
this paper, we propose a Dynamic Dual Sampling Module
(DDSM) to conduct dynamic affinity modeling and propagate
semantic context to local details, which yields a more dis-
criminative representation. Specifically, a dynamic sampling
strategy is used to sparsely sample representative pixels and
channels in the higher layer, forming adaptive compact sup-
port for each pixel and channel in the lower layer. The sam-
pled features with high semantics are aggregated according to
the affinities and then propagated to detailed lower-layer fea-
tures, leading to a fine-grained segmentation result with well-
preserved boundaries. Experiment results on both Cityscapes
and Camvid datasets validate the effectiveness and efficiency
of the proposed approach. Code and models will be available
atx3https://github.com/Fantasticarl/DDSM.

Index Terms— Dynamic Sampling, Affinity Modeling

1. INTRODUCTION

Semantic segmentation, which entails assigning a label to
each pixel of an image, is useful in a growing number of
applications, including augmented reality, surveillance, and
autonomous driving. With the development of deep FCN net-
works [[1} 2,3}, the related works mainly focus on two aspects:
global context modeling [2} 4] and local details modeling [3].
The former models the long-range dependencies among pix-
els on the higher level of the network by overcoming the
limited receptive field of the convolution network. The latter
imports extra components such as lower-level features [6] or
includes edge supervision [[7]] for finer and detailed results.
The feature pyramids encode different scaled features where
the higher layers contain coarse semantics while the lower
layers represent fine details [8][9]. However, the interrelation-
ship between semantic context and local details is not well
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Fig. 1. Visualizations of the prediction and error map. Our
model outputs finer boundaries and small objects. (a) Input,
(b) Ground truth, (c) Output of UPerNet [11]], (d) Output of
ours, (¢) Error map of UPerNet [11]], (f) Error map of Ours.

explored. In this paper, we focus on exploring the interre-
lationship between two different layers. Since the semantic
gaps [10], our solution enhances lower-layer features based
on its affinity with the higher layer instead of directly adding
features in FPN [8]], successfully propagating the semantic
context to local details via dynamic sampling of representa-
tive pixels and channels in higher layers.

It is noted that the existing affinity modeling methods, in-
cluding self-attention based [12]] or graph-based models,
require expensive pixel-wised computation across the whole
image. For instance, FPT [14] uses a transformer to model
the adjacent features’ affinity, leading to immense resource
cost. There is a rather high redundancy since the natural im-
age meets the piece-wise smoothness constraint that the pixels
within the same segment share certain visual characteristics.
Accordingly, inspired by dynamic graph modeling [13]
and deformable convolutions [18]], we propose a dynamic
affinity modeling method to avoid redundancy and achieve ef-
ficient feature propagation. Rather than using full pixels, we
sample representative pixels to form adaptive compact sup-
port. Furthermore, we propose a dynamic sampler based on
DCNv2 [18] instead of sampling fixed neighborhood pixels
to fit the orientation distribution of image structures. More-
over, the channel encodes corresponding class-specific infor-
mation, and several works [3]] have shown the advantages of
considering spatial and channel simultaneously to enhance
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Fig. 2. Dynamic sampler based on DCN-v2 [18]]. It samples
representative positions with learned offsets and modulations.

class-aware information in feature representation. Hence, we
also apply the dynamic sampler in feature channels and con-
duct channel-wise dynamic affinity modeling. After obtain-
ing the sampled pixels/channels, we calculate both spatial and
channel-wise affinities for each pixel/channel in the lower-
layer. Finally, relevant semantics is aggregated according to
the affinities and propagated to detailed lower-layer features.

In summary, we propose a Dynamic Dual Sampling Mod-
ule(DDSM), which contains spatial-wise and channel-wise
dynamic affinity modeling. The representation of the pixels
/channels in the lower layer is enhanced by some dynami-
cally sampled pixels/channels from the higher layer. We val-
idate DDSM’s effectiveness on two typical networks, UPer-
Net [[11]] and Deeplabv3+ [6]]. Notably, our method could pro-
vide fine-grained segmentation results with well-preserved
boundaries. Fig. [T] shows the error map refined by DDSM
based on UPerNet [11]]. After inserting DDSM into UPer-
Net [11]], it achieves competitive results on Cityscapes [19]
and Camvid [20]. In particular, DDSM outperforms DAnet [3]
with only 30% computation during the inference.

2. METHOD

In this section, we first describe our dynamic sampler, which
is inspired by DCNv2 [[18]. Then, we give a detailed introduc-
tion of our proposed Dynamic dual sampling module, which
dynamically samples pixels and channels simultaneously. Fi-
nally, we deploy our proposed module into two frameworks.

2.1. Dynamic Sampler

Given the input features x with dimension C' x H x W,
the sampler dynamically samples N = k X k pixels from
x for each position p, as Fig. 2| shows. Specifically, a regu-
lar grid Rexr = {pn|n = 1,2,..., N} is defined to get an
initial sampling area of p. Then, we use a 1 x 1 convolu-
tion layer instead of 3 x 3 in DCN [17] to learn an offset
for each position in the grid Rixx, and then an offset map
with dimension of 2IN x H x W is obtained, in which N 2D
offsets Ap, = (¢z,qy),n = 1,2,--- , N are learned. With
the offset map, we use bilinear interpolation to compute the

sampled features x(p + p,, + Ap,,) of each sampled position
P+ pn + Ap,,. To learn the offset map more flexibly and fur-
ther boost the performance, a learnable scalar Am,, is added
following the work of DCNv2 [18]. Given the dynamic sam-
pler F, the sampled features can be formulated as Eq[I}

F(x(p)) = {x(p + pn + Apn)Amy,|n =1,2,..,N}. (1)

The output (C'x H x W x N) gives the features at [N positions
sampled from x for each position p in the H x W feature map.

2.2. Dynamic Dual Sampling Module(DDSM)

The Dynamic Dual Sampling Module consists of two parts,
namely spatial-wise dynamic affinity modeling and channel-
wise dynamic affinity modeling. The final output is the sum-
mation of the output features from both parts.
Spatial-wise Dynamic Affinity Modeling: This part dynam-
ically assigns features of N pixels sampled from the higher
layer for each pixel in the lower layer. As shown in Fig.[3|a),
for the low-level features x; and the high-level features x,
we first upsample xj, to H x W, same as x;. Note that position
information is crucial in feature fusion. A common method
of introducing position information is to summarize features
and positional encodings as input [21]. We add learnable po-
sitional embeddings [21]] e,;, e,y to the features x;, Xp to
disambiguate different spatial positions. Then we concatenate
both x;, and x; into features X o, = (x; + ep)||(Xn + €pn)-
Then, we use three 1 x 1 convolution layers to do dimension
reduction on Xcq¢, X; + €y, and X, + ey, forming a new
cat — W¢Xcat’ X?L =
W, (Xp, + €py). Similar to the definition in the work [22], x?,
xfat and x correspond to Query, Key, and Value function.
The work [22]] uses the entire feature map to calculate the
affinity map. Nevertheless, we use the dynamic sampler F
to sample IV pixels in the Key for each position in the Query
to obtain the affinity map. We sample IV pixels from xfat to
form sampled features for each position p in xf. Matrix mul-
tiplication X X x X“*N s performed between the features
of each position in x? and the transposed sampled features
to form the affinity map with softmax normalization. Then,
matrix multiplication X ¥V x X N> ig performed between
the affinity map and sampled features from xj. The above
two processes are executed [N times to obtain the aggrega-
tion result of N sampled features, which will be assigned to
the low-level features through a summation operation. The
spatial-wise dynamic affinity modeling is formulated as Eq[2]

xsout(0) = 3 S| (D)F(xC(m) TR (), ()

where Xg,,:(p) is the augmented feature, p is a position in x;
and § is Softmax. Fig.[3(a) gives the detailed pipline.

Channel-wise Dynamic Affinity Modeling: The channel-
wise dynamic affinity modeling is built to explore interde-
pendencies along channels since the channel encodes class-
specific information. Different from previous works [3} 23],

feature set as x! = Wy(x; + ep), x?
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(b) Channel-wise dynamic affinity modeling

Fig. 3. Dynamic Dual Sampling Module(DDSM). DDSM contains two parts, spatial-wise dynamic affinity modeling and
channel-wise dynamic affinity modeling. The two parts accept the same inputs of two different features. Note that x; and x,
need to be reduced to the same dimension with 1 x 1 Conv in advance. The final output of the module will be x; +Xg,ut +XCout-

our module dynamically samples the channels of high-level
features and aggregates them according to affinity to enhance
low-level features. The input x; and x; are both average
pooled to a X a to reduce the spatial resolution. x; and x, is
concatenated and then reshaped to ¢ x a? to perform channel-
wise dynamic sampling. As Fig.[3(b) shows, in order to reuse
the dynamic sampler F, we reshape the features with ¢ x a?
dimension into a? x /c x \/c (we set channel c as a square
number 64 in this work), and then reshape back to ¢ x a? x N,
for affinity calculation after the sampling of N, channels. For
each channel in the pooled low-level feature, the affinity map
is calculated with the corresponding sampled N, channels.
Finally, the high-level features are also dynamically sampled
in the channel dimension and propagated to the correspond-
ing channel of the low-level features according to the affinity
map. Note that we downsample xy, to 16 X 16 to reduce com-
putation here. The whole process can be formulated as Eq. 3}

xcou(e) = S Sx (AP, () TR (), ()

n=1

where c is the channel in low-level features, x{* = W,x7,

xD, = Wp(xP||xP), x] = W,x¢, x and x? are the pooled
low-level and high-level features, x‘}il is the downsampled
high-level features, § means Softmax, W,,Wg,W,, are imple-
mented with 1 x 1 convolution layers.
Plugin into Two Architectures: Our proposed DDSM is
end-to-end trainable, and it can dynamically propagate rich
semantic information between adjacent features. We use
DDSM in UPerNet [11]], which contains FPN[24] with Pyra-
mid Pooling Module(PPM)[2], and Deeplabv3+[6]. In UPer-
Net [11]], we replace the upsample module with the proposed
DDSM. Let {xs|s = 2,3,4,5} be the output of each stage s
in encoder, e.g. ResNet [25]. The enhanced higher-level fea-
tures X4 and the corresponding x,_1 are passed into DDSM
to form their enhanced bottom level features xX,_;. For

Deeplabv3+ [6], we insert one DDSM module which dynam-
ically assigns the output of ASPP aspp(xs) to the low-level
X5 to form X5 for final segmentation.

3. EXPERIMENT

In order to verify the effectiveness of our proposed DDSM,
we conduct thorough experiments on Cityscapes[19] and
CamVid[20]. The mean Intersection over Union (mloU)
is adopted as the evaluation metric in all experiments, and
F-Score[26] is used to measure the boundary performance.
Implementation details: Our method is implemented using
the Pytorch framework. For all our experiments, an SGD is
used as the optimizer, momentum and weight decay are set to
0.9 and 5e-4, respectively. The learning rate is set as 0.01 and
is decayed by multiplying (1 — mai‘i‘;:];ch)o'g. For data aug-
mentation in training, we employ a random horizontal flip, a
random resize with scale range [0.75,2], and then a random
crop of 1024 x 1024 for Cityscapes (720 x 720 for Camvid).
Ablation study: To verify the effectiveness of each compo-
nent of our method, we conduct multiple sets of experiments
on Cityscapes, including whether to use DCN [17], spatial-
wise and channel-wise dynamic affinity modeling or not. We
insert two DDSMs into the second and third stages of UPer-
Net [L1]. The number of sampled spatial positions and chan-
nels are both set to 9. As shown in Table [ based on UPer-
Net [[L1]], both spatial and channel-wise dynamic modules will
bring more benefits than DCN [17]]. A mix of both modules
improves the performance by 1.26%. Simultaneously, to ver-
ify the applicability of DDSM in different frameworks, we in-
sert one DDSM in Deeplabv3+ [6]]. Table Mright) also shows
the performance improvement of DDSM on Deeplabv3+.
Analysis of Boundary F-Score and Visualizations: To
show the advantages of our model at the boundaries, we
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Fig. 4. Visualization of DDSM. (a) Input, (b) centers of red crosses indicate 25 spatial positions dynamically sampled for the
center of the blue cross, (c¢) the coarse high-level features x; with rich semantics, (d) detailed low-level features x;, (e) output
of our spatial-wise module xg,,+, With semantics dynamically assigned to detailed features, (f) summation of spatial-wise and
channel-wise output, which emphasizes the boundaries. Best view it in color and zoom in.

Table 1. Ablation Study on Cityscapes val set. S: Spatial-
wise dynamic affinity modeling, C: Channel-wise dynamic
affinity modeling. All networks use ResNet50 as backbone.

Table 3. Comparison on Cityscapes fest set. Only the meth-
ods that merely use the fine dataset are listed. GFlops is mea-
sured by 1024 x 1024 inputs.

And A(%) means the absolute numerical improvement. Model Reference ~ Backbone ~ mloU(%) #Params #GFLOPs
Ablation on UPerNet [11] Ablation on Deeplabv3+ [6] DFN [28] CVPR2018  ResNet-101 79.3 90.7M 1121.0
Method mloU(%) A(%) Method mloU(%) M%) PSANet ECCV2018  ResNet-101 80.1 85.6M  1182.6
DenseASPP [30] CVPR2018 DenseNet-161 80.6 35.7M 632.9
UPerNet (111 78.39 - Deeplabv3+ 77.76 - ANNet ICCV2019  ResNet-101 813  63.0M  1089.8
UPerNet+DCN [I7] ~ 78.51  0.12  Deeplabv3++DCN [I7] ~ 78.09 033 CPNet CVPR2020  ResNet.101 813 i >
UPerNet+S 79.25 0.86  Deeplabv3++S 78.34 0.58
CCNet [27) ICCV2019  ResNet-101 81.4 665M 11539
UPerNet+C 78.99 0.60  Deeplabv3++C 78.22 0.46
UPerNet+S5+C 79.65 126 Deeplabv3++S+C 7857 081 RGNet [Ig] ECCV2020 - ResNet-101 815 - -
: : P : : DANet [3] CVPR2019  ResNet-101 81.5 66.6M  1298.8
Ours - ResNet-101 81.7 51.8M 3675

Table 2. Boundary F-Score on UPerNet [11].
Threshhold 3px  5px  9px 12px mean

UPerNet [TI] 664 763 80.1 81.5 76.1
Ours 693 789 823 836 785

adopt the boundary F-Score [26] to measure the segmentation
accuracy at the boundaries. Table [2] shows the boundary F-
Score under different thresholds. Our model is entirely ahead
of the baseline, proving its advantages at the boundaries. We
also visualize the input and output features of DDSM, as
shown in Fig. ] All feature maps are averaged along chan-
nels for display. The visualizations show that DDSM can
dynamically propagate high-level semantic information to
detailed low-level features from spatial and channel domain.
Comparison with previous work: The mloU of our results
on the Cityscapes test set reaches 81.7%, which performs fa-
vorably against state-of-the-art segmentation methods. Mean-
time, our method has shown advantages in terms of computa-
tional consumption, which is only about 30% of DAnet’s [3]],
as Table [3] shows. We sample 25 pixels and 9 channels here
to obtain further performance improvement according to the
ablation study. We insert three DDSMs in UPerNet to
form X4, X3, Xo. Multi-scale testing is conducted following
CCNet [27]]. Table[3]also shows the advantages of our method
over the Non-Local based methods.

Experiments on CamVid: To further verify the effective-
ness of DDSM, we also conduct experiments on the CamVid

Table 4. Comparison on CamVid test set. We do not adopt
multi-scale testing or other tricks.

Method Pre-train Backbone mloU(%)
PSPNet [2] ImageNet ResNet50 69.1
DenseDecoder [33] ImageNet ResNeXt101 70.9
VideoGCRF [34] Cityscapes  ResNet101 75.2
Ours ImageNet  ResNet101 771
Ours Cityscapes  ResNet101 80.6

dataset. Table [ shows our results on CamVid. Our model
without Cityscapes pre-training outperforms the others. After
pre-training, the mloU performance is improved to 80.6%.

4. CONCLUSION

We propose an end-to-end trainable Dynamic Dual Sampling
Module for both spatial-wise dynamic affinity modeling and
channel-wise dynamic affinity modeling between two differ-
ent features. Thus lower layer features are dynamically en-
hanced by the features of representative pixels and channels
from the higher layer simultaneously. Through lots of experi-
ments, our proposed DDSM is verified to be effective on dif-
ferent networks. Our model achieves advanced performance
on the Cityscapes and Camvid datasets while significantly re-
ducing computational consumption.
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