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ABSTRACT

In this paper, a novel graph-based approach for multi-label
image classification called Multi-Label Adaptive Graph Con-
volutional Network (ML-AGCN) is introduced. Graph-based
methods have shown great potential in the field of multi-label
classification. However, these approaches heuristically fix
the graph topology for modeling label dependencies, which
might be not optimal. To handle that, we propose to learn
the topology in an end-to-end manner. Specifically, we incor-
porate an attention-based mechanism for estimating the pair-
wise importance between graph nodes and a similarity-based
mechanism for conserving the feature similarity between dif-
ferent nodes. This offers a more flexible way for adaptively
modeling the graph. Experimental results are reported on two
well-known datasets, namely, MS-COCO and VG-500. Re-
sults show that ML-AGCN outperforms state-of-the-art meth-
ods while reducing the number of model parameters.

1. INTRODUCTION

Multi-label image classification can be defined as the task of
predicting the set of object labels present in a given image.
This topic has been widely studied by the computer vision
community. This is mainly due to its practicality in numerous
application areas including human attributes recognition [1],
scene recognition [2] and multi-object recognition [3]. In
fact, in comparison to single-label methods, multi-label image
classification is more realistic since it assumes that a typical
real-world image can comprise more than one object.

Given the tremendous advances in deep learning, most re-
cent state-of-the-art methods rely on single-stream Convolu-
tional Neural Networks (CNNs) [4, 5]. Despite their great
performance, these approaches usually require a high num-
ber of layers to ensure effectiveness. As a result, the num-
ber of model parameters tends to increase, leading to a cum-
bersome architecture that is difficult to deploy in a memory-
constrained environment.

Alternatively, a second class of methods exploits the prior
knowledge related to the label correlations [6, 7, 8]. Indeed,
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Fig. 1. (a) An example of a fixed label graph with a threshold
τ = 0.1. Red edges indicate the ignored edges; (b) The pro-
posed parameterized graph topology considering all edges.

some objects are more likely to appear together than others.
As shown in [7], integrating such a strategy in a model can be
a way for improving the scalability property. This means that
a lower number of parameters would be needed for achieving
comparable performance with one-stream models.

Among the most popular multi-label image classification
approaches modeling label correlations, one can mention
graph-based methods [6, 7]. They are usually composed of
the association of two subnets, namely, a traditional CNN that
extracts discriminative features from an input image coupled
with a Graph Convolutional Network (GCN) that generates
N inter-dependent label classifiers, with N being the number
of labels. GCN is an extension of CNN to graphs which
has shown great performance in many tasks such as human
pose estimation [9] and action recognition [10, 11]. The in-
put graph is designed based on the label correlations, where
each node corresponds to a label and each edge defines the
co-occurrence probability between two labels. The generated
classifiers are therefore used to predict the presence or not
of the associated labels by considering the image features
produced by the CNN subnet.

Despite their proven performance in terms of both pre-
cision and network size, these graph-based approaches re-
main impacted by three main limitations: (1) the topology
of the graph is heuristically fixed. Specifically, it is com-



puted based on the co-occurrence of labels in the training data
which might be not the most adapted approach for the task of
multi-label image classification; (2) a threshold is empirically
set to ignore edges with low co-occurrence probability (see
Fig. 1(a)). This means that rare co-occurrences are automat-
ically considered to be noisy. Although this might be true in
many cases, assuming that any rare event corresponds to noise
does not always hold; and (3) it has been theoretically and
empirically proved in [12] that the GCN aggregation proce-
dure tends to destroy the node similarity in the original feature
space, potentially leading to a decrease in terms of precision.

Herein, we posit that by integrating adequate mechanisms
in graph-based approaches for addressing the aforementioned
issues, it should be possible to reduce the size of the network,
while achieving competitive performance.

In this paper, we propose an adaptive attention-based
graph for multi-label image classification that we refer to as
Multi Label Adaptive Graph Convolutional Network (ML-
AGCN). As described in Fig. 1(b), the idea consists in
parametrizing two types of graphs in an end-to-end man-
ner without the application of any threshold. On the one
hand, the first one quantifies the connectivity importance of
each node pair by learning an attention score similar to Graph
Attention Network (GAT) [13], allowing more flexibility. On
the other hand, the second graph is learned by considering
the similarity between feature nodes; therefore avoiding an
undesired loss of information through the convolutions. The
proposed approach is tested on two well-known multi-label
image datasets. The results suggest that our method is able
to compete with the state-of-the-art while further reducing
the number of parameters. The remaining of the paper is
organized as follows: Section 2 provides the problem formu-
lation. Section 3 introduces the proposed approach. Section 4
describes the experiments, and finally Section 5 concludes
this work.

2. BACKGROUND: GRAPH-BASED APPROACHES
FOR MULTI-LABEL IMAGE CLASSIFICATION

Given an input image I , the aim of multi-label image classifi-
cation is to estimate a function f that predicts the presence or
not of labels belonging to a set L = {1, ...., N}. This can be
written as follows,

f : Rw×h → [[0, 1]]N

I 7→ y = (yi)i∈L,

with w and h respectively the pixel-wise width and height of
the image. Note that yi = 1 if the label i is present in I ,
otherwise yi = 0. As discussed in Section 1, graph-based
multi-label methods such as ML-GCN [6] and IML-GCN [7]
are composed of two branches. The first one is based on an
out-off-shelf CNN model allowing the extraction of discrim-
inative image representations. In particular, ML-GCN and

IML-GCN incorporate respectively a ResNet-101 [4] and a
TResNet-M [5]. The latter consists in an efficient version
of ResNet-50. The second branch based on a standard GCN
aims at generating N inter-dependant binary classifiers. Let
us denote the input graph by G = {V,E,F}, with V =
[v1, v2, ..., vN ] the set of vertices such that vi corresponds to
the vertex associated to the label, E = [e1, e2, ..., eM ] the
set formed by M edges connecting the vertices and F =
[f1, f2, ..., fN ] the vertex features such that fi ∈ Rd represents
the features of the vertex i. Let A ∈ RN×N be the adjacency
matrix defining the topology of the graph. A is computed by
considering the co-occurrence probability of labels. Further-
more, a threshold τ that is empirically fixed is used to ignore
rare co-occurrences that are considered as noisy. For i, j ∈ L,

Aij =

{
0, if Pij < τ,
1, if Pij ≥ τ

, (1)

where Pij = P (j|i) is the co-occurrence probability that the
label j appears given that i is already present.

Then, assuming that Fl ∈ Rn×dl

encodes the input vertex
features of the lth layer, the GCN computes the node features
of the (l + 1)th layer Fl+1 ∈ Rn×dl+1

as follows,

Fl+1 = h(AFlWl), (2)

with h a non-linear activation function mostly chosen as a
Leaky Rectified Linear Unit (Leaky ReLU), Wl ∈ Rdl×dl+1

the learned weight matrix of layer l. Note that A is normal-
ized before applying Eq. (2). Finally, the vertex features pro-
duced by the last layer form the N inter-dependent classifiers.

In line with the limitations presented in Section 1, it can be
observed that: (1) the adjacency matrix A incorporating the
label correlation information is pre-computed independently
from the training process; (2) a simple thresholding is applied
for ignoring rare co-occurrences; (3) the successive aggrega-
tion of the neighboring nodes might lead to the loss of node
similarity information present in the initial feature space, as
highlighted in GCN [12].

3. MULTI-LABEL ADAPTIVE GRAPH
CONVOLUTIONAL NETWORK

In order to overcome these issues, we propose a new graph-
based multi-label approach that we call ML-AGCN.

3.1. Overview of the proposed approach

As in [6, 7], our network is composed of two main subnets:
one CNN subnet that extracts discriminative features from an
input image and a GCN-based network that allows learning
N interdependent classifiers based on label correlations. As
shown in Fig 2., similar to [7], we use a smaller version of
TResNet [5] called TResNet-M as a CNN subnet. TRes-
Net has been introduced to boost the neural network effi-
ciency by fully exploiting the GPU capabilities. However, the



Fig. 2. Architecture of the proposed ML-AGCN. The CNN subnet extracts the discriminative features from an input image
while the GCN subnet learns an adaptive graph based on the computed attention weights (Bl) and similarity measures between
the vertices (Cl), then generates interdependent classifiers which are directly applied to the learned image representations.

graph-based subnet entitled Adaptive Graph Convolutional
Network differs from traditional GCN employed in previous
methods [7, 6]. Note that, as in [7], we make use of the Asym-
metric Loss (ASL) [14] and employ the same image-based
embeddings as node features. More details about this subnet
are given in Section 3.2.

3.2. GCN-based subnet: Adaptive Graph Convolutional
layer (AGCN)

To overcome the limitations presented in Section 2, we pro-
pose an Adaptive GCN. The idea consists in learning in an
end-to manner the topology of the graph by redefining equa-
tion (2) as follows,

Fl+1 = h((A+B(l) +C(l))FlWl). (3)

This means that the structure of the graph depends on three
different components, namely, the original adjacency matrix
A defined as in [6]1, the lth layer attention-based adjacency
matrix B(l) and the lth layer similarity-based adjacency ma-
trix C(l). Note that B(l) and C(l) vary from a layer to an-
other, while A is fixed. The computation of B(l) and C(l) is
described below.

3.2.1. Attention-based Adjacency Matrix

Instead of discarding rare co-occurrences from the adjacency
matrix, B(l) = (b

(l)
ij )i,j∈L aims at incorporating an attention

mechanism which defines the importance of each edge. For
that purpose, an attention score eij for each pair of vertices
(vi, vj) is first computed as in [13], such that,

1In this case, we do not apply any threshold for ignoring edges with low
probabilities.

eij = LeakyReLU(a(l)
T

(W f
(l)
i ||W f

(l)
j )), (4)

where W ∈ Rd(l+1)×d(l)

is a learnable weight matrix, a(l)
T ∈

R2d(l+1)×1 are the learnable attention coefficients and || refers
to the concatenation operation. Then, a softmax function is
applied to the attention scores as shown below,

α
(l)
ij =

exp(e(l)ij )∑
k∈N (i) exp(e(l)ik )

, (5)

where N (i) defines the neighbourhood of the node i and αij

is the normalized attention score. Finally, in order to preserve
the self-importance of i during the aggregation, the attention-
based adjacency matrix B(l) = (b

(l)
ij )i,j∈L can be computed

by following operation,{
b
(l)
ij = α

(l)
ij +max

k∈L
(α

(l)
ik ) if i = j

b
(l)
ij = α

(l)
ij if i ̸= j

. (6)

3.2.2. Similarity-based Adjacency Matrix

As mentioned in Section 1, since the aggregation procedure
of GCN tends to destroy the node similarity [12], we propose
to use a node-similarity preserving matrix C(l) = (c

(l)
ij )i,j∈L

by computing a cosine similarity c
(l)
ij for each pair of vertices

(vi,vj) such that,

c
(l)
ij =

f
(l)
i .f

(l)
j

∥f (l)i ∥∥f (l)j ∥
, (7)

where ∥.∥ denotes the L2 Euclidean norm.



Table 1. Comparison with state-of-the-art methods on the
MS-COCO dataset.

Method #Parameters mAP CP CR CF1 OP OR OF1
CNN-RNN [18] 66.2 M 61.2 - - - - - -
ResNet101 [4] 44.5M 77.3 80.2 66.7 72.8 83.9 70.8 76.8
Multi-Evidence [17] ∼47M - 80.4 70.2 74.9 85.2 72.5 78.4
ML-GCN (2-layers) [6] 44.9M 83 85.1 72 78 85.8 75.4 80.3
ML-GCN (1-layer)∗† [6] 43.1 80.9 82.9 69.7 75.8 84.8 73.6 78.8
SSGRL [19] 92.2M 83.8 89.9 68.5 76.8 91.3 70.8 79.7
KGGR [15] ∼45M 84.3 85.6 72.7 78.6 87.1 75.6 80.9
C-Tran [8] 120M 85.1 86.3 74.3 79.9 87.7 76.5 81.7
ASL (TResNetM) [14] 29.5M 81.8 82.1 72.6 76.4 83.1 76.1 79.4
ASL (TResNetL) [14] 53.8M 86.6 87.4 76.4 81.4 88.1 79.2 81.8
IML-GCN (2-layers) [7] 31.5M 86.6 78.8 82.6 80.2 79.0 85.1 81.9
IML-GCN (1-layer)∗† [7] 29.5M 81.3 81.3 72.2 76.0 86.7 77.9 82.1
Ours - ML-AGCN (2-layers) 35.9M 86.9 86.2 78.3 81.7 87.2 80.7 83.8
Ours - ML-AGCN (1-layer)∗ 29.9M 86.6 79.6 82.4 80.7 79.8 84.5 82.1
∗Graph-based approaches within 1-layer GCN setting
†Reproduced results

4. EXPERIMENTS

In this section, we report the obtained results on MS-COCO [3]
and VG-500 [15] datasets. MS-COCO is a large-scale multi-
label image dataset that provides 122,118 images with a total
of 80 categories. VG-500 [16] consists of 108,077 images
with 500 objects. Following the conventional evaluation pro-
tocol used for MS-COCO [17], we report the following:
mean Average Precision (mAP), average per-Class Precision
(CP) and Overall Precision (OP), average per-Class Recall
(CR), and Overall Recall (OR), average per-Class F1-score
(CF1) and Overall F1-score (OF). For VG-500, we report the
standard mean Average Prevision (mAP). For both datasets,
We also report the number of model parameters. In order to
support our initial claim stating that it is possible to main-
tain the performance while reducing the number of layers
and parameters, we propose two experimental settings for
ML-GCN, IML-GCN and ML-AGCN. In the first setting, we
keep the same depth of the GCN subnet used in graph-based
approaches, i.e., 2 hidden layers. However, in the second
setting, we reduce it to 1. Note that we do not reproduce the
results for ML-GCN on VG-500 given the unavailability of
label word embeddings.

4.1. Comparison with state-of-the-art

As shown in Table 1, the proposed approach outperforms
state-of-the-art approaches including graph-based methods
(ML-GCN and IML) on MS-COCO. Indeed, we achieve the
best results in terms of precision with 86.9% mAP. The rele-
vance of our approach is also confirmed in Table 2 reporting
the results on VG-500. Achieving the second best results
after C-Tran [8] with an mAP of 37.9% against 38.4%, it can
be noted that our network is almost 4 times smaller. Also,
the proposed ML-AGCN maintains almost the same perfor-
mance when reducing the number of layers to 1 (-0.3% on
MS-COCO and +0.8% on VG-500), in contrast to ML-GCN
(-2.1% on MS-COCO) and IML-GCN (-5.3% on MS-COCO
and -17.3% on VG-500).

Table 2. Comparisons with state-of-the-art methods on the
VG-500 dataset.

Method # Parameters mAP (%)
ResNet-101 [4] 44.5M 30.9
ML-GCN [6] 44.9M 32.6
ASL (TResNetM)† [14] 29.5M 33.6
ASL (TResNetL)† [14] 54.8M 34.7
C-Tran [8]‡ 120M‡ 38.4‡

IML-GCN (2-layers) [7]) 32.1M 34.5
IML-GCN (1-layer)†∗ [7]) 30.6M 17.2†*

Ours - ML-AGCN (2-layers) 37.4M 37.1
Ours - ML-AGCN (1-layer)∗ 32.7M 37.9∗

‡The model is roughly 273% larger than our proposal
∗Graph-based approaches within 1-layer GCN setting
†Reproduced results

Table 3. Ablation study: Impact of each learned graph on the
performance on the MS-COCO and VG-500 dataset.

Input Graph for the GCN (1-layer) MS-COCO (mAP) VG-500 (mAP)
Original graph (A) 81.1 17.2
+ Attention-based graph (A+B) 86.6 (+5.1%) 37.5(+20.3%)
+ Node-preserving graph (A+B+C) 86.7 (+0.1%) 37.9 (+0.4%)

4.2. Ablation study

Table 3 reports the quantitative contribution of the proposed
attention-based and similarity-based graphs computed within
a 1-layer GCN subnet setup. It can be observed that a fixed
topology-based graph, similar to IML-GCN [7] presents a
lower mAP. However, with the inclusion of our proposed
attention-based parameterized graph (B), the performance
improves by 5.1% and 20.3% for MS-COCO and VG-500,
respectively. A slighter increase in the mAP can be seen after
adding the node similarity-preserving graph (C). This con-
firms the usefulness of the two matrices, especially the use of
an attention-mechanism.

5. CONCLUSION

Integrating GCN with existing CNN-based approaches to
exploit the prior knowledge of label correlations has been
shown to be a good practice for tackling the multi-label im-
age classification problem. However, the topology of the
input graph for GCN is heuristically fixed and a threshold
is empirically chosen to ignore edges corresponding to rare
co-occurrences. Furthermore, through the theoretical and em-
pirical analysis [12], it has been shown that the convolution
process of the GCN might destroy the node similarities in the
initial feature space. As such, this paper proposes an Adap-
tive Graph Convolutional Network that adaptively learns two
types of graphs incorporating the connectivity importance
and the node similarity. We show that the proposed approach
achieves state-of-the-art results on MS-COCO. Furthermore,
it is able to generate classifiers with competitive prediction
scores with the use of only one layer, in contrast to previous
graph-based approaches.
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