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Abstract—This paper presents a novel setup for automatic
visual inspection of cracks in ceramic tile as well as studies
the effect of various classifiers and height-varying illumination
conditions for this task. The intuition behind this setup is that
cracks can be better visualized under specific lighting conditions
than others. Our setup, which is designed for field work with
constraints in its maximum dimensions, can acquire images
for crack detection with multiple lighting conditions using the
illumination sources placed at multiple heights. Crack detection
is then performed by classifying patches extracted from the
acquired images in a sliding window fashion. We study the
effect of lights placed at various heights by training classifiers
both on customized as well as state-of-the-art architectures and
evaluate their performance both at patch-level and image-level,
demonstrating the effectiveness of our setup. More importantly,
ours is the first study that demonstrates how height-varying
illumination conditions can affect crack detection with the use of
existing state-of-the-art classifiers. We provide an insight about
the illumination conditions that can help in improving crack
detection in a challenging real-world industrial environment.

I. INTRODUCTION

Visual inspection is an important step for ensuring quality
of several industrial components. This is especially neces-
sary in the case where a component requires maintenance
and its failure could be catastrophic. In such a case, visual
inspection is often performed by a human expert that is
responsible for identifying the defective parts and suggesting
their replacement, which they carry out based on their training
and experience. Such a visual inspection process involves
careful assessment of large number of parts, only few of
which could present defects. Automating the visual inspection
process can help in the assessment of large number of trivial
cases, while the experts can be referred to only the non-
trivial ones. Examples of such applications include identifying
defects in casted steel [1], inspection of metallic components
in nuclear power plants [2], detecting cracks in tiles that
could be part of a leak-proof compartment, examining flaws
in concrete structures [3], etc. Automating visual inspection in
such applications involves acquiring digital images (or videos)
of the areas to be inspected followed by defect detection using
computer vision based algorithms.

*The last authors A. Del Bue & V. Murino contributed equally to the paper.

(a) Illumination frame with the multiple LED levels and camera

(b) Acquired image (c) Automatically detected cracks

Fig. 1: Crack detection in a ceramic tile using our setup with
all the 4 LED levels switched on. (a) Proposed setup; (b) an
acquired image using the setup and (c) automatically detected
cracks in the acquired image.

Historically, the algorithms designed to detect defects like
cracks followed a pipeline which typically involved contrast
enhancement, edge linking and refinement [4], [5], [6], [7].
The method proposed in [8] also follows this approach wherein
morphological features are used for edge extraction followed
by refinement based on curvature. Similarly, the method in
[9] uses pixel-neighbourhood statistics to identify crack pixels
and tensor voting [10] to connect them.

Over the past decade, deep learning based methods have
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gained a lot of popularity given their performance on various
vision tasks. In the deep learning framework, the crack de-
tection problem is now generally posed as classification task,
where a label (among crack/no-crack) needs to be predicted
for every pixel (or patch) of the given image. Labeling of every
pixel in the image is performed using encoder-decoder based
architectures derived from the method proposed in [11]. On
the other hand, architectures designed for image classification
(inspired from AlexNet [12]) can be used to classify the image
patches.

The methods proposed in [13], [14], [3], [15] follow the
former approach of labeling every pixel in the image. These
networks have a pyramidal form following the U-Net architec-
ture [16]. Additionally, some of them also have side outputs
that act as edge priors [17] for crack detection. However, if the
network architecture is not fully convolutional, then the input
image is required to be down-scaled to match the respective
network’s input size. This can lead to loss of image resolution
due to which details of fine cracks can be lost. On the
contrary, the techniques proposed in [2], [18] follow the latter
approach. Here, the advantage is that only specific image areas
can be inspected for the presence of cracks by selecting the
appropriate patches using inexpensive pre-processing. Also, to
match the network’s input size, only the patches need to be
resized as opposed to resizing the complete image as done in
the pixel-labeling based approaches. Thus, the resolution of
the inputs provided to the networks in the patch-classification
based approaches can be higher in comparison to the pixel-
labeling based approaches.

In this paper, we follow the latter approach and perform
crack detection by classifying patches extracted from the
image in a sliding window fashion. Our main novelty is in
the setup (shown in Fig. 1) that provides images for crack
detection with up to 5 lighting conditions with the help of
illumination sources placed at multiple heights. The setup is
portable and has been designed for field work with constrains
in its maximum dimensions. To the best of our knowledge,
there are no techniques that study the effect of height-varying
illumination conditions for automatic visual inspection of de-
fects. We do so by comparing the crack detection results for the
different lighting conditions using customized as well as state-
of-the-art classification architectures on the images of ceramic
tiles acquired with our proposed setup. Here, we attempt to
provide an insight about the illumination conditions that can
help in improving future techniques for crack detection.

The paper is organized as follows. In Section II we provide
the details of the proposed acquisition setup. The experimental
pipeline is then described in Section III followed by the
metrics in Section IV that we use for comparing the results.
Section V discusses the results while the conclusion and the
future work are given in Section VI.

II. SETUP

In this section we describe the ad-hoc hardware develop-
ment for this work. Our proposed setup consists of:
• 3D printed illumination frame;

• addressable LED strips;
• a machine vision camera;
• optically rectified lens.

The illumination frame, depicted in Fig. 1a, hosts four lines of
LED’s strips which illuminate the object (i.e., a ceramic tile in
our case) from all the four sides at different levels of height.
With the press of a button, the setup acquires 5 images of the
tile in the following lighting configurations:
• all lights switched on,
• only level 1 (LED level closest to the tile) switched on,
• only level 2 (LED level above level 1) switched on,
• only level 3 (LED level above level 2) switched on, and
• only level 4 (LED level above level 3 and furthest from

the tile) switched on.
Our design is inspired by the so-called dark field illumi-

nation [19] which tries to increase the contrast between the
background and foreground regions using oblique lighting.
The intuition behind this design is that cracks can be better
visualized under specific lighting conditions based on the illu-
mination angle. The four illumination levels provide different
angles of illumination with a total of 189 white colored LEDs
that can be activated individually or in pre-programmed multi-
led illumination patterns. The goal is that of improving the
visibility of defects on the tile and avoiding specularity.

The LEDs control is provided by an Arduino Nano board
running a dedicated software routine. This routine runs in
the Arduino microcontroller and executes the messages cor-
responding to the control actions given by the user. Here,
a computing device connected through the USB serial con-
nection is used for receiving the control actions from the
user and sending the corresponding messages to the Arduino
microcontroller for execution.

This setup has been designed keeping in mind the
dimension-constrains for deployment in a real industrial sce-
nario for the inspection of ceramic tiles. For this reason the
main goal of the design has been that of creating a compact
device that can be easily transported by a human operator.
The main problem in such situation comes from the optics
geometry. In particular, we need to capture a surface of 20x20
cm (the dimensions of the surface) from a short distance.
In the presented system, this translates into lens with few
millimeters of focal lengths entering in the realm of ultra-wide
lens. We achieve the desired compactness with a combination
of a machine vision camera and an optically rectified lens.
This helps us to have an extreme diagonal field of view (≈ 135
degrees) while having a very short distance (just 6cm) between
the tile and the lens tip.

III. EXPERIMENTAL PIPELINE

The pipeline used for our experimental procedure is shown
in Fig. 2 and the components are discussed below.

A. Acquisition

The portable setup is placed over a tile kept on an acquisi-
tion table for the acquisition to be performed in a controlled
illumination manner. It then acquires 5 images of the tile in



Patch Generator

Image

patches

Fig. 2: Experimental pipeline: First, the images with height-varying illumination are acquired using our setup. An expert then
digitally annotates the crack locations in these images for training. The dataset is then generated by extracting the image-and-
annotation patch pairs using the patch generator. The extracted patch pairs are used to train a patch based classifier to detect
presence (or absence) of cracks. For evaluation, the inference is done on patches extracted from the acquired images.

various lighting configurations as discussed in Section II. The
setup is then moved and placed over the next tile and this
process is repeated to acquire images of all the tiles. For
every tile, all the 5 images are acquired without moving the
setup. Therefore, there is no relative motion and these are
automatically registered with respect to each other. For these
tiles, ground truth is provided by an expert (from our industrial
partner) in the form of digital annotations (as shown in Fig. 2)
which includes crack contours and locations of the tile corners.
With the acquired images and their respective ground truth, we
are now ready to generate the dataset (of patches) to be used
for traning and evaluation. The following subsection explains
the extraction of labeled patches from the acquired images and
their organization to create the dataset.

B. Dataset Generation

The registered images and the binary ground truth image
containing the crack contours are used to extract labeled
patches in a sliding window fashion. During extraction, the
image patches are labeled as either positive (patches contain-
ing cracks), negative (patches that do not have cracks) or
ambiguous based on the proportion of crack pixels in the
corresponding ground truth patch. The proportion of crack
pixels p in a ground truth patch ψ of size m× n is defined
as:

p =
1

m ∗ n

m∑
i=1

n∑
j=1

I(ψ(i, j) > 0), (1)

where I(•) is an indicator function such that I(True) = 1,
I(False) = 0 and ψ(i, j) is the value of pixel at location (i, j)
in the ground truth patch ψ. Using this definition of proportion
of crack pixels p, patches in the registered images are labeled
as follows:
• Negative patches: p < 0.1,
• Ambiguous patches: 0.1 ≤ p < 0.2,
• Positive patches: p ≥ 0.2.

Intuitively, only those patches that contain no crack pixels (i.e.,
p = 0.0) should be labelled negative. Thus, setting p = 0.0
should suffice in labelling the patches as either negative or
positive. However, in practice, the annotations are a few pixels
wider than the actual crack-width, due to which some patches

are incorrectly labelled as positive. To correctly label such
patches as negative, we set a lower threshold to 0.1. Secondly,
patches along the crack boundaries that contain few crack
pixels have a similar appearance to that of the negative patches.
Such ambiguous patches increase the number of false positives
when labelled as positive. To avoid this, we set a higher
threshold to 0.2. Only the generated positive and negative
patches are used for training and evaluation of the classifiers.

Data Balancing: Since every tile has only few crack
patches, the number of negative examples is substantially
larger than the number of positive examples. Thus, we get an
imbalanced dataset by considering all extracted positive and
negative patches. If an imbalanced dataset is used for training,
the trained classifier can be biased towards the majority class,
which in our case is the negative class. To avoid this problem,
balancing the training data with random under-sampling has
been considered as one of the effective, easy and widely
accepted methods [20]. Alternate approaches that use cost
sensitive loss functions [21], [22] with imbalanced training
data did not show a significant change in the results in our
case, but notably increased the training time. We have there-
fore adopted the former method and artificially balanced the
patches extracted from every image by random undersampling,
i.e., we consider all the positive patches and randomly select
an equal number of negative patches for balancing the dataset.

k-Folds: Patches extracted from the acquired images are
divided into 10 folds. Each fold has a fixed set of tiles for
training and testing. This ensures that the patches used for
testing in a particular fold are not used for training in the same
fold. Considering data balancing and folds discussed above, we
use the following data during the different phases, viz., train,
validation and test.

For fold = FK

– TrainK : {Balanced Positives, Balanced Negatives} from
tiles selected for training in FK ,

– ValidationK : {Balanced Positives, Balanced Negatives}
from tiles selected for testing in FK ,

– TestK : {Imbalanced Positives, Imbalanced Negatives}
from tiles selected for testing in FK .

Spatial Resolution: The images acquired using the camera
and the corresponding ground truth have a resolution of



(a) TileNet6 (b) TileNet7

Fig. 3: Custom architectures considered for training.

3840× 2748. To have an insight about performance of the
different classifiers on VGA-resolution (which is available
even with inexpensive cameras), we experiment with low-
resolution inputs. This is done by downsampling the acquired
images with a factor of 0.1667 both in height and width so
that it has size closer to the VGA-resolution, i.e., 640× 480.
Here, the patches of size 50× 50 are extracted with a stride
of 10 pixels. We also experiment with the acquired images in
their original size (high-resolution) without any downsampling
by extracting patches of size 299× 299 with a stride of 60
pixels. Thus, the number of patches used in both low and
high-resolution experiments is approximately the same.

C. Training

The training of classifiers is done using various architec-
tures. These include two custom architectures and six state-
of-the-art classification architectures [23], [24], [25], [26],
[27], [28]. For the custom architectures training is done from
scratch. For all other architectures, the training is performed
by fine-tuning where the pre-trained weights have been learnt
on the imagenet classification dataset [29].

Training from scratch: The two custom architectures that
we train from scratch, i.e., without using any pre-trained
weights, have 3− 4 convolutional layers and three fully con-
nected layers. The first of these architectures (TileNet6) is
shown in Fig. 3a. The second custom architecture only has one
extra convolution layer in comparison to the first architecture.
This was done to study the effect of having a slightly deeper
architecture. We call this as TileNet7, which is shown in Fig.
3b. Below, we also investigate the effect of having even more
deeper architectures.

Fine-tuning: We have considered six state-of-the-art object
classification architectures, viz. VGG16 [23], Xception [24],
ResNet50 [25], DenseNet121 [26], InceptionResNet-V2 [27]
and NASNetLarge [28]. These have outperformed most of the

Fig. 4: Architecture for fine-tuning.

competing methods in the Imagenet Large Scale Visual Recog-
nition Challenge (ILSVRC) [30]. Their pre-trained weights
(except for the top fully connected decision layer) have been
downloaded from Keras Applications [31].

First, we use these networks as feature extractors, i.e.,
we feed them with the image patches and run a forward
pass using the pre-trained weights. The extracted features and
the corresponding labels are then used to train a shallow
two-layered fully connected network which performs clas-
sification. This architecture is shown in Fig. 4. Note that
here the pre-trained weights are fixed and never updated.
With the same network architecture we also try to fine-
tune the pre-trained weights of certain layers. In this case
we add a suffix finetune < layer name > onwards to
the model name. For example, when we perform trans-
fer learning on ResNet50 by fine-tuning all the layers
from “conv 5x” onwards, the new model is named as
“ResNet50 finetune conv 5x onwards”. Likewise, if all the
layers are fine-tuned, the suffix finetune all is added to
the model name. In addition, the models trained using high-
resolution (i.e., without any downsampling) patches have the
suffix HR. We use this nomenclature to discuss the results
later in Section V. In the next section we describe the metrics
used for performance evaluation.

IV. EVALUATION METRICS

Since the training is performed on patches, it is logical to
use patch-level metrics. However, since we eventually intend
to evaluate the performance of classifiers to detect cracks in
the whole tile, the use of image-level metrics is also proposed.
The definitions of metrics used for evaluation at patch-level
and image-level are as given below.

A. Patch-level Metrics

Denoting true positives, false positives, true negatives and
false negatives with TP , FP , TN and FN , respectively, the
patch-level metrics are discussed as follows.

1) Accuracy: The first patch-level metric accuracy is
defined as follows:

accuracy =
TP + TN

TP + FP + FN + TN
. (2)

2) Matthews Correlation Coefficient: The accuracy met-
ric can be misleading in the presence of imbalanced data.
Therefore, we also use the Matthews Correlation Coefficient



(MCC) [32] which is a more robust measure in the presence
of imbalanced data. This measure is defined as follows:

MCC =
TP ∗ TN − FP ∗ FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

(3)

B. Image-level Metrics

Several patches can represent a single crack. Thus, low
accuracy and MCC may not always indicate incorrect detection
of cracks in the tile. Therefore, there is a need to quantify how
well the classifiers work for the tiles and not just for patches.
To address this issue, we propose the image-level metrics. Let,

G : Set of cracks (closed contours or connected
components) in ground truth,

D : Set of detected cracks (closed contours or
connected components) in the given image,

n(X) : Number of elements in set X ,
(X represents D,G or any other set of cracks)

I(•) : Indicator function, I(True) = 1; I(False) = 0,

then the image-level metrics are as below.
1) Crack Presence Accuracy: The first image-level metric

is crack presence accuracy, which indicates how well the tile is
marked as having/not-having cracks. It gives a measure of how
accurately can the underlying technique detect the defective
tiles. For a given tile t the crack presence metric (PM)t is
defined as below.

(PM)t = I(I(n(Gt) > 0) == I(n(Dt) > 0)). (4)

For N tiles, crack presence accuracy (CPA) is calculated as:

CPA = average(PM) =
1

N

N∑
t=1

(PM)t. (5)

In the best case, the CPA = 1.0 indicating that all the tiles
having at least one crack were correctly identified. On the
other hand, CPA = 0.0 indicates that no tile was correctly
identified for having presence/absence of the cracks.

2) Crack Count F1 Score: The next proposed image-level
metric quantifies how close is the number of correctly detected
cracks to the number of actual cracks in the ground truth.
In other words, it indicates how accurately the underlying
technique can detect the cracks. This metric (which we call
as the crack count F1 score) is most relevant when the goal
is to determine how many cracks can be correctly detected in
the given tile.

In order to calculate this metric, we first need to identify
the cracks that are correctly detected, i.e., detected cracks that
are also present in the ground truth. To do so we follow the
procedure given in Procedure 1. Once the set of correctly
detected cracks is available, we can calculate Recall, Precision
and F1 score for every tile t as:

Recall (Rt) =

{
n(Gt∩Dt)

n(Gt)
, if n(Gt) > 0,

1, otherwise,
(6)

Fig. 5: An example of associating correctly detected cracks.
Ground truth cracks (Gi) shown in green color are associated
with overlapping detected cracks (Dj) shown in violet color
to get the set (G ∩D) of correct detections.

Procedure 1 Evaluation protocol for Crack Count F1 Score

1: Sort cracks in ground truth (G) and detected cracks (D)
in descending order of the contour-area.

2: For every ith crack in G check overlap of every jth crack
in D.

3: Associate Gi to Dj for the largest overlap.
4: Gi remains unassociated if it has no overlap with any Dj .
5: Once Dj is associated to Gi, it is no more available for

association with any other Gk 6=i.
6: Find G ∩D as set consisting of all the associated pairs
{(Gi, Dj)} which is nothing but the set of cracks correctly
detected. One such example is shown in Fig. 5.

Precision (Pt) =

{
n(Gt∩Dt)

n(Dt)
, if n(Dt) > 0,

1, otherwise,
(7)

F1t = 2 ∗ Pt ∗Rt

Pt +Rt
. (8)

For N tiles, the Crack Count F1 Score (CCF1) is calculated
as the average of the F1 score given by:

CCF1 =

∑N
t=1 F1t ∗ at∑N

t=1 at
, where at = n(Gt) + 1. (9)

The maximum value CCF1 = 1.0 happens when the detected
cracks are the same as the cracks present in the ground truth
for all the tiles. Higher the value, more is the match between
these quantities. In the worst case, i.e., when these quantities
differ to their maximum we get CCF1 = 0.0. In this case
none of the cracks are correctly detected in all the tiles.

V. RESULTS AND DISCUSSION

Our dataset consists of 88 ceramic tile images acquired
in five different lighting configurations using the procedure
described in section III-A. For each lighting configuration, the
dataset is organized into 10 folds such that every fold is as-
signed about 70-76 and 8-12 tiles for training and test phases,
respectively. Models corresponding to all the architectures



(a) (b)

Fig. 6: Examples of crack detection for different illumination configurations for two tiles. The first row shows the ground truth,
second row has results of classifiers trained using low-resolution patches while the third row has results of classifiers trained
using high-resolution patches.

discussed in section III-C have been trained on a NVIDIA
GeForce RTX 2080 Ti GPU using Adam optimizer [33] with
a learning rate = 0.0001. The input size and batch size for
training models using low-resolution patches is 50× 50 and
128, respectively. For models trained using high-resolution
patches, the input size is 299× 299 while the batch size is
reduced to 16 for managing the computational overhead. The
training is done for about 1300 epochs in both cases where
classifiers are trained using (a) our custom architectures, and
(b) features extracted from pre-trained models. The number of
epochs is reduced to approximately 55 for the classifiers that
are only fine-tuned over the pre-trained weights. The total time
spent for training all the classifiers for the different lighting
configurations, resolutions, folds and architectures is about
30 days. The results obtained by using these classifiers are
presented below.

A. Results

Examples of crack detection on two tiles for the different
lighting configurations are shown in Fig. 6. The patch clas-
sification accuracy defined in Equation (2) is compared for
the trained models in Fig. 7a. Similarly, Fig. 7b compares the
Matthew’s correlation coefficient defined in Equation (3) for
these models. The crack presence accuracy defined in Equation
(5) is compared in Fig. 7c, while Fig. 7d compares the crack
count F1 score defined in Equation (9) for these models.

B. Discussion

Accuracy: Looking at Fig. 7a, we observe that the training
accuracy for almost all the models saturates to 1 while for
validation it is about 0.8; an indication of overfitting. For
test data also the accuracy is closer to 0.85 for most of the
models. If only the feature-based models are considered, the
model trained using Xception-features appears to be slightly
better than the others. Nevertheless, the models trained using
TileNet6 provides better accuracy in comparison to feature-
based models. Also, having an additional convolution layer
(i.e., TileNet7) helped in slightly improving the accuracy.
Since the Xception-features have the best accuracy among

the feature-based models, we also trained classifiers by fine-
tuning all layers of the Xception architecture. These classifiers
provided the best results reaching an average accuracy of
0.89 and 0.95 on the validation and test data, respectively.
To study the effect of using high-resolution inputs, we also
trained classifiers again by fine-tuning all layers of the Xcep-
tion architecture but using high-resolution patches (Xception-
finetune all HR). Here, we observe that the use of high-
resolution inputs provides further improvement in the results.
The average validation accuracy jumped from 0.89 to 0.95
while the average test accuracy improved from 0.95 to 0.98
and the training accuracy is also slightly improved.

MCC: We observe that MCC (in Fig. 7b) for most of the
feature-based models is close to 0.5 (for both validation and
test data), while it is slightly higher for the models trained on
our custom architectures. The MCC for Xception architecture
is comparable with that of our custom architectures. However,
the MCC is highest for Xception finetune all with values 0.80
and 0.79 for for validation and test data, respectively. For
the same, training with high-resolution patches shows further
improvement with the MCC increasing from 0.80 to 0.91 for
validation and from 0.79 to 0.90 for test data.

Crack Presence Accuracy: Since the crack presence is
quantified at image-level (as opposed to patch-level on which
training is performed), the CPA is calculated for training data
and test data that consists of images (and not image-patches) of
tiles selected for training and test, respectively. Fig. 7c shows
that crack presence accuracy = 1.0 for for almost all the trained
models in both training and testing phases. Similar is the case
when using models trained on high-resolution patches. This
metric can be more meaningful if (a) additional data containing
tiles not having cracks is also considered for testing or (b) the
detection of cracks is to be performed in only specific regions
of the tiles. However, currently, we only have with us a dataset
of tiles having cracks for which we perform crack detection
over the complete tile-surface.

Crack Count F1 score: The crack count F1 scores shown
in Fig. 7d indicate that the feature-based models are sub-
stantially less accurate in correctly detecting the cracks in



(a) Average accuracy over 10 folds (0 to +1) for all models

(b) Average MCC over 10 folds (-1 to +1) for all models

(c) Average CPA over 10 folds (0 to +1) for all models

(d) Average CCF1 score over 10 folds (0 to +1) for all models

Fig. 7: Results for all the trained classifiers on low-and-high resolution patches using the different architectures and lighting
configurations.

comparison to those trained on TileNet6 (CCF1 ≈ 0.51).
Adding an extra convolution layer (i.e., TileNet7) also helps
in increasing this score (CCF1 ≈ 0.56). However, fine-tuning
the entire Xception architecture leads to even better results
(CCF1 ≈ 0.65). Also, the use of high-resolution inputs fur-
ther increases the score (CCF1 ≈ 0.71), indicating a more
accurate crack detection.

Effect of illumination sources placed at various heights:
The overall results in Fig. 7 indicate that both patch-level and
image-level metrics improve as we move from Only Level
1 to Only Level 4. In other words, higher the placement of
the illumination source, better is the performance and less
is the number of false positives (as seen in Fig. 6). This
trend is visible in all the results but more prominent for the

models trained using high-resolution patches. Secondly, the
performance for Only Level 4 is more-or-less similar to that
of All Lights. This indicates that an illumination source placed
at a greater height is as good as having a denser illumination
setup (with sources at placed at various heights), for the
purpose of crack detection.

VI. CONCLUSION AND FUTURE WORK

Our proposed height-varying illumination setup, which is
designed for field work with constraints in its maximum
dimensions, has been effectively used to acquire images of
defective tiles. Crack detection has been performed on these
images by means of patch-classification. Our unique study
on height-varying illumination conditions for crack detection



suggests that lights placed at greater heights are more effective
as compared to those placed near the tile’s surface for crack
detection. In fact, their performance is as good as that of using
together the lights at all the levels. Our study also indicates
that fine-tuning of all the pre-trained weights of the Xception
architecture provide the best results in comparison to all the
other trained models across all the illumination condition.
Moreover, use of high-resolution patches (i.e., without down-
sampling the acquired images) for training further improves
the results. Thus, the intuition of performance improvement
with the use of high-resolution patches is also validated across
all the lighting conditions in our study. This should help in
deciding the resolution versus performance trade-off when
designing a real-time crack detection system for field use.
The effectiveness of different illumination conditions on crack
detection has been demonstrated using evaluation performed
on classifiers trained with the state-of-the-art as well as our
customized architectures.

The present work describes the experiments and results
obtained from a relatively small number of tiles, which are
difficult to procure. Also, the training images were annotated
by highly specialized personnel in their very limited available
time. Nevertheless, the effectiveness of portable setup has been
clearly demonstrated by our experiments. In fact, its use can
be generalized for automatic visual inspection of any object
having a relatively planar surface.

Following encouraging preliminary results, in the future we
will be focusing on using different sensor modalities towards
extending the acquisition of the tiles by means of longwave
infrared (LWIR) thermal sensors. Last but not least, we want
to explore further the effect of both image and light resolution
in the performance of the classification models.
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