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Abstract

A nonparametric Bayesian estimator in the wavelet do-
main is presented. In this approach, we propose a prior
model based on the α-stable densities to capture the sparse-
ness of the wavelet coefficients. An attempt to apply this
model image wavelet-denoising have been already pro-
posed in [2]. However, despite its efficacy in modeling
the heavy-tail behaviour of the empirical detail coefficients
densities, their denoiser proves very poor in practice and
suffers from many drawbacks such as the weakness of the
hyperparameters estimator associated with the α-stable
prior. Here, we propose to overcome these limitations us-
ing the scale-mixture of Gaussians as an analytical approx-
imation for α-stable densities. Exploiting this prior, we de-
sign a Bayesian L2-loss nonlinear denoiser.

1. Introduction

Since the seminal papers by Donoho & Johnstone [4],
the image processing literature have been inundated by hun-
dreds of papers applying or proposing modifications of the
original algorithm in estimation and/or restoration prob-
lems. The sparseness of the wavelet expansion makes it rea-
sonable to assume that essentially only a few large detail co-
efficients contain information about the underlying image.
It is then legitimate to impose a prior designated to model
the sparsity of the wavelet representation. Then the image
is estimated by applying a suitable Bayesian rule to the re-
sulting posterior distribution of the wavelet coefficients.

Various prior choices can be found in the statistical liter-
ature, see [3] for a detailed review. Popular priors in the im-
age processing community are the GGD and the α-stable
priors [6, 2]. However, in these cases, the derived Bayesian
estimator has no closed analytical form in general situa-
tion. This involves intensive numerical integration which is
numerically unstable time-consuming. Recently, in [5], the
Bessel K forms (BKF) family has been proposed with its
closed-form Bayesian shrinker.

Here, we propose a prior statistical model based on the
α-stable densities. The authors in [2] have already shown
the superiority of the α-stable distributions in fitting the
mode and the heavy-tail behavior of the wavelet coeffi-
cients distributions. However, their hyperparameters esti-
mator is very poor in the presence of contaminating noise
and remains an important issue yielding very bad perfor-
mance of their wavelet denoiser especially at low SNRs.
The Bayesian denoiser derived by [2] suffered from other
drawbacks such as numerical instability because of the lack
of a closed-form expression of the Bayesian shrinkage rule,
and the weakness of the estimator of the hyperparameters
associated with the α-stable prior. We here propose to over-
come these limitations using the scale-mixture of Gaussians
as a fast and numerically stable analytical approximation
for α-stable densities. Additionally, we propose an approx-
imate maximum likelihood estimator for the hyperparam-
eters. When applied to DWT of real images, the approxi-
mate α-stable model demonstrates a high degree of match
between observed and estimated prior densities. Exploiting
this prior, we design a Bayesian L2-loss nonlinear denoiser
and we derive a closed-form for its expression.

2. Nonparametric regression

Suppose we have noisy data at regularly sampled pixels:

ymn = gmn + εmn (1)

where εmn are iid normal random variables with mean zero
and variance σ2

ε independent of gmn. The goal is to recover
the underlying function g from the observed noisy data ymn.
Let soj

mn be the detail coefficient of the true image g at lo-
cation (m,n), scale j and orientation o, and similarly for
doj

mn. The DWT of white noise are also independent nor-
mal variables with the same variance. It follows from Eq.1
that:

cmn = amn + εmn,

doj
mn = soj

mn + εmn, j = Jc, . . . , J − 1;m,n = 0, . . . , 2j − 1
(2)
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where amn (resp. cmn) is the approximation coefficient of
the true image g (resp. y) at location (m,n). It is advis-
able to keep the approximation coefficients intact because
they represent low-frequency terms that usually contain im-
portant features about the image g.

3. α-stable distributions family

Let X be an α-stable random variable (RV), X ∼
Sα(β, µ, γ), 0 < α ≤ 2, γ ≥ 0, −1 ≤ β ≤ 1 and
µ ∈ R. X can be uniquely defined by its characteristic func-
tion [8]. α controls the heaviness of the tails of the PDF. β
is the symmetry index (β = 0 then X is a symmetric α-
stable (SαS) RV). µ is the location parameter. γ = σα is
the scale parameter. The wavelet detail coefficients densi-
ties have been already observed to be sharply peaked and
heavily tailed [6]. This is exactly the property which is cap-
tured by an SαS distribution where β = 0 and µ = 0, i.e.
soj

m,n ∼ Sα(0, 0, γ).

4. Analytical approximation of SαS PDFs

The PDF of an α-stable RV exists and is continuous. But
there is no explicit expression for this PDF except for a few
special cases.

4.1. The scale-mixture of Gaussians

The concept of mixture is based on a corollary of the
mixture theorem of α-stable RVs:

Corollary 1 (Scale-Mixture of Gaussians)
Let X ∼ N (0, 2γx). Let Y be a positive stable random vari-

able, Y = V 2 ∼ Sαz
2

(−1, 0, (cos(παz

4 ))
2

αz ) and indepen-
dent form X . Then:

Z = Y
1
2 X ∼ Sαz

(0, 0, γx)

fZ(z) =
1√

4πγx

∫ +∞

−∞
exp

(
− z2

4γxv2

)
h(v)v−1dv (3)

Sampling fZ(z) at N points allows to obtain a mixture
approximation to any SαS PDF:

pα,γ(z) ≈

∑N
j=1 v−1

j exp
(
− z2

4γxv2
j

)
h(vj)

√
4πγx

∑N
j=1 h(vj)

(4)

This analytical expression for the SαS PDF is only an ap-
proximation, since the the continuous integral was approx-
imated by a finite sum. However, to reduce the the com-
plexity of the model in Eq.4 and get fast but good enough
approximation, one might prefer to use only a small num-
ber of components and to sample Eq.3 at a few points only.
In this case the approximation is coarse and we suggest
using the ”Expectation-Maximization” (EM) algorithm to
fine-tune the components to obtain a better approximation.

However, using an Minimum Description Length criterion,
only a few mixture components (typically 4 to 8) are neces-
sary to negotiate a good compromise between the approx-
imation quality, the model complexity and the calculation
time.

4.2. The SαS PDF approximation algorithm

We describe an algorithm that fits a SαS PDF to ob-
served samples {zm}m=1,...,M using the scale-mixture of
Gaussians approximation to SαS PDFs. This algorithm fol-
lows the next steps:

1. Generate the characteristic function of the mixing PDF
which is positive stable distributed with parameters:
(α

2 , β = −1, µ = 0, γ = (cos(πα
4 ))

2
α ).

2. Evaluate the positive stable PDF fZ at N (number of
components in the mixture) equally spaced points tak-
ing the inverse FFT of the characteristic function.

3. Substitute the mixing function samples h(vi) =
2vifY (v2

i ) allows to obtain the analytical approxima-
tion for the SαS PDF:

pα,γ(zm) =

∑N
j=1 φ(zm; 0, 2γv2

j )vjfZ(v2
j )∑N

j=1 vjfZ(v2
j )

(5)

where φ(z;µ, δ2) is the Gaussian PDF with mean µ
and variance δ2.

4. Use the EM algorithm to refine the approximation us-
ing the observed samples zm. In the case of the mixture
of Gaussians model we seek to get Maximum Likeli-
hood estimates such that:

pα,γ(zm) =
N∑

j=1

P (zm|j)Pj (6)

where Pj are the mixing proportions and P (zm|j) =
φ(zm; 0, σ2

j ).

The algorithm is presented in the following iterative
form:

• Initialization:

Pold,j =
h(vj)∑N

j=0 h(vj)
(7)

and
Pold(zm|j) = φ(zm; 0, 2γv2

j ) (8)

• Repeat until convergence:
E step:

Pnew(j|zm) =
Pold(zm|j)Pold,j∑
m Pold(zm|j)Pold,j

(9)

M step:

σ2
new,j =

∑
m Pold(j|zm)z2

m∑
m Pold(j|zm)

(10)
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Pnew,j =
1
M

∑
m

Pold(j|zm) (11)

5. Bayesian denoiser

5.1. Marginal PDF of the observed wavelet coeffi-
cients

In the Bayesian approach, a prior is imposed on the
wavelet coefficients designed to describe their distribution.
The detail coefficients s at each scale and each orientation
are SαS distributed:

s ∼ Sα(0, 0, γ = σα) (12)

and the probabilistic model associated to d conditionally on
s is Gaussian. Using the Bayes rule, the analytical approxi-
mation of the marginal PDF of d is given by:

p(d) =
1√
2π

∑
j

Pj(σ2
j + σ2

ε )−
1
2 exp

(
− d2

2(σ2
j + σ2

ε )

)

(13)
where σε is the level noise.

5.2. The hyperparameters estimation

In the image denoising context, one must elicit the hy-
perparameters (θ) estimation problem in each subband. To
implement the formula in Eq.13, one has to estimate θ =
{Pj , σj , σε}, which amounts to estimating {α, γ = σα, σε}.
However, the hyperparameters estimation step is a difficult
task for SαS RVs especially in the presence of contaminat-
ing noise.

In our scale-mixture of Gaussians approximation, the es-
timation of Pj and σj parameter amounts to first estimating
the original parameters α and σ. The estimation of these pa-
rameters is only useful for initialization, and final estimates
are given by the EM algorithm. Therefore, we have cho-
sen the quantile-based estimator of McCulloch [7] assum-
ing that for reasonable SNRs, the tails of the marginal dis-
tribution p(d) are not very sensitive to the presence of noise.
Again, the level noise σε is estimated from the HH orien-
tation at the finer scale:

σ̂ε =
MAD(dHH1

mn )
0.6745

(14)

We now illustrate some prior estimation results. Fig.1
show the estimated and the observed densities of the
wavelet detail coefficients for the Barbara image on
log scale. The observed histogram (-•-) was fitted us-
ing the scale-mixture α-stable algorithm with 8 Gaussians
as we described above (solid). For comparison purposes,
we also depict the fit given by the original α-stable as pro-
posed by [2] (dash-dotted), the BKF (dashed) and the

GGD (dotted) models. From these results, we can legiti-
mately claim that the Gaussian scale-mixture SαS den-
sity fits the observed wavelet detail coefficients very well.
It generally outperforms the GGD and the BKF mod-
els.
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Figure 1. Estimated and observed marginal
densities of the observed wavelet detail co-
efficients for the Barbara image.

5.3. Bayesian term-by-term denoising

Using the approximate prior PDF, it is easy to show that
the L2-based Bayes rules, which correspond to posterior
conditional mean (PCM) estimate is (conditionally on the
hyperparameters):

sPCM(d|θ) =

∑
j Pj

d σ2
j

σ2
j +σ2

ε
φ(d; 0, σ2

j + σ2
ε )∑

j Pjφ(d; 0, σ2
j + σ2

ε )
(15)

This equation shows that the SαS PCM estimate can be
seen as a weighted average of Gaussian PCM estimates,
where the weights are given by the mixing proportions and
the Gaussian PDFs.

6. Experimental Results

We now assess the performance of our Bayesian de-
noiser with the scale-mixture approximation to the α-stable
prior, called ”α-stable mixture”, and we compare to other
previously published denoising methods. Six other denois-
ing algorithms are considered: the universal threshold Hard
and Soft thresholding, the Stein Unbiased Risk Estimator
(SURE), the Oracle threshold estimator (Oracle), the Bessel
K forms (BKF) Bayesian denoiser [5], original version of
the α-stable Bayesian denoiser [2]. In the latter, no closed-
form is available for the PCM Bayesian denoiser. We here
used an equivalent form involving Fourier integrals. The
Fourier integrals were numerically implemented using FFT-
based methods. The overall performance was quantified on
a digitized database of 100 test images [1]. The DWT em-
ploys Daubechies compactly-supported wavelet with regu-
larity 4. The coarsest level of decomposition was chosen
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to be (log2 log N + 1) from asymptotic consideration [3]
where N is the size of the image.

Fig.2 shows a zoom on a textured area of the estimated
images for each denoising methods for the Barbara image
with an input SNRin = 15dB. One can clearly see that the
visual quality of the ”α-stable mixture” Bayesian denoiser
is superior to the other methods but remains comparable to
the BKF Bayesian denoiser. Our denoiser ensures an excel-
lent compromise between the noise rejection and the con-
servation of fine details in the image (e.g. the stripes of the
trousers). Owing to its hyperparameter estimation method,
our denoiser overcomes the limitations of the original ex-
act α-stable Bayesian denoiser as used in [2]. Furthermore,
our denoiser is faster and very stable numerically.

Original Noisy RSB
in

=15 dB α−stable mixture 20.84 dB

α−stable 19.04 dB BKF 20.64 dB Hard universal 17.00 dB

Soft universal 15.55 dB SURE 18.14 dB Oracle Threshold 18.87 dB

Figure 2. Visual comparison of various de-
noising methods on Barbara image.

In Fig.3, we have depicted the average PSNR over the 50
runs and the whole database (100 images) for each denois-
ing methods, as a function of SNRin. One can notice that the
”α-stable mixture” denoiser outperforms most of the meth-
ods, but is comparable to the BKF approach. It compares
favorably with the oracle thresholding but is much better
that the SURE especially at low SNRs. The original ver-
sion of the α-stable denoiser is underperforming at low in-
put SNRin. The main reason is the weakness of the hyperpa-
rameters estimator which remains an important issue. These
findings suggest that the scale-mixture approximation to the
”α-stable” prior is an accurate model adapted to capture the
sparseness behavior of the wavelet coefficients for a large
class of images.

7. Conclusion

In this paper, a nonlinear nonparametric Bayesian esti-
mator in the Wavelet domain was presented. An approxi-
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Figure 3. Average PSNR over the 50 runs and
the 100 images database.

mation to SαS based on scale-mixture of Gaussians was
proposed. This approximation has proven accurate and very
stable numerically. The EM algorithm was used to refine
a first estimation step which serves as a good starting point
for the EM algorithm. Using this approximate analytical ex-
pression for the prior, we also derived the expressions of the
posterior marginal distribution as well as the PCM estima-
tor. Experimental results on a large database have shown the
superiority of our Bayesian denoiser compared to other de-
noising approaches. Our efforts are now directed towards
extension of these Bayesian models to directional trans-
forms such as curvelets or bandelets.
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