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ABSTRACT

Video and image coding for machines (VCM) is an
emerging field that aims to develop compression methods
resulting in optimal bitstreams when the decoded frames are
analyzed by a neural network. Several approaches already
exist improving classic hybrid codecs for this task. However,
neural compression networks (NCNs) have made an enor-
mous progress in coding images over the last years. Thus, it
is reasonable to consider such NCNs, when the information
sink at the decoder side is a neural network as well. Therefore,
we build-up an evaluation framework analyzing the perfor-
mance of four state-of-the-art NCNs, when a Mask R-CNN
is segmenting objects from the decoded image. The com-
pression performance is measured by the weighted average
precision for the Cityscapes dataset. Based on that analysis,
we find that networks with leaky ReLU as non-linearity and
training with SSIM as distortion criteria results in the highest
coding gains for the VCM task. Furthermore, it is shown that
the GAN-based NCN architecture achieves the best coding
performance and even out-performs the recently standardized
Versatile Video Coding (VVC) for the given scenario.

Index Terms— Neural Compression Networks, Video
Coding for Machines, Machine-to-Machine Communication

1. INTRODUCTION

Throughout the recent decades, image and video compres-
sion has been dominated by classic hybrid coding meth-
ods like Joint Picture Experts Group (JPEG) [1], High Ef-
ficiency Video Coding (HEVC) [2], and Versatile Video
Coding (VVC) [3]. But with the rise of neural networks, mul-
tiple methods were proposed to train neural image compres-
sion networks (NCNs) end-to-end by balancing the contrary
goals of a small bitstream and best possible image qual-
ity [4} 15,16} [7]. Thereby, all those networks already provide a
superior rate-distortion performance than JPEG coding.
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Fig. 1. Investigated framework coding input image x for neu-
ral networks. A denotes the accuracy of Mask R-CNN seg-
menting objects.

Another consequence of the tremendous advances in the
field of neural networks is that more and more applications
in everyday life, which perform tasks from the field of com-
puter vision, are based on neural networks. Such networks
are applied, e.g., for video surveillance, industrial processes,
and autonomous driving. In most real-world applications,
the multimedia data has first to be transmitted or stored from
the capturing device before being analyzed by the neural net-
work. This requires a suitable compression scheme, which
is usually optimized for providing the best possible quality
for the human visual system. But, as shown in [§], this does
not always have to result in a high coding performance, when
the decoded frame is analyzed by a neural network instead.
Optimizing codecs such that the decoded frame can opti-
mally be analyzed by a neural network is attributed to the
field of video coding for machines (VCM), which is targeted
by the MPEG ad-hoc group [9] founded in 2019. Besides,
several other work was proposed designing or optimizing
coding chains with classic hybrid codecs for such machine-
to-machine (M2M) communication [[10} |11} [12} [13]].

Derived from the two before-mentioned developments,
this paper deploys NCNs for the VCM task for the first time,
investigating which architectures and parametrizations of
NCNs are best suited for the VCM task. This provides valu-
able information to reach the ultimate objective of training
such networks end-to-end for M2M communication.

For the investigations, we build up an M2M scenario
as shown in Fig. |1} where the decoded frame & is analyzed
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Fig. 2. 52018 architecture in black; Additional hyperprior
coding structure for bmshj2018 is depicted in red. AE and
AD denote lossless arithmetic en- and decoding, respectively.

by the state-of-the-art instance segmentation network Mask
R-CNN [14]. TIts accuracy A is measured by comparing
the detections P against the ground truth G over the re-
quired bitrate to obtain the coding efficiency of the inves-
tigated NCNs. Thereby, several architectures and methods
of neural compression networks are tested including differ-
ent non-linearities [4]], different distortion metrics during the
training process [5, 6], and a Generative Adversarial Net-
work (GAN) [15]] structure [7]. Besides, their performance is
compared in relation to the commonly used perceptual distor-
tion metrics PSNR, Structural Similarity index (SSIM) [[16],
and Video Multi-method Assessment Fusion (VMAF) [17].
In the final experiment, we compare the investigated neural
compression networks against JPEG and the state-of-the-
art video compression methods HEVC and VVC applied in
all-intra configuration.

2. INVESTIGATED IMAGE COMPRESSION
NETWORKS

2.1. Basic Neural Compression Network — 52018

In hybrid image or video codecs, transform coding is de-
ployed to reduce statistical dependencies by transforming the
residual image into a frequency domain. Subsequently, the
coefficients are quantized and encoded by an entropy encoder
to reduce the bitrate. As transformation, the linear Discrete
Cosine Transform (DCT) is commonly selected and non-
linear methods such as prediction are added to improve the
performance for non-linear signals.

Contrary, for neural compression networks as depicted in
Fig. 2] and proposed in [[18] and [4], the transform is directly
implemented as an analysis neural network y = g, (x, ¢) gen-
erating the latent space y from the input image x with the
learned network weights ¢. Subsequently, the latent space y
is quantized into . By encoding ¢ losslessly and transmitting
it to the decoder side, the decoded output image Z is obtained
by applying an inverse synthesis transformation & = g4(%, 0)
parametrized by 6. The weights ¢ and 6 are jointly trained by
minimizing the loss function
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Thereby, the first summand holds the entropy H of ¢ with the
estimated entropy model py and its parametrization 1. The

v —l g - Q @y @TL%(@,@)

Fig. 3. HiFiC architecture; Arithmetic coding (AC) com-
prises AE and AD for simplicity. The red highlighted area
represents GAN structure at the decoder side.

lower the entropy, the less bits b will be required to transmit
7 to the decoder side. The second summand represents the
distortion between the original image x and its reconstructed
version Z measured by an arbitrary distortion function d. Typ-
ically, Mean Squared Error (MSE) is chosen as d. Similar to
hybrid coding methods, A steers the relaxation between low
bitrate and high quality towards either direction.

Both transform networks, g, and g5, build an hourglass-
shaped auto encoder structure to derive a latent space y with
a lower dimensionality than x in order to achieve a more
compact representation that can efficiently be transmitted to
the decoder. They consist of convolution layers adapting the
spatial resolution with a down- or upscaling stride. Subse-
quently, a Generalized Divisive Normalization (GDN) [19]
non-linearity is applied, which is inspired from visual systems
occurring in nature and increases statistical independence by
normalizing inside a layer. Another non-linearity alternative
is the leaky Rectified Linear Unit (LReLU), which is often
used in classification and detection networks.

2.2. NCN with Additional Hyperprior — bmshj2018 and
mbt2018

One major drawback of the architecture in 52018 is that the
latent space g still holds spatial dependencies. Thus, a hy-
perprior is added to the 2018 architecture in [S] and shown
in Fig. 2] which includes a second auto encoder consisting
of the analysis and synthesis networks h, and hg, respec-
tively. This auto encoder obtains the statistical dependencies
p(g|2) from a second latent space z. Thus, each element §;
can be modeled by a Gaussian distribution with zero mean
and the standard deviation being derived from this additional
latent space 2. With this bmshj2018 model, the coding per-
formance is significantly increased over b2018. Additionally,
the bmshj2018 model is also proposed to be trained with the
multi-scale SSIM metric as distortion function d(z, Z).

The successor of bmshj2018, mbt2018 (6], employs non-
zero-mean Gaussian distributions to code z. Additionally, an
autoregressive context model is added to bmshj2018 to further
improve the entropy coding step.

2.3. GAN-based NCN - HiFiC

The last considered model High Fidelity Compression (HiFiC)
[7] is a GAN-based expansion of bmshj2018. Its basic struc-



ture is depicted in Fig. 3] Similar to bmshj2018, the encoding
network g, generates a quantized latent space g, which is
entropy coded with the help of an additional hyperprior 2
derived from g,. The decoder is designed as a GAN be-
ing conditioned on §. There, the generator network g, is
supposed to fool the discriminator network g4 by creating
output images & derived from g that g4 falsely classifies as
real world data, which results in superior subjective quality
than bmshj2018 or mbt2018. Besides, HiFiC is additionally
trained with a distortion metric measured in a feature space of
a neural network [20]], which was also shown to be beneficial
for VCM coding with VVC and Mask R-CNN in [13] by a
similar metric.

3. ANALYTICAL METHODS

3.1. Dataset

In order to evaluate a framework as shown in Fig. [T} the 500
uncompressed images with a size of 1024 x 2048 pixels from
Cityscapes [21]] validation set are encoded with the different
neural compression networks. These images are captured
from a car’s windshield observing different road scenes. For
each image, a pixel-wise annotation of eight different classes
of road users is provided. With that, the Average Preci-
sion (AP) is calculated as proposed for Cityscapes [22]] over
the whole dataset and for each class in order to measure
the Mask R-CNN accuracy. Ultimately, the AP values are
weighted (wAP) according to the number of instances for
each class as proposed in [8] and [13].

3.2. Employed Implementations

To compress the Cityscapes images at full resolution, we uti-
lize the pre-trained NCN models provided by the original au-
thors in [23] without further re-training. For bmshj2018 and
mbt2018, eight models exist covering different areas of the
rate-distortion relaxation, whereas for b2018 and HiFiC only
four and three models are supplied, respectively.

As state-of-the-art hybrid intra video coding reference, the
HEVC test model (HM 16.20) [24] and VVC test model (VTM
10.0) [3] are selected. Before applying these two codecs, the
Cityscapes images provided as PNGs are first converted into
YUV format with 4:2:0 downscaling and vice-versa before
applying Mask R-CNN. In order to fit to the bitrate ranges
provided with the NCN models, Quantization Parameter (QP)
values of 12 to 42 in steps of 5 are chosen. Lastly, JPEG com-
pression is investigated using the OpenCV library [25] with
quality levels from 10 to 90 in steps of 10.

To detect the road users from the compressed images, the
Detectron2 [26] framework is deployed. It provides a Mask
R-CNN model with a ResNet-50 [27]] backbone that has al-
ready been trained on the Cityscapes training images.

Table 1. BDR in % with respect to the listed quality metric
using b2018 with GDN as anchor for four quality levels.
PSNR VMAF SSIM wAP
b2018-LReLU | 1.9 2.4 2.0 -13.2

Table 2. BDR in % with respect to the listed quality metric
using the corresponding codec trained with MSE as anchor
for eight quality levels.

PSNR VMAF SSIM wAP
322 18.5 352 -63
46.7 36.6 311 -1.0

bmshj2018-SSIM
mbt2018-SSIM

3.3. Quality Metrics

In order to measure the performance of the different codecs
for the human visual system, the quality metrics PSNR,
SSIM, and VMAF are obtained. The wAP of Mask R-CNN
being applied to the compressed images is taken to measure
the performance for the M2M scenario. In order to quan-
tify the resulting rate-distortion curves, the Bjgntegaard delta
rate (BDR) [28]] is calculated, which measures the bitrate
savings for an identical quality. In addition to common BDR
using PSNR, SSIM, and VMAF as quality metric, PSNR is
also substituted with wAP to measure the VCM coding per-
formance as it is recommended by MPEG VCM group [29]].

4. EVALUATION RESULTS
4.1. Choice of Non-Linearity

The first experiment conducts a comparison between a b2018
model build with GDN non-linearities that are optimized for
compressing natural content for the human visual system and
a model build with LReLUs. The BDR values for the differ-
ent quality metrics are provided in Table[I] Choosing LReLU
over GDN as non-linearity requires more bits to achieve the
same PSNR. Contrary, the coding performance when coding
for Mask R-CNN is significantly improved by selecting the
LReLU model, which saves 13.2 % bitrate for the same wAP.
Similar ReLU activations are also used in the ResNet back-
bone of Mask R-CNN, which is one possible explanation,
why the LReLU-based 52018 model outperforms the GDN-
based model for M2M communication.

4.2. Influence of Training Distortion Metric

Another important influence on the performance of neu-
ral compression networks is the selected distortion metric
throughout the training process. Here, the performances of
the two compression networks bmshj2018 and mbt2018 are
compared depending on whether they were trained with MSE
or SSIM. The BDR results are listed in Table [2| Naturally,
training the models on SSIM performs worse when measur-
ing the output quality with PSNR as well as for VMAF, but
immensely increases the coding performance with respect to
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Fig. 4. PSNR over required bits for investigated codecs
and the parametrization resulting in the best performance for
VCM task and for the 500 Cityscapes validation images.

SSIM. Having the goal to achieve a high detection accuracy
measured by wAP, the model should be trained with SSIM
as distortion metric as well, saving up to 6.3 % and 1.0 %
of bitrate, respectively. This can have multiple explanations.
First, the model trained with SSIM focuses, as well as the
evaluation network Mask R-CNN, on the structural infor-
mation [16] of the content. Second, the bmshj2018 authors
stated that their model trained on SSIM focuses on regions of
low contrast by omitting information in high contrast areas.
This accommodates the Mask R-CNN, which is struggling to
segment objects that do not differ much from the background
because they are for example located in the shadow of a build-
ing, which can occur throughout the Cityscapes dataset, and
which gets amplified when adding quantization to the image.

4.3. Comparison of Neural Compression Networks against
State-of-the-Art Compression Methods

In the final analysis, all chosen models from Section [2] with
their best found parametrization are compared against the
classic codecs JPEG, HEVC, and VVC. Figures [ and [3]
provide the rate-PSNR and rate-wAP curves, respectively.
Table [3] lists the BDR of all codecs with the b2018-LReLU
model as anchor. Among the NCNs, mbr2018 with the corre-
sponding training distortion metric performs best for PSNR,
VMAF, and SSIM. However, the classic video codecs HEVC
and VVC still achieve higher BDR savings.

Regarding the investigated VCM use case, HiFiC out-
performs all other codecs, even performing better than the
upcoming video coding standard VVC. The reason for this
seems to be caused in the GAN-based structure of HiFiC and
the neural-network-based distortion metric. During training,
the network is pushed towards producing compressed images
Z resulting in a high activation of the discriminator network
gq. That can be compared to the investigated VCM inference
case providing images Z that result in the best possible detec-
tion and segmentation accuracy of Mask R-CNN.
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Fig. 5. wAP over required bits for investigated codecs and the
parametrization resulting in the best performance for VCM
task and for the 500 Cityscapes validation images. The black
dotted line represents the accuracy when applying Mask R-
CNN to the uncompressed Cityscapes images.

Table 3. BDR in % with respect to the listed quality met-
ric using 2018 with LReLU and trained on MSE as anchor.
Highest bitrate savings for each quality metric is set in bold.

PSNR VMAF SSIM wAP
JPEG 38.0 -6.5 41.6  96.6
HM-16.20 -56.5 -61.3  -49.7 -335
VTM-10.0 -66.8 -71.3  -60.5 432
bmshj2018-MSE -32.0 -445 231 -155
bmshj2018-SSIM | -11.9 -33.5  -535 213
mbt2018-MSE -49.2 -553 41,6 -269
mbt2018-SSIM -28.6 -39.8  -624 -279
HiFiC -27.7 -494 514 -52.8

5. CONCLUSIONS

This paper analyzed several neural compression networks
according to their performance, when Mask R-CNN is ap-
plied to analyze the compressed images. The experiments
first revealed that the »b2018 model with LReLU as activation
function achieved a superior wAP-rate performance than the
GDN-based model. Besides, training models with SSIM was
shown to result in bitrate savings compared to standard train-
ing with MSE as distortion metric, when coding for Mask
R-CNN. Moreover, the GAN-based network HiFiC outper-
formed all other NCNs and the state-of-the-art codecs for the
given scenario. Additional experiments in future might find
whether this is mostly caused by the GAN structure or the
feature-based distortion metric applied in training. Derived
from these promising results, future work will now aim for
superior NCN coding performance for machines. This could
be achieved by improving the training process with enhanced
error metrics representing the behavior of image analysis
networks and end-to-end training with Mask R-CNN.
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