
MEMORY-EFFICIENT LEARNED IMAGE COMPRESSION WITH PRUNED HYPERPRIOR
MODULE

Ao Luo1, Heming Sun2,3, Jinming Liu1, Jiro Katto1

1Department of Computer Science and Communication Engineering, Waseda University, Tokyo, Japan
2Waseda Research Institute for Science and Engineering, Tokyo, Japan

3JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, Japan

ABSTRACT

Learned Image Compression (LIC) gradually became
more and more famous in these years. The hyperprior-
module-based LIC models have achieved remarkable rate-
distortion performance. However, the memory cost of these
LIC models is too large to actually apply them to various
devices, especially to portable or edge devices. The pa-
rameter scale is directly linked with memory cost. In our
research, we found the hyperprior module is not only highly
over-parameterized, but also its latent representation contains
redundant information. Therefore, we propose a novel prun-
ing method named ERHP in this paper to efficiently reduce
the memory cost of hyperprior module, while improving the
network performance. The experiments show our method is
effective, reducing at least 22.6% parameters in the whole
model while achieving better rate-distortion performance.

Index Terms— Learned Image Compression, Hyperprior
Module, Model Pruning

1. INTRODUCTION

Image compression is one of the important part for various
applications. The conventional compression standards, such
as JPEG [1], JPEG 2000 [2], BPG (Better Portable Graphics)
[3] and VVC (Versatile Video Coding) [4] mainly use linear
transform with hand-designed codes to compress the images.
In recent several years, deep-learning based image compres-
sion (Learned Image Compression, LIC) methods take use of
neural network, which has non-linear activation, to compress
the images. These methods gradually outperform the classic
ones.

One famous LIC method is Hyperprior [5], which uti-
lizes a hyperprior module to capture the spatial redundancy
among neighboring elements. The whole model consists of
two parts: main path ga, gs and hyper path ha, hs, both of
which are pairs of encoder ∗a and decoder ∗s, as shown in
Fig. 2. The main path receives input image, generating its
latent representation y, which is assumed to obey arbitrary
zero-mean Gaussian distribution. Then the hyper encoder
uses y to calculate the side information z, which helps the

hyper decoder to generate scale of y. With scale informa-
tion, y is rescaled to standard normal distribution and trans-
mitted with z together to decoder part. Regarding to scale
generated by z, y is generated from transmitted information
and is given to main decoder to reconstruct the image. With
the help of hyper path, Hyperprior model achieved dramatic
progress, exceeding conventional methods. Regarding to its
good performance, hyperprior module became an important
part in latter methods, such as the methods improving perfor-
mance [6, 7, 8], the ones making LIC models more appliable
[9, 10].

However, one problem for LIC is that the requirements for
memory are much larger than the conventional methods. With
the development of mobile internet, more and more people
tend to display and store images on portable or edge devices,
whose memory is not sufficient for an image compression al-
gorithm, such as mobile phones, advertising screens and so
on. Therefore, it is difficult for LIC methods to widespread in
practice.

The memory cost is directly linked with parameter scale.
There are some former works focusing on lightweight image
compression models with much lower FLOPs and parameter
scale. [11] proposed several lightweight components, which
decreased FLOPs and memory cost. [12] implements group
Lasso loss to prune convolution layers’ channels in decod-
ing part, by which the researchers obtained lightweight mod-
els. However, the rate-distortion performance of these works
dropped distinctly. In the meanwhile, [12] also found that
their pruning method has little impact on hyper path.

In this paper, based on ResRep [13], we propose a prun-
ing method called ERHP (Enhanced Resrep on Hyper Path
in learned image compression) to prune LIC models. We
finetune the pruned network to recover its performance, since
the image compression task requires higher quality than im-
age classification task on which ResRep is proposed. In this
way, our method reduces parameter scale distinctively while
even improving the performance. Our experiments on Hyper-
prior model[5] and Cheng[8] show the efficiency of that our
method.

To summarize, our contributions are listed as below:
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• We confirmed that hyper path is severely over-paramet-
erized, which can be pruned to reduce memory con-
sumption and redundancy.

• We propose a ERHP, which adapts ResRep pruning
method to the LIC task by implementing PixelShuffle
[14] layer and deconv layer, and prunes the LIC models
efficiently.

• The experiments on Hyperprior model[5] and Cheng[8]
show our method achieves much lower parameter scale
and even improves the performance of the pruned
model. In this way, the LIC models are more applica-
ble for edge devices and perform better than the former
models.

The following parts of this paper are arranged as below.
In Sec. 2, we introduce the former methods directly linked
with our work. After that, our proposed ERHP is introduced
in Sec. 3. Then, the experiment results are shown in Sec. 4.
Finally, we summarize our work in Sec. 5.

2. RELATED WORK

There have been plenty of works on lightweight models and
cropping parameters. There are lots of former works taking
use of Lasso loss penalty, such as [15, 16]. The Lasso loss
penalty calculates l1 regularization of weights (‖W‖1 in Eq.
1) and add this penalty term to loss function with a coefficient
β. In training step, the penalty term suppresses weights to
zero, and the other terms in loss function amplify the weights.
With the Lasso loss, part of weights are reduced to zero, while
keeping others valid enough.

Lprune1 = Lquality + β · ‖W‖1 (1)

Johnston et. al [12] applied to LIC the Group Lasso loss
[17], which groups the weights in a convolution kernel (3x3
or 5x5 and so on) together by l2 norm, as defined in Eq. 2,

Lprune2 = Lquality + β ·
∑
‖wi‖2 (2)

where wi is the i-th kernel in the network. This work cropped
a lot of parameters, but the performance of output models
dropped too.

ResRep [13] splits the weights for remembering and
pruning. It add an 1x1 convolution layer behind each of the
convolution layers to be pruned. This 1x1 convolution layer,
called compactor, has the same input and output channel.
The weights of compactor are initialized as identity matrices,
whose output is the same as its input. The Group Lasso loss
is only applied to the compactor, while the normal loss is
applied to all the components. When finishing the pruning,
ResRep combines each pair of original convolution layer and
compactor together. In this way, the network retains good
performance and is pruned efficiently. However, ResRep just

Fig. 1. Comparison between original and half-channel-
pruned hyperprior model.

provided components for normal CNN, which cannot satisfy
LIC models.

3. PROPOSED METHOD

3.1. Preliminary Analysis

In this section, we illustrate our analysis on hyper path, intro-
ducing the differences between main path and hyper path.

The parameter scale determines the upper bound of infor-
mation volume can be obtained by the network. In our ex-
periments, we compared the bit rate and parameter scale be-
tween main path (y) and hyper path (z). In hyperprior model
[5], the parameter ratio of hyper path is approximately 40%,
while the bit-rate ratio of z is only 1.7%. When inferring,
the feature map of z is much smaller than that of y, which
means the information z carries is distinctively lower than
y. This phenomenon reveals the hyper path is heavily over-
parameterized. We confirmed this conclusion in our experi-
ments. As shown in Fig. 1, even cropped half of channels in
hyper path, the models still achieves almost the same perfor-
mance as original models.

On the other hand, [5] mentioned the relationship between
channel numbers and rate-distortion performance. With more
channels in the network, more details are extracted and ob-
tained, finally lead to better performance. However, they set
the same channels for main path and hyper path in their exper-
iments, which ignored the difference between them. It is true
that, with more channels in main path, the network extracts
more details from the original image, which significantly im-
prove the reconstructed image. However, hyper path gener-
ates the scale information to rescale y into an approximate
range, which requires not so much details. In our experi-
ments, more channels in hyper path even cause performance
decline because of information redundancy.

3.2. Problem Formulation

We formulate the LIC task and introduce ResRep to better
illustrate our proposed method.



Fig. 2. Sketch of hyperprior model.

3.2.1. Learned Image Compression with Hyperprior

As mentioned before, the hyperprior model [5] is shown in
Fig. 2. ga, gs, ha, hs are nonlinear neural networks. x is the
input image, y = ga(x) and z = ha(y) are latent representa-
tion and hyper latent, respectively. ŷ = Q(y) and ẑ = Q(z)
are quantized y and z. ẑ is taken as side information for gener-
ating the scale parameter σ̂ for the entropy model of latent ŷ.
x̂ = gs(ŷ) is the reconstructed image. In training step, the
quantization operation is applied by adding uniform noise,
which produces differentiable variables ỹ, z̃, x̃ and σ̃. For
simplicity, we represent x̃|x̂, ỹ|ŷ, z̃|ẑ and σ̃|σ̂ as x̂, ŷ, ẑ and
σ̂. The loss function can be written as the trade-off of rate R
and distortion D:

LLIC = R+ λD =Ex∼px
[
−log2pŷ|ẑ(ŷ|ẑ)− log2pẑ(ẑ)

]
+ λ · Ex∼px [d(x, x̂)]

(3)
where the bit rate of ŷ and ẑ is evaluated by entropy, λ con-
trols the trade-off of rate and distortion, p∗ is probability of ∗,
and d(x, x̂) is the distortion, which is MSE in our work.

3.2.2. ResRep Pruning Method

The weight and bias of the i-th convolution layer can be
shown as W i ∈ RCi+1×Ci×ks×ks and bi ∈ RCi+1 , where
Ci+1 and Ci is the input channel number of layer i and i− 1,
and ks is the kernel size of this layer. The weight of com-
pactor of the i-th convolution layer is Ri ∈ RCi+1×Ci+1×1×1,
which is initialized as an identity matrix. After pruning, the
Ri is cropped as R

′

i ∈ RC
′
i+1×Ci+1×1×1, where C

′

i+1 is
the pruned channel number, satisfying C

′

i+1 ≤ Ci+1. Then
ResRep combines the normal convolution layer and com-
pactor layer, as shown in Eqs. 4 and 5:

O = I ⊗W
′

i +B(b
′

i)

= (I ⊗W i +B(bi))⊗R
′

i

= I ⊗W
′

i ⊗R
′

i +B(bi)⊗R
′

i

(4)

W
′

i = T (T (W i)⊗R
′

i) (5)

b
′

i;j = bi ·R
′

i;j,:,:,:,∀1 ≤ j ≤ C
′

i+1 (6)

where O and I are the output and input of the network, · is
element-wise multiply, ⊗ is the convolution operation, B(∗)
is the duplication for bias, and T (∗) is transposition.

3.3. Enhanced ResRep on Hyper Path in Learned Image
Compression

The ResRep pruning method only implemented compactor
for standard convolution layer and convolution layers with
batch normalization, which cannot satisfy LIC models. In
this paper, we propose an ERHP (Enhanced Resrep on Hyper
Path in learned image compression), which implements com-
pactors for PixelShuffle [14] layer and deconvolution layer for
adaptation to LIC models.

The PixelShuffle component expands feature map by α
times, and arranges neighbour α2 channels into one plain.
For example, the shape of input for PixelShuffle operation is
α2Ci+1×H ×W , where the output should be Ci+1×αH ×
αW . Therefore, every α2 channels in convolution layer of
PixelShuffle generate a small patch, and should be reserved
or removed together. We put the compactor after the shuffling
operation, instead of after the convolution layer directly, as
shown in Eq. 7:

O = PS(I ⊗W ps
i +B(bpsi ))⊗R

′

i (7)

where PS(∗) is the PixelShuffle operation, and the weight of
convolution layer is W ps

i ∈ Rα2Ci+1×Ci×ks×ks.
The combination of convolution layer and compactor is

W ps′

i;k::α2,:,:,: = T (T (W ps
i;k::α2,:,:,:)⊗R

′

i),∀1 ≤ k ≤ α2

(8)

b
′

i;k×α2+j = bi;k::α2 ·R
′

i;j,:,:,:,∀1 ≤ k ≤ α2,

1 ≤ j ≤ C
′

i+1

(9)

where the k :: α2 means that, starting from the k-th element,
select an element every α2. For example, the k-th, k+ α2-th,
k + 2α2-th elements are selected.

The deconvolution layer is utilized in decoder part of hy-
per path. It upsamples the feature map of ẑ from bit stream.
The structure of its weight isW de

i ∈ RCi×Ci+1×ks×ks, where
the input and output channels are transposed, while the bias
keeps the same. Therefore, the combination of its weight and
corresponding compactor is written as

W de′

i = W de
i ⊗R

′

i (10)

where the converting of bias is the same with Eq. 6.
With the newly implemented two components, we apply

ResRep pruning method on hyper path. The whole loss func-



Table 1. Pruning results of ERHP. Quality (λ) is the trade-off of rate and distortion, as shown in Eq. 3. Corresponding PSNRs
are the same because of frozen main path and context model.

Quality(λ) Results of Hyperprior Model[5] Results of Cheng[8]

Origin Performance
PSNR@BPP

ERHP Performance
PSNR@BPP

Parameter Scale
pruned/origin

Origin Performance
PSNR@BPP

ERHP Performance
PSNR@BPP

Parameter Scale
pruned/origin

0.0483 36.706@0.937 36.706@0.936 7.748M/11.582M(33.1%↓) 36.898@0.823 36.898@0.818 21.867M/28.244M(22.6%↓)
0.0250 34.501@0.667 34.501@0.667 3.705M/4.969M(25.4%↓) 35.282@0.603 35.282@0.601 21.576M/28.244M(23.6%↓)
0.0130 32.823@0.478 32.823@0.476 3.651M/4.969M(26.5%↓) 33.521@0.433 33.521@0.429 21.327M/28.244M(24.5%↓)
0.0067 30.962@0.319 30.962@0.319 3.589M/4.969M(27.8%↓) 31.318@0.292 31.318@0.290 9.700M/12.563M(22.8%↓)
0.0035 29.192@0.209 29.192@0.208 3.264M/4.969M(34.3%↓) 29.763@0.199 29.763@0.197 9.663M/12.563M(23.1%↓)
0.0018 27.578@0.131 27.578@0.131 3.318M/4.969M(33.2%↓) 28.233@0.130 28.233@0.127 9.526M/12.563M(24.2%↓)

Table 2. Comparisons of different pruning methods on
Cheng[8].

Quality(λ) PSNR BPP
Origin Manual ERHP

0.0483 36.898 0.823 0.983 0.818
0.0250 35.282 0.603 0.601 0.601
0.0130 33.521 0.433 0.429 0.429
0.0067 31.318 0.292 0.292 0.290
0.0035 29.763 0.199 0.197 0.197
0.0018 28.233 0.130 0.129 0.127

tion for pruning is written as

L =R+ λD + βLlasso
=Ex∼px

[
−log2pŷ|ẑ(ŷ|ẑ)− log2pẑ(ẑ)

]
+ λ · Ex∼px [d(x, x̂)]

+ β ·
L∑
i=1

Ci∑
j=1

‖Ri;j,:,:,:‖2

(11)

where λ is the rate-distortion trade-off, β is the lasso panelty
strength, Ri;j,:,:,: is the j-th channel of the i-th layer to be
pruned, and L means the total number of layers to be pruned.

In the original ResRep, the authors directly use the pruned
model to classify images. However, the image compression
task requires higher latent representation qualities than image
classification task, so we finetune the pruned model to recover
the original performance.

4. EXPERIMENTS

In this section, we show our implement details and experi-
ment results of ERHP-pruned models on Hyperprior model[5]
and Cheng[8], which achieve distinctively lower memory cost
and improve the rate-distortion performance.

4.1. Implement Details

We set the lasso strength β to 1e-9, which is small enough to
keep convolution layers available, while effectively pruning
the model. We set the preliminary pruning target to 0.7, which

means the initial aim is to prune 70% parameters in hyper path
and is appropriate for most of the models. After pruning, we
use [18] to finetune our model, with learning rate of 1e-4.

4.2. Experiments of Pruned Models

We trained our models on OpenImage [19] and tested them on
Kodak [20]. The PSNR (10log10 2552

mse ) and bit-per-pixel (bpp)
are taken as our evaluating metrics.

We treat models as two parts: hyper path to prune; main
path and context model (Hyperprior model[5] does not have
context model) to freeze. To be concrete, when pruning, we
initialize the model with pretrained models from [18], then
train the hyper path only, while main path and context model
frozen. We apply compactors to the whole hyper path except
the last layer in hyper decoder, since the final output chan-
nel cannot be changed according to the fixed dimension of
y. Table 1 shows the general results of ERHP on Hyperprior
model and Cheng model. The results prove the efficiency of
our ERHP, achieving at least 22.6% parameter reduction in
the whole model.

We did ablations on ERHP and manually pruned models
at the same parameter scale with ERHP results but uniform
channel number for each layer in hyper path, as shown in Ta-
ble 2. Because the main path and context model are frozen,
the PSNR of same-quality models are the same in our exper-
iments. Our method not only solves the over-parameterize
problem, but also reduces the redundancy in z, improving the
performance of the models slightly. All the results of ERHP
are better than or equal to the corresponding manually pruned
models, which shows the effectiveness of our method.

5. CONCLUSIONS

In this paper, we propose a novel ERHP (Enhanced Resrep
on Hyper Path in learned image compression) for reducing
the memory cost of LIC models by pruning channels of hyper
path. We perform compactors for PixelShuffle and deconvo-
lution layer, which are used in LIC models. The experiments
on Hyperprior model and Cheng model show that our method
is effective, pruning a large amount of parameters while im-
proving the rate-distortion performance.
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[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston, “Variational image com-
pression with a scale hyperprior,” in International Con-
ference on Learning Representations, 2018.

[6] David Minnen, Johannes Ballé, and George D Toderici,
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