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Abstract— One characteristic attribute of mobile platforms
equipped with a set of independent steering wheels is their
omnidirectionality and the ability to realize complex transla-
tional and rotational trajectories. An accurate coordination of
steering angle and spinning rate of each wheel is necessary
for a consistent motion. Since the orientations of the wheels
must align to the Instantaneous Center of Rotation (ICR), the
current location and velocity of this specific point is essential
for describing the state of the platform. However, singular
configurations of the controlled system exist depending on the
ICR, leading to unfeasible control inputs, i.e., infinite steering
rates. Within this work we address and analyze this problem
in general. Furthermore, we propose a solution for mobile
platforms with variable footprint. An existing controller based
on dynamic feedback linearization is augmented by a new
potential field-based algorithm for singularity avoidance which
uses the tunable leg lengths as an additional control input
to minimize deviations from the nominal motion trajectory.
Simulations and experimental results on the mobile platform
of DLR’s humanoid manipulator Justin support our approach.

I. INTRODUCTION

Service robotics are expected to play an important role
in future domestic environments. One possibility to support
a high degree of mobility is to mount manipulators on
wheeled mobile platforms. Although they are restricted to
move on even terrain, their flexibility and robustness are
strong arguments in favor of this solution. Hence, several
systems have been designed over the last decades [1], [2],
[3], [4], mostly differing in the kind and number of wheels
[5], [6]. A wheeled mobile platform [7] has been developed
to provide the two-arm humanoid Justin [8] with a high
degree of mobility, see Fig. 1. Four independent steering
wheels allow to realize arbitrary linear/angular motions. Via
an additional degree of freedom (dof), the leg length, each
wheel may increase/decrease the distance to the central body
of the platform during motion without affecting the platform
height, see Fig. 2. Due to the nonholonomy of that platform
system, a reorientation of the wheels is necessary to start a
motion. However, the platform is omnidirectional, meaning
that it can follow every planar trajectory. An example of a
holonomic platform with variable footprint is given in [9].

In order to control a nonholonomic wheeled mobile robot
properly and to avoid high internal forces, the wheels have
to be oriented precisely at each instant. One of the most
common methods is based on the explicit use/command of
the Instantaneous Center of Rotation (ICR) [3], [10], [11].
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Fig. 1. DLR’s humanoid Rollin’ Justin.

However, singularities occur when the ICR crosses or comes
close to one of the wheel axes. In [12] constraints are applied
to the accessible velocity space, avoiding singular regions.
Another proven method to avoid particular configurations is
to consider them as obstacles and design repulsive potential
fields in the respective space [13], [14]. This solution has
been applied to the case of ICR-based singularities [15].
Another possibility to avoid that kind of singularity is to
use special wheels [9].

The goal of this paper is to present a potential field-
based controller for singularity avoidance in the ICR space
in case of mobile platforms with variable footprint. Major
contribution is the incorporation of tunable leg lengths in
design and control which provide the singularity avoidance
controller with an additional control input that has not yet
been applied in this context before. Thereby, we are able to
minimize/avoid deviations from the nominal motion trajecto-
ry which can not be achieved with a fixed platform structure.
Secondly, variable instead of constant potential fields are
applied in order to handle the variable footprint. Thirdly, we
do not permanently use the explicit representation of the ICR
due to the platform motion control via a dynamic feedback
linearization. Thereby, we evade singularities which are
based on the mathematical description of the ICR in contrast
to existing solutions [15] wherein that issue has to be dealt
with additionally.

The paper is organized as follows. After a brief introduc-
tion of the employed system, we focus on the characteristics
of the ICR and the occurrence of singularities in Section III.
Their effect on physical values such as wheel steering rates
is addressed. In Section IV, we describe a control structure
to avoid singular configurations and minimize the deviation



Fig. 2. The mobile platform with full extended (top left) and full retracted
legs (top right) and the parallel mechanism allowing the leg extension
(bottom).

from the nominal motion trajectory by incorporating the
variable leg lengths. Simulations and experimental results
are shown and discussed in Section V.

II. PLATFORM OVERVIEW

The considered mobile platform consists of a central
frame connected to four centered steering wheels via a
special parallel mechanism, see Fig. 2. This structure enables
the wheels to extend and retract the legs independently
by moving along the respective leg direction while the
platform height stays unaffected [16]. For applications in
narrow environments a small footprint of 812 mm × 644 mm
can be achieved. In case of high stability needs, e.g., for
very dynamic movements or heavy load manipulations, the
footprint may extend up to 1220 mm × 1052 mm. Absolute
encoders measure steering angles and rolling velocities of
the four wheels plus the related leg extensions.

Fig. 3 depicts the mobile platform schematically with
(xwloc, y

w
loc) representing the location of the platform center in

the world frame (superscript w), θ describing the orientation,
Φi and λi with i = 1...4 standing for steering angle and leg
extension of wheel i, respectively. The latter are able to move
along the bold dashed lines (leg dof) w.r.t. the body frame
(superscript b). A dynamic feedback linearization allows to
control the translational and rotational motion as well as
the leg lengths [7]. Low-level onboard controllers make it
possible to realize given steering and spinning velocities of
the wheels. Therefore, these values are considered as control
inputs. Further details on the underlying motion control
algorithm can be found in [7].

Within this paper we use body coordinates by default,
hence superscript b will be omitted. In case of the use of
world coordinates we will refer to it explicitly.

III. ICR AND INDUCED SINGULARITIES

Within this work we define the Instantaneous Center of
Rotation (ICR) as the unique point z in the platform body
frame around which the vehicle rotates at each instant.

Fig. 3. Schematic plot of the mobile platform.

According to Fig. 4, the ICR in Cartesian body coordinates
can be described by

z =

(
xICR
yICR

)
=

v

|θ̇|︸︷︷︸
r

·
(

cos γ
sin γ

)
, (1)

v =
√
ẋ2 + ẏ2, (2)

where the numerator in (1) characterizes the absolute trans-
lational and the denominator the absolute angular velocity
of the platform center. The whole fraction equals the radius
of curvature r (distance from the origin to the ICR) while
γ indicates the corresponding direction. The latter derives
straightforward from the direction of motion (which is de-
termined by ẋ and ẏ) and the sense of rotation,

γ = arctan2

(
sgn(θ̇)ẋ,−sgn(θ̇)ẏ

)
. (3)

Concerning the order of arguments, the form arctan2(y, x)
is used here. The value µ in Fig. 4 specifies the direction of
motion in the body frame. Obviously, an offset of ±π/2 to
γ exists, wherein the sign depends on the sense of rotation
of the platform. Velocities vw,1 to vw,4 describe the spinning
rates of the four wheels.

Fig. 4. Instantaneous Center of Rotation in the platform body frame.
(direction of motion: µ; direction to the ICR: γ; rotational velocity of the
platform and around the ICR: θ̇; wheel velocities: vw,1 to vw,4).



In order to induce a consistent motion, each wheel has
to orient such that its direction of motion is perpendicular
to the connection line to the ICR, see Fig. 4. We would
like to emphasize that this assumption only holds if a rigid
body is addressed. This is not the case when the leg length
λi is varied. That leads to a separation of rigid bodies,
disconnecting the former fixed contact between the respective
wheel and the platform center. However, the only difference
is that such a wheel obtains an additional velocity component
in leg motion direction. The velocity component induced by
the discussed ICR constraint remains unaffected.

It follows from the equations (1) to (3) that the transforma-
tion (ẋ, ẏ, θ̇)→ (xICR, yICR) is not injective. This implies that
several motion states of the platform lead to the same ICR,
for example, doubling v and θ̇ simultaneously does not shift
z. As a consequence, just setting a specific location of the
ICR is not sufficient to control the whole system uniquely. An
additional constraint between ẋ, ẏ and θ̇ has to be introduced.
Furthermore, it can be seen that a mathematical singularity
arises when the angular velocity θ̇ tends towards zero, see
(1). In terms of practical interpretation, this case implies that
the radius of curvature tends to infinity, inducing a pure
translational motion. Hence, these mathematical problems
have to be dealt with when controlling a wheeled mobile
robot solely via the ICR [15]. However, since we will restrict
the use of the ICR representation to regions around the wheel
steering axes, that kind of singularity has no relevance for
our approach.

Indeed a second type of singularity might emerge during
motion. We now address the necessary steering angle and
rate of a wheel i to fulfill the conditions of a consistent
motion. No leg motion is assumed, that is λ̇i = 0 ∀ i. If
the ICR passes that wheel very closely or crosses the wheel
contact point, the steering rate increases rapidly to follow the
desired steering angle which is forced by the ICR. Hardware
limits are reached easily and a deviation from the desired
steering angle causes high internal forces which stress the
mechanical structure of the system.

IV. CONTROL ALGORITHM

Although the motion controller of the Justin mobile
platform, introduced in [7], is not based upon giving an
explicit trajectory for the ICR, we now use its representation
additionally to handle the mechanical singularities mentioned
in Section III. Khatib introduced a general methodology of
considering critical configurations as obstacles and modeling
them as repulsive potential fields [13]. We use that concept
in our approach to push the ICR away from the steering axes
of the wheels. Thereby, restrictions on the nominal motion
trajectory such as constraints for the radius of curvature [7]
can be discarded.

A. Controllability

In [7] it is shown that one has direct access to the platform
accelerations. Let us now consider their influence on the ICR

velocity. Differentiating (1) w.r.t. time leads to

ż =
∂z

∂γ
γ̇ +

∂z

∂θ̇
θ̈ +

∂z

∂v
v̇

=

− v
|θ̇| sin γ − sgn(θ̇)v

θ̇2
cos γ

v
|θ̇| cos γ − sgn(θ̇)v

θ̇2
sin γ


︸ ︷︷ ︸

J ICR

[
γ̇

θ̈

]
+

 cos γ

|θ̇|
sin γ

|θ̇|

 v̇ (4)

for the velocity of the ICR in the plane with J ICR expressing
a Jacobian matrix. We observe that through γ̇ and θ̈ we are
able to control the velocity of the ICR directly as long as
J ICR has full rank, that is detJ ICR 6= 0 ∀ θ̇ 6= 0:

detJ ICR =
sgn(θ̇) · v2

|θ̇| · θ̇2
(
sin2 γ + cos2 γ

)
=
v2

θ̇3
. (5)

It results from (5) that a loss of controllability only occurs in
case of a pure rotational motion (v = 0) or when the angular
velocity tends to infinity. Both implies that the ICR is lying in
the platform center. Accordingly, there is no need to control
the ICR in that zone, since no singular configuration of the
platform is reached.

Considering Fig. 4, a variation exclusively in γ̇ makes the
ICR turn around the platform (tangential) while θ̈ generates a
radial motion. We summarize that the two variables γ̇ and θ̈
have orthogonal effect on the ICR behavior which provides
us with a proper control input to push away the ICR, if
necessary. Furthermore, a benefit of this approach is that we
can keep v̇ = 0. Thereby, the second part in (4) disappears.

B. Design of the Repulsive Potential Fields

A simple approach is an axially symmetric potential field
which is placed around the wheel steering axis. One choice
of such a potential Vrep (d) is

Vrep (d) =

{
− Fmax

3d2start
(d− dstart)

3 ∀ d ≤ dstart

0 ∀ d > dstart
, (6)

wherein dstart is the potential field starting radius and d is
defined as the distance between the ICR z and the nearest
wheel w (in body coordinates):

d = ‖z −w‖ . (7)

The corresponding repulsive force is derived as follows:

Frep (d) = −
∂Vrep (d)

∂d
=

{
Fmax
d2start

(d− dstart)
2 ∀ d ≤ dstart

0 ∀ d > dstart
.

(8)
The force Fmax should be set according to the maximum
feasible control inputs. Fig. 5 gives an overview of the
positioning of the potential fields in the body frame.

C. Effect on the ICR

We want to emphasize the fact that Frep (d), applied to the
ICR, is no genuine force expressed in [N] at all since the
ICR does not possess an inherent inertia. It has been shown
in (4) that the platform accelerations have a direct impact
on the ICR velocity. According to that, discontinuities in ż



Fig. 5. Position and shape of the potentials in body frame.

are possible. However, this is beneficial as we do not have
to decelerate the ICR before repelling it into the opposite
direction again.

For the resulting repulsive effect on the ICR, the equation

żdes = Frep(d) · z −w
d︸ ︷︷ ︸
p

(9)

can be set up where żdes is the desired ICR velocity and p
expresses the normalized direction from wheel contact point
to ICR. An additional damping in (9) is optional but not
required since no kinetic energy is stored within the motion
of the ICR.
Combining (4) and (9) and setting ż = żdes leads to the
required ICR controller outputs γ̇des and θ̈des:(

γ̇des

θ̈des

)
= J−1ICR · Frep(d) · p. (10)

Notice that the second part in (4) is omitted due to the
constraint v̇ = 0. The value θ̈des can be applied by the motion
controller [7], whereas γ̇des has to be transformed into the
corresponding accelerations ẍdes and ÿdes. The mathematical
derivation of the transformation is straightforward and based
on simple geometrical considerations. Based on (3), the
rotational velocity of the ICR around the platform center,
see Fig. 4, is

γ̇ =
∂γ

∂t
=

1

1 +
(
ẋ
ẏ

)2 · ẋÿ − ẏẍẏ2
. (11)

Notice that sgn(θ̇) from (3) has been omitted here since θ̇ 6=
0 in case of repulsion. Rearranging (11) with (2) delivers the
instantaneous linear relation

ÿ =
ẏ

ẋ
· ẍ+

v2

ẋ
γ̇ (12)

between ÿ and ẍ for satisfying any γ̇. As our purpose is to
maintain the actual translational velocity v, the derivative of

the velocity vector and the vector itself must be perpendicu-
lar, solely allowing a vector-rotation. That condition is met
by

ÿ = − ẋ
ẏ
· ẍ. (13)

Eventually solving the linear system of equations composed
of (12) and (13) leads to(

ẍ
ÿ

)
= γ̇

(
−ẏ
ẋ

)
. (14)

Finally, by replacing γ̇ with the desired value γ̇des we obtain(
ẍdes

ÿdes

)
= γ̇des

(
−ẏ
ẋ

)
(15)

to complete the control law. Notice that the applied constraint
v̇ = 0 is only one particular approach to deal with the non-
injectivity discussed in Section III. Any other choice can be
made.

D. Repulsive Effect on the Wheel

The leg dof makes it possible to repel the wheel i from
the ICR as well. In contrast to the control of the ICR, a
leg motion does not result in a deviation from the nominal
translational/rotational trajectory, which is the main benefit.
To apply a repulsive force to the wheel, we make use of a
simple mass-spring-damper equation

mwλ̈des,i + dwλ̇des,i + cw (λdes,i − λi,0) = Fw, (16)

where mw, dw and cw describe the assigned mass of wheel
i and virtual values for damper and spring. λi,0 describes
the user-defined equilibrium position for the wheel location
along the leg direction and Fw stands for a control input
resulting from the repulsive force we want to apply. The
reason for imposing the feedback gains dw and cw is the
limitation of the leg length. For high efficiency around the
equilibrium configuration, a non-linear increasing stiffness
cw = cw (λdes,i) is proposed as

cw (λdes,i) = c1 (λdes,i − λi,0)
2
, (17)

with c1 being a positive constant.
We propose one feasible approach for the repulsive force

Fw = −pTg · Frep (d) , (18)

wherein the first part describes the projection of p (from
(9)) into the normalized fixed leg direction g of the nearest
wheel w. By inserting (17), (18) into (16) an expression for
the desired leg acceleration can be developed:

λ̈des,i = −
pTgFrep (d)

mw
− dw
mw

λ̇des,i −
c1
mw

(λdes,i − λi,0)
3
.

(19)



Fig. 6. Control loop to eliminate any deviations. (nominal motion trajectory
ξref = [xwref y

w
ref θref λref,1 λref,2 λref,3 λref,4]T , wheel velocity commands

vcmd,w = [vcmd,w,1 vcmd,w,2 vcmd,w,3 vcmd,w,4]T , wheel steering rate
commands Φ̇cmd = [Φ̇cmd,1 Φ̇cmd,2 Φ̇cmd,3 Φ̇cmd,4]T ).

E. Singularity Avoidance Controller Output

So far, we have calculated a set of seven accelerations ẍdes,
ÿdes, θ̈des and λ̈des,i for i = 1...4 for singularity avoidance. We
observe that a lasting deviation from the nominal trajectory
of the platform would result if we just assigned these values
to the motion controller, see [7]. To remedy this problem we
use a separate control loop that leads back onto the nominal
trajectory as soon as the ICR leaves the potential field. Fig.
6 depicts this strategy. Feedback gains r1 = r1 (d) and
r2 = r2 (d) get activated once the potential field is left. Their
values are dependent on the desired poles of that second
order system. At this point it shall be mentioned that all com-
puted accelerations ẍdes, ÿdes, θ̈des, λ̈des,1, λ̈des,2, λ̈des,3, λ̈des,4
have to be transformed back into the world frame before
entering the control loop since the motion control algo-
rithm [7] requires world coordinates. However, this trans-
formation only affects ẍdes and ÿdes. According to Fig.
6, the singularity avoidance controller commands ξ̈des =
[ẍwdes ÿ

w
des θ̈des λ̈des,1 λ̈des,2 λ̈des,3 λ̈des,4]T .

F. Feasible Potential Field Expansions

As a consequence of the possible leg motions, too widely
expanded potential fields provoke overlaps if the wheels
approach the platform center. This may lead to unpredictable
and instable behavior of the ICR and hence of the entire
platform. However, the leg’s zero position λi,0 from (16)
in combination with a proper choice of cw (λdes,i) from
(17) makes it possible to restrict the leg motion and thus
the moving potential field to a certain region. A feasible
approach for the expansion is depicted in Fig. 7. Depending
on λi,0 which remains within the range of the green, dotted
line, the potential field center is chosen while the extension
is restricted by the dashed contour in order to avoid overlaps.
According to the figure, an affine relation between dstart,i and
λi,0 exists with

dstart,i = c2 + c3λi,0 ∀ λmin ≤ λi,0 ≤ λmax, (20)

wherein c2, c3 ∈ R. λmin and λmax denote the minimum
and maximum leg extension, determined by the mechanical
structure.

Fig. 7. Feasible potential field extensions depending on the locations of
the wheels.

Fig. 8. ICR plot in body frame. (simulated with deactivated ICR control
(blue, solid); simulated with activated ICR control (red, dashed); hardware
measurements with activated ICR control (green, dotted); connections */**).

V. RESULTS

The control algorithm was tested for the Justin mobile
platform kinematics in a Matlab/Simulink environment and
implemented on the real system.

The further analysis is based on a trajectory for xwloc (t),
ywloc (t) and θ (t) consisting of quintic Bézier splines. The
platform achieves a rotational speed of 2.1 rad/s which
requires the maximum spinning rates of the wheels, i.e.,
13.9 rad/s. The trajectory was implemented with and without
ICR repulsion activated, while the leg lengths are initially
kept constant. The platform motion with active repulsion can
be seen in the video which accompanies this paper.

In Fig. 8 one can see the respective ICR behavior wi-
thin the time range (tstart, tend). The potential fields (shaded
circles) are crossed in case of deactivated control and avoided
while the repulsion is active. Fig. 9 depicts the steering rates
of wheels 1 to 3. Whereas the steering rates stay reasonably
small while the ICR control is active, they display high peaks
in the non-controlled case. Critical situations occur at 9, 15
and 18 s which can be seen both in Fig. 8 and Fig. 9.



Fig. 9. Steering velocities of wheels 1,2 and 3. (simulated with deactivated
ICR control (blue, solid); simulated with activated ICR control (red, dashed);
hardware measurements with activated ICR control (green, dotted)).

Furthermore, we observe that the steering velocities of wheel
2 result in different signs at 18 s. This is due to the fact that
the potential field pushes the ICR around the wheel counter-
clockwise. Otherwise the ICR passes wheel 2 closely and
clockwise as it becomes evident in Fig. 8 (non-controlled
case).
At this point it shall be mentioned that the deviation induced
by the ICR control may lead to a different behavior after
leaving a potential field again. At 9 s the ICR is repelled
from wheel 3 (lower left corner in Fig. 8). Before coming
back onto the nominal trajectory again, the ICR approaches
wheel 1 (upper right corner) while the path of the ICR does
not cross the potential field if the controller is deactivated.
In this exemplary case, the steering rate of wheel 1 increases
slightly (at 10.5 s) when the potential fields are active.

Fig. 10 shows the commanded accelerations for repelling
the ICR which enter the control loop in Fig. 6. The plot at
the bottom in Fig. 10 indicates whether the ICR repulsion
is active (measurement). Apparently, a corrective command
is applied each time the ICR leaves a potential field again.
This behavior can be traced back to the feedback terms r1
and r2 in the control loop in Fig. 6 which are responsible
for abating the location deviations. The latter stay within a
range of ±7 cm (translational) and ±15 deg (rotary) during
the whole motion. These commanded errors can be reduced
by using weaker potential fields. However, it still remains
to be a trade-off between low steering velocity and small
deviation from the desired motion trajectory.

By activating the additional leg dof, one is enabled to
reduce the necessary commanded accelerations in translatio-
nal and rotational direction since repelling a wheel from the
ICR alleviates the need for the ICR to be pushed away. To

Fig. 10. Commanded accelerations in world frame and state of the
ICR controller. (simulated (red, dashed); hardware measurements (green,
dotted)).

support that idea, a simulated leg motion maneuver is shown
in Fig. 11. Starting position for the wheel contact point is
denoted A. In case of pure ICR repulsion, the wheel stays
at position A. The ICR is deflected as the blue solid line
demonstrates. On the contrary, the wheel moves to B if leg
motions are enabled. The distance A-B amounts to about
5.5 cm. Evidently, a smaller deflection from the original
ICR path results (red, dashed line). That directly affects the
necessary accelerations of xwloc, ywloc and θ which are required
to push away the ICR, see Fig. 12. At first, the accelerations
in both cases resemble since the wheel stands still within
the body frame as the ICR enters the potential field at t1.
The ICR slows down and gets stuck before it starts to pass
the wheel clockwise. Meanwhile, the wheel starts to move
towards B in case of the activated leg motion. Eventually,
that reduces the effort to push away the ICR and results in
the less deformed path. The leg deviation plot (down right)
shows the simulated leg length deviation of wheel 2 from
the equilibrium position λ2,0. In this example, the reduction
of the accelerations due to the activated leg motion leads
to smaller maximum deviations from the reference motion
trajectory. They stay 32% (for translational motion) and 24%
(for rotational motion) below the values of locked legs.

VI. CONCLUSION AND FUTURE WORKS

Controlling mobile platforms equipped with a set of in-
dependent steering wheels implies coping with the problem
of ICR-based singularities. These configurations occur when
the Instantaneous Center of Rotation passes one of the
wheels’ steering axes closely. In this paper, we discussed
and analyzed this issue and introduced a controller which



Fig. 11. Simulated ICR in body frame. (deactivated leg motion (blue,
solid); activated leg motion (red, dashed); possible wheel locations (black,
chain dotted)).

Fig. 12. Simulated acceleration commands and leg length of wheel
2 in the world frame. (accelerations for deactivated leg motion (blue,
solid); accelerations for activated leg motion (red, dashed); leg deviation
for activated leg motion (green, solid)).

remedies the problem. In order to avoid these singular
regions, we designed repulsive potential fields around the
steering axes, pushing away the ICR if it approaches a
critical region. Furthermore, we introduced an additional
constraint to handle the under-determined equations of the
ICR control. Due to the special kinematic structure which
enables variable footprint in the addressed system, namely
the Justin mobile platform, we designed variable potential
fields. Special attention was paid to the additional degrees
of freedom which provide us with the possibility to change
that footprint. An additional repulsion of the wheels from the
ICR itself was achieved by incorporating the leg extension
dof. The theoretical claims were validated by simulations and
experimental results on the Justin mobile platform.

Future work will focus on further means to avoid the
singularities and address non-reactive methods in particular.
One possibility is to predict the ICR path and command the

wheels so as to clear the way in advance. Another promising
possibility is to use the additional velocity component due
to the leg motion in order to modify the respective stee-
ring velocity systematically and avoid unfeasible peaks by
distributing the steering rate onto a wider period of time.
Further analyses on non-symmetric fields could also lead to
an improved performance.
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