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ABSTRACT
Staircase-like contours introduced to a video by quantization
in flat areas, commonly known as banding, have been a long-
standing problem in both video processing and quality as-
sessment communities. The fact that even a relatively small
change of the original pixel values can result in a strong im-
pact on perceived quality makes banding especially difficult
to be detected by objective quality metrics. In this paper, we
study how banding annoyance compares to more commonly
studied scaling and compression artifacts with respect to the
overall perceptual quality. We further propose a simple com-
bination of VMAF and the recently developed banding index,
CAMBI, into a banding-aware video quality metric showing
improved correlation with overall perceived quality.

Index Terms— Banding, Video Compression, Objective
Video Quality Metrics, VMAF, CAMBI

1. INTRODUCTION

Recent years have brought significant improvements in cap-
turing, processing, and displaying images and videos. This
goes hand in hand with increased expectations of the ob-
servers regarding picture quality. Objective quality metrics
have played a crucial role in optimization of video processing
pipelines and ensuring high quality of viewing experience.
Despite the relatively high reliability of metrics such as SSIM
[1] or VMAF [2], especially when it comes to detecting stan-
dard compression artifacts (e.g. blocking, blurring, etc.),
there are still a few scenarios where these metrics perform
significantly worse. One such example is banding.

Banding is a common name for staircase-like contours ap-
pearing in low frequency regions of video frames. They can
be caused by multiple factors, one of the most prominent be-
ing the quantization step in a video codec. Even a relatively
small change of the pixel values can produce severe banding
which makes it very hard to be detected by a general pur-
pose objective quality metrics [3]. A number of specialized
banding detectors have been proposed in the literature. They
typically approach the problem as false edge detection using
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local statistics in the frame [4], [5], or as false segment iden-
tification in either block-wise [6], [7] or pixel-wise manner
[8], [9]. More recent banding estimators exploit the advances
in machine learning, either by training a set of human visual
system (HVS) inspired hyperparameters [10] or a deep neural
network [11].

In our previous work, we have developed a Contrast
Aware Multi-scale Banding Index (CAMBI) [3]. CAMBI di-
rectly looks for steps in areas with high probability of banding
occurrence and uses properties of HVS to determine if and
how much they will be visible to human observers.

Even though some subjective tests targeting banding were
conducted, e.g. [8] or [11], they were primarily designed for
training and testing of banding detectors and did not provide
insights into subjective perception of the artifacts themselves.

In this paper, we evaluate the perceptual impact of band-
ing on perceived quality compared to other more typical
and better understood video compression artifacts. This is
achieved by a large-scale subjective study including videos
from [3], for which banding annoyance scores are available,
mixed with videos from the Netflix dataset used for develop-
ment of VMAF 4K model [12].

Furthermore, we show that even a simple linear combi-
nation of VMAF and CAMBI is able to sufficiently fit the
study data. We refer to this combination as VMAFBA – a
banding-aware VMAF. The performance of VMAFBA on sev-
eral datasets reveals that considering banding can lead to im-
provement in correlation with subjective quality scores not
only on our banding-specific database but in case of general
video compression as well.

The paper is organized as follows: Section 2 provides de-
tails on the subjective experiment and quantification of the
impact of banding on the overall perceived quality in the con-
text of video compression. Objective metrics behavior with
respect to the obtained subjective data, as well as the deriva-
tion of the banding-aware combination of metrics are dis-
cussed in Section 3. Section 4 shows the effectiveness of the
proposed combination on multiple video datasets and, finally,
Section 5 concludes the paper and discusses future work.

2. SUBJECTIVE EXPERIMENT

The goal of the study was to compare the annoyance of band-
ing to the common compression artifacts. In other words,
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Fig. 1. Distribution of the original MOS scores for the videos
from VMAF 4K dataset. Each color represents a different
source content.

we want to place the videos affected by banding on a simi-
lar quality scale as the videos used to train VMAF. To achieve
that, we selected 42 videos (6 distorted videos coming from 7
sources) from the VMAF 4K dataset [12]. These were videos
with encoding resolution from 2160p to 216p compressed by
H.264 encoder. We made sure that the selected sequences
span the entire quality scale from ”Bad” to ”Excellent”. The
distribution of the original mean opinion scores (MOS) for
these videos is shown in Fig. 1. It can be seen that all qual-
ity levels are well represented. Note that the scores are on a
standard Absolute Category Rating (ACR) Scale from ITU-T
Rec. P.910 [13].

The second half of the sequences (42 videos, 6 distorted
videos from 7 sources) was chosen from the dataset used for
validation of CAMBI [3]. Here, the encoding resolutions are
2160p, 1440p, or 1080p, the used codec is libaom, and band-
ing is the dominant distortion. All selected videos have 8 bits
per color channel.

2.1. Subjective methodology and observers

We ran the subjective test using the ACR methodology with
a continuous quality scale from 0 to 100, annotated with 5
labels (0 - Bad, 25 - Poor, 50 - Fair, 75 - Good, 100 - Excel-
lent). This modification is allowed in the ITU-T Rec. P.910
[13] and provides more freedom to the observers to express
their opinion and is generally preferred by the subjects over
the discrete scale [14]. Each test session took approximately
25 minutes in total.

A total of 42 observers were recruited from Netflix em-
ployees who do not work directly in video encoding or qual-
ity assessment. All observers evaluated all videos. The study
can be considered ”semi-controlled” because despite being
remote, the subjects were asked to set up the viewing con-
ditions according to specific instructions – dim ambient light,
75% screen brightness, and a normalized viewing distance of
1.5 times the physical screen height.

Before the beginning of the test, we conducted a training
session with 6 videos created from sources excluded from the

(a) VMAF 4K dataset videos (b) Banding dataset videos

Fig. 2. Comparison of the original vs. new MOS for both
parts of the dataset with their respective confidence intervals.
The red dashed line is connecting the lowest and the highest
point of each scale.

main test. 3 of the videos had different level of standard com-
pression artifacts while the other 3 had different severity of
banding to give the participants an idea of what distortions to
expect. Given the volunteering basis of the study, the subject
reliability was expected to be better than in a typical crowd-
sourcing study. This is confirmed by the data in the next sec-
tion.

2.2. Results processing

We used the advanced data analysis technique for tests under
challenging conditions from Annex E of ITU-T Rec. P.910 to
process the results and obtain the MOS. Firstly, we perform
a data reliability check by comparing the obtained results for
the videos from VMAF 4K dataset with their original scores
from the previous experiment. Then we analyze the overall
perceptual quality of videos with banding and compare them
to their original banding annoyance scores.

2.2.1. Reliability check on videos from VMAF 4K dataset

The scatter plot of the original vs. new MOS can be found in
Fig. 2(a). All points are accompanied with their respective
confidence intervals. The scores seem to reasonably follow
the 45◦ line and also reach very high Pearson Linear Corre-
lation Coefficient (PLCC) and Spearman Rank-Order Corre-
lation Coefficient (SROCC) – PLCC = 0.987 and SROCC
= 0.989, respectively. These numbers are similar to the typi-
cal correlation found when discrete and continuous scales are
compared [14].

More importantly, there are no cases where the rank-order
of any two videos is flipped while the scores are statistically
significantly different in both experiments. In other words,
every time a pair of videos has different rank-order, the con-
fidence intervals are overlapping in at least one of the experi-
ments.

The size of the confidence intervals is also comparable
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which suggests that the higher number of observers in the
semi-controlled study (42 vs. 24) was able to compensate
for the limited control over the viewing environment, while
not requiring hundreds of observers and thorough reliability
checks as in a regular crowdsourcing study [15].

We can notice a small scale compression effect in the new
experiment, i.e. the new MOS do not reach as high and as
low values as their original counterparts. This is most likely
connected to the use of continuous instead of the discrete
scale where some degree of saturation at the ends is expected.
Overall, the data seems to be very well aligned and thus can
be considered reliable.

2.2.2. Comparison of banding annoyance and overall quality

The scores for videos from the banding dataset are plotted
against their banding annoyance scores in Fig. 2(b). The first
observation is that most of the points are distributed below
the 45◦ line which can be interpreted as the new MOS being
generally higher than banding annoyance. This is consistent
with our expectations as even the most severe banding in the
dataset does not distort the video as much as the strongest
compression setting present in the set.

Arguably the most interesting observation is a very high
level of linearity between the two scales – PLCC = 0.916 and
SROCC = 0.894, respectively – despite the difference in the
task. This suggests that an objective banding detector able to
reliably predict the annoyance of banding could potentially be
used to aid a generic quality metric to become banding-aware.

A careful reader can also notice a slight increase in the
size of the confidence intervals in spite of the higher number
of observers (42 vs. 23 in the banding dataset). This is likely
caused by lower inter-observer agreement coming from the
higher difficulty of the task – it is generally more difficult to
compare different types of artifacts than to evaluate a single
distortion.

The scores obtained for videos from both parts of the
dataset will be used together in the next section to test the
abilities of objective metrics.

3. OBJECTIVE EVALUATION OF THE DATASET

As discussed in the Introduction, as well as in [3], generic
objective quality metrics struggle with evaluating videos with
banding. Table 1 shows the performance of established image
and video quality metrics – namely PSNR, SSIM [1], MS-
SSIM [16], VMAF [2], and CAMBI [3] – on the dataset de-
scribed in this paper.

The performance is measured using PLCC, SROCC, and
AUC BW [17]. Unlike the standard correlation coefficients,
AUC BW takes into account uncertainty of the subjective
scores and tests metrics’ ability to correctly identify the
higher quality video from any pair with statistically signif-
icantly different scores. AUC BW of 0.5 corresponds to a

(a) VMAF vs. MOS (b) CAMBI vs. MOS

Fig. 3. Scatter plot of objective and subjective scores. The
banding and compression parts of the dataset are depicted in
different colors for illustration purposes.

random guessing (equivalent to a correlation of 0) while the
value of 1 suggests a perfect performance.

Table 1. Performance of objective metrics on the new dataset.
PLCC SROCC AUC BW

PSNR 0.500 0.384 0.733
SSIM 0.677 0.552 0.854
MS-SSIM 0.622 0.404 0.787
VMAF 0.842 0.677 0.912
CAMBI 0.102 0.141 0.511

After an initial look, the results do not significantly de-
viate from our expectations. VMAF outperforms the other
metrics while CAMBI fares poorly as it is only sensitive to
banding artifacts. On the other hand, it is unusual for SROCC
values to be that much lower than PLCC, especially when no
mapping had been applied before calculating the PLCC. This
suggests we should take a closer look at the results.

Fig. 3(a) shows VMAF scores plotted against MOS. For
better illustration, the two types of videos in the dataset are
depicted in different colors. VMAF’s inability to correctly
evaluate quality of the videos with banding is obvious from
the plot. When we look at the results for CAMBI in Fig. 3(b)
the situation looks almost exactly opposite. The two plots
suggest that a banding-aware VMAF (VMAFBA) could po-
tentially be obtained by a simple linear combination of the
two metrics.

In order to maintain VMAFBA equal to 100 when compar-
ing a reference video with no banding to itself, we explored
the combination in the form of

VMAFBA = VMAF− α× CAMBI. (1)

By running an optimization procedure maximizing SROCC
for the above described dataset, we identified α = 0.85 as
a reasonable solution. To avoid negative values, we clip the
scale at 0. The scatter plot for this combination is depicted in
Fig. 4.
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Fig. 4. Scatter plot of VMAFBA vs. MOS. The banding and
compression parts of the dataset are depicted in different col-
ors for illustration purposes.

We can see that the ability to correctly assess the qual-
ity of videos with banding significantly improved which is
also reflected in the performance measures – PLCC = 0.916,
SROCC = 0.937, and AUC BW = 0.993.

One potential shortcoming of the presented dataset, obvi-
ous from the Fig. 3, is the absence of sequences with heavy
banding and compression artifacts together, i.e. low VMAF
and high CAMBI. To get an idea about the robustness of
VMAFBA, we test it on a number of available datasets.

4. GENERAL PERFORMANCE OF THE PROPOSED
COMBINATION

The PLCC and SROCC values for VMAFBA, VMAF, SSIM,
and MS-SSIM on seven datasets (3 private and 4 public) are
presented in Table 2. Note that AUC BW values are not
shown as not all of the datasets provide the confidence in-
tervals with their scores, nevertheless, they follow the same
trends when available.

The main purpose is to determine whether VMAF’s per-
formance does not get negatively impacted by the proposed
modification into a banding-aware metric. When we study
the Table 2, the correlation drops only in two out of seven
tested cases. Moreover, the decreased values still remain sig-
nificantly higher than for SSIM and MS-SSIM. We can also
see a slight improvement on the other five databases.

Overall, there seems to be a performance benefit of com-
bining VMAF and CAMBI even in this simple and easily
interpretable way. Nevertheless, VMAFBA also shares the
shortcomings of VMAF, as evidenced by the performance
on CSIQVQA database [22] where some videos with arti-
facts unrelated to compression are present. The result remains
worse than for other metrics, despite the slight improvement.

Even though the presented results suggest good robust-
ness of VMAFBA, we are planning to further investigate the
specific cases with low VMAF and high CAMBI and the con-
secutive strong interaction between banding and other arti-
facts as part of our future work.

5. CONCLUSION AND FUTURE WORK

In this paper, we investigated the impact of banding on the
overall perceptual quality compared to common scaling and
compression (H.264) artifacts. Using a large-scale subjective
study, we showed the relationship between banding annoy-
ance and overall quality to be fairly linear.

Our collected data confirmed the inaccuracy of objective
metrics when evaluating banding, as well as the inability of
CAMBI to capture other types of artifacts. Furthermore, we
formulated a simple combination of VMAF and CAMBI into
VMAFBA – a banding-aware, generic video quality metric.
We demonstrated that the proposed extension does not signif-
icantly decrease VMAF’s correlation with subjective scores
on datasets with generic compression distortions and can even
lead to slight improvements overall.

To continue this work, we plan to further investigate the
interaction between heavy compression and banding both
perceptually and from the perspective of objective metrics.
We will also investigate potential benefits of incorporating
CAMBI directly into VMAF as one of its elementary fea-
tures.

Implementations for both VMAF and CAMBI are avail-
able at https://github.com/Netflix/vmaf.
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Krasula, “CAMBI: Contrast-aware multiscale band-
ing index,” in 2021 Picture Coding Symposium (PCS).
IEEE, 2021.

[4] Ji Won Lee, Bo Ra Lim, Rae-Hong Park, Jae-Seung
Kim, and Wonseok Ahn, “Two-stage false contour de-
tection using directional contrast and its application to
adaptive false contour reduction,” IEEE Transactions
on Consumer Electronics, vol. 52, no. 1, pp. 179–188,
2006.

[5] Qin Huang, Hui Yong Kim, Wen-Jiin Tsai, Se Yoon
Jeong, Jin Soo Choi, and C-C Jay Kuo, “Understanding
and removal of false contour in hevc compressed im-
ages,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 28, no. 2, pp. 378–391, 2016.

4

https://github.com/Netflix/vmaf


Table 2. Performance of objective metrics on 7 datasets.
PLCC VMAF4K [12] NFLX [2] VMAF+ [18] VQEGHD3 [19] LIVEvideo [20] LIVEmobile [21] CSIQVQA [22]
VMAFBA 0.899 0.944 0.906 0.946 0.700 0.889 0.612
VMAF 0.890 0.937 0.902 0.936 0.709 0.893 0.608
SSIM 0.708 0.750 0.734 0.879 0.630 0.717 0.712
MS-SSIM 0.605 0.729 0.693 0.871 0.626 0.711 0.738
SROCC VMAF4K [12] NFLX [2] VMAF+ [18] VQEGHD3 [19] LIVEvideo [20] LIVEmobile [21] CSIQVQA [22]
VMAFBA 0.899 0.926 0.904 0.939 0.719 0.861 0.622
VMAF 0.893 0.922 0.901 0.924 0.726 0.863 0.615
SSIM 0.751 0.806 0.722 0.904 0.685 0.709 0.698
MS-SSIM 0.625 0.765 0.679 0.895 0.692 0.699 0.749

[6] Xin Jin, Satoshi Goto, and King Ngi Ngan, “Composite
model-based dc dithering for suppressing contour arti-
facts in decompressed video,” IEEE Transactions on
Image Processing, vol. 20, no. 8, pp. 2110–2121, 2011.

[7] Yanxiang Wang, Charith Abhayaratne, Rajitha Weer-
akkody, and Marta Mrak, “Multi-scale dithering for
contouring artefacts removal in compressed uhd video
sequences,” in 2014 IEEE Global Conference on Signal
and Information Processing (GlobalSIP). IEEE, 2014,
pp. 1014–1018.

[8] Yilin Wang, Sang-Uok Kum, Chao Chen, and Anil
Kokaram, “A perceptual visibility metric for banding
artifacts,” in 2016 IEEE International Conference on
Image Processing (ICIP). IEEE, 2016, pp. 2067–2071.

[9] Gary Baugh, Anil Kokaram, and François Pitié, “Ad-
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