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A Linearly Constrained Nonparametric Framework for

Imitation Learning

Yanlong Huang and Darwin G. Caldwell

Abstract— In recent years, a myriad of advanced results
have been reported in the community of imitation learn-
ing, ranging from parametric to non-parametric, probabilistic
to non-probabilistic and Bayesian to frequentist approaches.
Meanwhile, ample applications (e.g., grasping tasks and human-
robot collaborations) further show the applicability of imitation
learning in a wide range of domains. While numerous literature
is dedicated to the learning of human skills in unconstrained
environments, the problem of learning constrained motor skills,
however, has not received equal attention. In fact, constrained
skills exist widely in robotic systems. For instance, when a
robot is demanded to write letters on a board, its end-effector
trajectory must comply with the plane constraint from the
board. In this paper, we propose linearly constrained kernelized
movement primitives (LC-KMP) to tackle the problem of imita-
tion learning with linear constraints. Specifically, we propose to
exploit the probabilistic properties of multiple demonstrations,
and subsequently incorporate them into a linearly constrained
optimization problem, which finally leads to a non-parametric
solution. In addition, a connection between our framework
and the classical model predictive control is provided. Several
examples including simulated writing and locomotion tasks are
presented to show the effectiveness of our framework.

I. INTRODUCTION

In the community of robot learning, a vital goal is to

endow robots with learning capabilities. In this line, imi-

tation learning [1], [2], also referred to as programming by

demonstration or learning from demonstration [3], emerges

as an important research direction due to its nature and

user-friendly features. Remarkably, many imitation learning

approaches, such as dynamical movement primitives (DMP)

[4], task-parameterized Gaussian mixture model (GMM) [5]

and kernelized movement primitives (KMP) [6], have been

developed. In addition, imitation learning has achieved great

success in ample scenarios, e.g., reaching [7], grasping [8],

striking [9] and painting [10] tasks.

However, most of the aforementioned works focus on

learning human skills while the possible external or internal

constraints are ignored. As we know, robots often encounter

various constraints in dynamical environments. To take the

wiping task as an example, the robot end-effector trajectory

should always lie above the table since trajectories under

the table are physically infeasible. Besides, the end-effector

trajectory must obey the plane constraint of the table in order

to clean the table successfully. It is also worth pointing out

that, during the wiping process, robot joint trajectories must

comply with the joint limits.

Yanlong Huang is with School of Computing, University of Leeds, Leeds

LS29JT, UK. y.l.huang@leeds.ac.uk

Darwin G. Caldwell is with Istituto Italiano di Tecnologia, Via Morego

30, Genoa 16163, Italy. darwin.caldwell@iit.it

In order to cope with the constraints that are imposed to

robots, a few approaches have been proposed. For example,

the hard (i.e., equality) constraints were studied in [11],

[12] and joint limit avoidance1 was treated in [13], [14]. In

contrast to these approaches, we aim at developing a generic

framework which can be employed to learn and generalize

human demonstrations to new situations, and meanwhile

address a variety of constraints (i.e., equality and inequality

constraints) that commonly arise in practice. In summary, the

new framework should be capable of

(i) inheriting the key features of imitation learning (e.g.,

learning multiple demonstrations, reproduction as well

as adaptation towards via-/end- points in terms of

position and velocity);

(ii) taking into account arbitrary linear equality (e.g., plane

constraint) and inequality constraints (e.g., a linear

combination of action components should be larger or

smaller than a predefined value).

To do so, we propose to build the linearly constrained

imitation learning framework on the top of our previous

work KMP [6], since KMP provides us with most of the

crucial features in imitation learning, including the learning

and adaptation of human skills associated with time input

and high-dimensional inputs. Specifically, we first exploit the

probabilistic properties of multiple demonstrations in Sec-

tion II. Subsequently, we present the constrained framework

in Section III. Since the classical model predictive control

(MPC) can address the constrained trajectory optimization

problem, we provide a connection between our framework

and MPC in Section IV. Finally, we evaluate the proposed

approach through several simulated examples in Section V.

II. EXPLOITING PROBABILISTIC FEATURES OF

MULTIPLE DEMONSTRATIONS

Following the spirit of probabilistic approaches [6], [15],

[16], [17], [18], we model demonstrations from a probabilis-

tic perspective. Let us assume that we have access to M

demonstrations D = {{tn,m, ξn,m, ξ̇n,m}Nn=1}
M
m=1, where

N denotes the trajectory length, ξ ∈ R
O and ξ̇ respectively

correspond to the output and its first-order derivative. For the

sake of brevity, we write η = [ξ⊤ ξ̇
⊤

]⊤. Then, we can employ

GMM to model the joint probability distribution P(t,η),
leading to

P(t,η) ∼
C∑

c=1

πcN (µc,Σc) (1)

1From an optimization perspective, joint limits can be viewed as a special
case of inequality constraints.



with πc, µc =

[
µt,c

µη,c

]
and Σc =

[
Σtt,c Σtη,c

Σηt,c Σηη,c

]
being the

prior probability, mean and covariance of the c-th Gaussian

component, respectively2. Here, C represents the number of

Gaussian components. After that, we resort to Gaussian mix-

ture regression3 (GMR) to retrieve a probabilistic reference

trajectory {tn, η̂n}
N
n=1 with η̂n|tn ∼ N (µ̂n, Σ̂n), where the

input sequence {tn}
N
n=1 (e.g., equal interval sequence) spans

the whole input space.

We now denote Dr = {tn, µ̂n, Σ̂n}
N
n=1. In fact, Dr

encapsulates the probabilistic features of demonstrations D,

since it estimates the means and covariances of demonstra-

tions over various key input points. In the next section,

we will exploit Dr and propose the linearly constrained

imitation learning framework in details.

III. LINEARLY CONSTRAINED NONPARAMETRIC

FRAMEWORK FOR IMITATION LEARNING

Let us first write η(t) using a parametric form4, i.e.,

η(t)=

[
ξ(t)

ξ̇(t)

]
= Θ⊤(t)w (2)

with

Θ(t)=




ϕ(t) 0 · · · 0 ϕ̇(t) 0 · · · 0

0 ϕ(t) · · · 0 0 ϕ̇(t) · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · ϕ(t) 0 0 · · · ϕ̇(t)


,

(3)

where ϕ(·) ∈ R
B represents a basis function vector and

w ∈ R
BO denotes the unknown parameter vector.

Formally, we formulate the problem of imitation learning

with linear constraints as a constrained optimization problem

argmax
w

N∑

n=1

P
(
η(tn)|µ̂n, Σ̂n

)

s.t.

g⊤

n,1η(tn) ≥ cn,1
g⊤

n,2η(tn) ≥ cn,2
...

g⊤

n,Fη(tn) ≥ cn,F

, ∀n ∈ {1, 2, . . . , N},

(4)

where we use gn,f ∈ R
2O and cn,f ∈ R to characterize the

f -th linear constraint over ξ(tn) and ξ̇(tn), and F to denote

the number of constraints.

With probability calculations and logarithm transforma-

tion, the constrained maximization problem in (4) can be

rewritten as

argmin
w

N∑

n=1

1

2
(Θ⊤(tn)w−µ̂n)

⊤Σ̂
−1

n (Θ⊤(tn)w−µ̂n)+
1

2
λw⊤w

s.t. g⊤

n,fη(tn) ≥cn,f ,∀f ∈ {1,2, . . . ,F}, ∀n ∈ {1,2, . . . ,N}.
(5)

2Note that vector notations ut,c and Σtt,c are used to represent scalars.
3More details about GMM/GMR can be found in [6], [19], [20].
4Similar parametric form was exploited in [4], [21].

Here, the regularized term 1
2λw

⊤w with λ > 0 is added into

(5) so as to alleviate the over-fitting issue5.

We can solve (5) by introducing Lagrange multipliers

αn,f ≥ 0, leading to the Lagrange function

L(w,α) =

N∑

n=1

1

2
(Θ⊤(tn)w−µ̂n)

⊤Σ̂
−1

n (Θ⊤(tn)w−µ̂n)

+
1

2
λw⊤w −

N∑

n=1

F∑

f=1

αn,f (g
⊤

n,fΘ(tn)
⊤w − cn,f )

(6)

with α = [α1,1, α1,2, . . . , α1,F . . . . . . αN,1, αN,2, . . . , αN,F ]
⊤.

By calculating the derivative
∂L(w,α)

∂w
and setting as 0, we

have6

w∗ =(ΦΣ−1Φ⊤ + λI)−1(ΦΣ−1µ+ΦGα)

=Φ(Φ⊤Φ+ λΣ)−1(µ+ΣGα),
(7)

where

Φ = [Θ(t1) Θ(t2) · · · Θ(tN )],

Σ = blockdiag(Σ̂1, Σ̂2, . . . , Σ̂N ),

µ = [µ̂⊤

1 µ̂
⊤

2 · · · µ̂
⊤

N ]⊤,

Gn = [gn,1 gn,2 . . . gn,F ], ∀n ∈ {1,2, . . . ,N},

G = blockdiag(G1, G2, . . . , GN ).

(8)

Furthermore, substituting the optimal w∗ into (6) gives

L̃(α)=α⊤G
⊤

ΣAΣGα+(2µ⊤AΣG+C
⊤

)α+ const (9)

with

Cn = [cn,1 cn,2 . . . cn,F ]
⊤, ∀n ∈ {1,2, . . . ,N},

C = [C⊤

1 C⊤

2 . . .C
⊤

N ]⊤,

A = −
1

2
(Φ⊤Φ+ λΣ)−1(Φ⊤ΦΣ−1Φ⊤Φ+ λΦ⊤Φ)

(Φ⊤Φ+ λΣ)−1.

(10)

Similarly to KMP, we employ the well-known kernel trick

ϕ(ti)
⊤ϕ(tj) = k(ti, tj), with k(·, ·) being a kernel function,

to (3), giving

k(ti, tj)=Θ(ti)
⊤Θ(tj)=

[
ktt(i, j)IO ktd(i, j)IO
kdt(i, j)IO kdd(i, j)IO

]
, (11)

where7 ktt(i, j) = k(ti, tj), ktd(i, j) =
k(ti,tj+δ)−k(ti,tj)

δ
, kdt(i, j) =

k(ti+δ,tj)−k(ti,tj)
δ

, kdd(i, j) =
k(ti+δ,tj+δ)−k(ti+δ,tj)−k(ti,tj+δ)+k(ti,tj)

δ2
. Subsequently,

combined with the definition of Φ in (8), we have the kernel

matrix

K = Φ⊤Φ =




k(t1, t1) k(t1, t2) · · · k(t1, tN )
k(t2, t1) k(t2, t2) · · · k(t2, tN )

...
...

. . .
...

k(tN , t1) k(tN , t2) · · · k(tN , tN )


 .

(12)

5This treatment has been widely adopted in many regressions, e.g., kernel
ridge regression [22], [23].

6Woodbury identity is used [24]: if P ≻ 0 and R ≻ 0, (P−1 +
B⊤R−1B)−1B⊤R−1 = PB⊤(BPB⊤ +R)−1.

7In order to facilitate the kernel application, we approximate ϕ̇(t) =
ϕ(t+δ)−ϕ(t)

δ
, with a small constant δ > 0.



Thus, we can rewrite A in (10) as

A = −
1

2
(K+ λΣ)−1(KΣ−1K+ λK)(K+ λΣ)−1. (13)

Let us now revisit the function L̃(α) of Lagrange multi-

pliers in (9), and denote

B1 = G
⊤

ΣAΣG,

B2 = 2µ⊤AΣG+C
⊤

.
(14)

Thus, we can tackle the problem of finding optimal Lagrange

multipliers α through maximizing

L̃(α) =α⊤B1α+ B2α,

s.t. α ≥ 0.
(15)

It is noted that A = A⊤ � 0 and hence B1 = B⊤

1 � 0. So, the

problem described in (15) is a typical quadratic optimization

problem with linear constraints, which can be solved by the

classical quadratic programming.

Once the optimal α∗ is determined, we can apply (7) to

the prediction problem. Namely, given a query input t∗, we

have its corresponding output as

η(t∗) =

[
ξ(t∗)

ξ̇(t∗)

]
= Θ⊤(t∗)w∗

= Θ⊤(t∗)Φ(Φ⊤Φ+ λΣ)−1(µ+ΣGα∗)

= k∗(K+ λΣ)−1(µ+ΣGα∗),

(16)

where

k∗ = [k(t∗, t1) k(t
∗, t2) · · · k(t∗, tN )] . (17)

Until now, we have explained the linearly constrained im-

itation learning framework, which we refer to as linearly

constrained KMP (LC-KMP). Before ending this section, we

show a few insights over LC-KMP:

1) Non-constrained Learning: if we consider imitation

learning without linear constraints, i.e., α = 0, the

prediction of LC-KMP in (16) will become the vanilla

KMP.

2) Partially-constrained Learning: when only partial

linear constraints are required, we can deactivate the

remaining constraints by simply setting their corre-

sponding Lagrange multipliers as zero, which can be

ensured by adding an additional equality constraint

over α.

3) Equality-constrained Learning: the framework in (4)

can be used to tackle equality constraints. For exam-

ple, the equality constraint g⊤

n,fη(tn) = cn,f can be

guaranteed by g⊤

n,fη(tn)>cn,f − ǫ and −g⊤

n,fη(tn)>
−cn,f − ǫ, with an approximation error ǫ > 0.

4) Adaptations with constraints: we can extend LC-

KMP to adapt trajectories towards arbitrary desired

points in terms of position and velocity8. Given L

desired points D = {t̄l, µ̄l, Σ̄l}
L
l=1 comprising the de-

sired time t̄l and its corresponding output distribution

8The adaptation property has been proven essential in many applications,
such as grasping an object at difference locations [8] or striking a ping-pong
ball at a desired position while having a desired velocity [9].

(i.e., η(t̄l) ∼ N (µ̄l, Σ̄l)), we can directly concatenate9

D and D to obtain an extended probabilistic reference

trajectory DU . After that, we exploit DU instead

of D in the framework (4), which will generate a

trajectory that passes through various desired points

while satisfying additional linear constraints.

IV. CONNECTION WITH MODEL PREDICTIVE CONTROL

In this section, we provide a connection between LC-KMP

and linear MPC. For more details about MPC, see, e.g., [25],

[26]. Assuming that we have a linear system, described by10

ηt+1 = Aηt +But, (18)

with A ∈ R
2O×2O and B ∈ R

2O×O being the state

and control matrices, and ut ∈ R
O denoting the control

command. The optimization objective in MPC is

argmin
u1,...,uN−1

N∑

t=1

(ηt − η̂t)
⊤Qt(ηt − η̂t) +

N−1∑

t=1

u⊤

tRtut

s.t. ηmax ≥ ηt ≥ ηmin, ∀t ∈ {2, 3, . . . , N}

umax ≥ ut ≥ umin, ∀t ∈ {1, 2, . . . , N − 1}
(19)

with Q � and R ≻ 0. η̂t denotes the desired reference

trajectory point at time t, while ηmin, ηmax, umin and umax

represent the predefined limits.

Following the prediction strategy in MPC (e.g., [20]), we

can obtain



η1

η2

η3
...

ηN




︸ ︷︷ ︸
η

=




I

A

A2

...

AN−1




︸ ︷︷ ︸
Sη

η1+




0 0 · · · 0

B 0 · · · 0

AB B · · · 0
...

...
. . . 0

AN−2B AN−3B · · · B




︸ ︷︷ ︸
Su




u1

u2

...

uN−1




︸ ︷︷ ︸
u

.

(20)

Using (20), we can reformulate (19) as

argmin
u

(η − η̂)⊤Q(η − η̂) + u⊤Ru

s.t. W1u ≥ W2 +Vη1,
(21)

where

η = [η⊤

1 η⊤

2 . . .η⊤

N ]⊤,

η̂ = [η̂⊤

1 η̂
⊤

2 . . . η̂
⊤

N ]⊤,

u = [u⊤

1 u⊤

2 . . .u⊤

N−1]
⊤,

Q = blockdiag(Q1, Q2, . . . , QN ),

R = blockdiag(R1, R2, . . . , RN−1).

(22)

Note that W1, W2 and V denote coefficient matrices, which

can be determined by using Sη , Su, ηmin, ηmax, umin and

umax.

9Please refer to [6] for the details of updating the reference trajectory.
10Note that ηt is interchangeably used with η(t).



TABLE I

COMPARISON BETWEEN MPC AND LC-KMP

MPC LC-KMP

Model η(t+ 1) = Aη(t) +Bu(t) η(t) = Θ⊤(t)w

Referecne traj. {η̂t}
N
t=1 {µ̂n, Σ̂n}Nn=1

Optimization

argmin
u1,...,uN−1

N∑

t=1

(ηt − η̂t)
⊤Qt(ηt − η̂t) +

N−1∑

t=1

u⊤

t Rtut

s.t. ηmax ≥ ηt ≥ ηmin, ∀t ∈ {2, 3, . . . , N}

umax ≥ ut ≥ umin, ∀t ∈ {1, 2, . . . , N − 1}

argmin
w

N∑

n=1

1

2
(Θ⊤(tn)w−µ̂n)

⊤Σ̂
−1
n (Θ⊤(tn)w−µ̂n)+

1

2
λw⊤w

s.t. g⊤n,fη(tn) ≥cn,f ,∀f ∈ {1, 2, . . . , F}, ∀n ∈ {1, 2, . . . , N}.

Compact form
argmin

u

(Suu+ Sηη1 − η̂)⊤Q(Suu+ Sηη1 − η̂) + u⊤Ru

s.t. W1u ≥ W2 +Vη1,

argmin
w

1

2
(Φ⊤w − µ)⊤Σ−1(Φ⊤w − µ)+

1

2
λw⊤w

s.t. G
⊤

Φ⊤w ≥ C.

Solution u∗ = [u∗⊤

1 u∗⊤

2 . . .u∗⊤

N−1]
⊤, apply u∗

1 as control command α
∗ and w∗, apply k∗(K+ λΣ)−1(µ+ΣGα

∗) to trajectory prediction.

Furthermore, substituting η = Suu+Sηη1 into (21) gives

argmin
u

(Suu+ Sηη1 − η̂)⊤Q(Suu+ Sηη1 − η̂) + u⊤Ru

s.t. W1u ≥ W2 +Vη1.
(23)

Now, let us recall the optimization problem (5) of LC-

KMP, whose impact form is

argmin
w

1

2
(Φ⊤w − µ)⊤Σ−1(Φ⊤w − µ)+

1

2
λw⊤w

s.t. G
⊤

Φ⊤w ≥ C.

(24)

By comparing (23) and (24), it can be seen that both

optimization problems will be equivalent11 if Su = Φ⊤,

η̂ = µ + Sηη1, Q = Σ−1, R = λI, W1 = G
⊤

Φ⊤ and

W2 = C−Vη1. In fact, the key differences between MPC

and LC-KMP lie at two aspects:

1) In contract to MPC that uses the dynamics model

(18) for predicting future trajectory, LC-KMP uses the

parametric model (2) instead. Note that basis functions

in LC-KMP can be ultimately alleviated through the

kernel trick, resulting in a non-parametric approach.

2) MPC aims at finding the optimal control command

u ∈ R
(N−1)O, while LC-KMP aims for the optimal

trajectory parameter w ∈ R
BO.

For the purpose of clear comparison, we summarize the

differences between MPC and LC-KMP in Table I.

It is worth pointing out that the unconstrained MPC was

studied in [5], [20], where setting η̂t = µ̂t and Qt = Σ̂
−1

t

in (19) yields the minimal intervention control problem

argmin
u1,...,uN−1

N∑

t=1

(ηt − µ̂t)
⊤Σ̂

−1

t (ηt − µ̂t) +
N−1∑

t=1

u⊤

tRtut,

(25)

which is equivalent to

argmin
u

(Suu+Sηη1−µ)⊤Σ−1(Suu+Sηη1−µ) + u⊤Ru.

(26)

We can find that minimal intervention control, as a special

case of unconstrained MPC, shares similarities with LC-

KMP in terms of imitation, since minimal intervention

control exploits the distribution of demonstrations as well.

11The scalar “ 1
2

” can be ignored as it does not influence the optimization.

V. EVALUATIONS

In order to verify our framework, several evaluations are

provided, including (i) adapting 2D trajectories with/without

motion limits, as well as adaptations with full/partial motion

limits (Section V-A); (ii) adapting 3D trajectories in various

planes (Section V-B); (iii) generating stable waking trajec-

tories for a humanoid robot (Section V-C). The Gaussian

kernel k(ti, tj) = exp(−kh(ti− tj)
2) is used in this section.

A. Adaptation with Motion Limits

We first apply LC-KMP to the learning and adaptation

of 2D hand-written letter ‘G’, where five demonstrations

comprising input t and 2D output ξ(t) = [x(t) y(t)]⊤ are

used (plotted by solid green curves in Fig. 1 (top row)). As a

comparison, we separately apply LC-KMP and vanilla KMP

to adapt trajectories towards desired points under motion

limits. We consider the following constraints:

− 4 ≤ x ≤ 10, y ≥ −4, ẋ ≥ −32, ẏ ≥ −20. (27)

Other relevant parameters are λ = 3 and kh = 6. It can be

seen from Fig. 1 (middle row) that LC-KMP (solid yellow

curves) indeed modulates trajectories towards various desired

points (depicted by circles) while respecting the motion

limits, where lower and upper limits are shown by blue and

red dashed curves, respectively. In contrast, vanilla KMP

(dashed green curves) only focuses on trajectory adaptations,

ignoring the motion limits.

Furthermore, we test LC-KMP with full constraints and

partial constraints. Specifically, in the former case constraints

are active over the whole time duration (i.e., 0 < t ≤ 2),

while in the latter case constraints are only active when

0.15 < t ≤ 2. We consider the following constraints

x ≤ 8 , y ≥ −4. (28)

As shown in Fig. 1 (bottom row), the upper limit of x(t)
has a conflict with the x component of the first desired

point, thus the adapted trajectory (dashed green curves), that

obeys the constraints over the whole time duration, fails to

pass through the x component of the first desired point. In

contrast, when only partial constraints are active, the adapted

trajectory (solid yellow curves) is capable of passing through

the first desired point. Note that once the adapted trajectory



Fig. 1. Learning and adaptation of 2D letter ‘G’ under motion limits. Top row shows demonstrations (green curves) and the corresponding GMM/GMR
modeling results. Ellipses represent Gaussian components in GMM, while the pink curve and the shaded pink area respectively depict the mean and the
standard deviation of the retrieved trajectory by GMR. Middle row shows adaptations by using LC-KMP (solid yellow curves) and vanilla KMP (dashed
green curves), where the dashed gray curves denote the mean of the probabilistic reference trajectory. Circles represent desired points. The dashed blue
and red curves correspond to the lower and upper limits, respectively. Bottom row depicts adaptations with full constraints (solid yellow curves) and partial
constraints (dashed green curves) with the shaded red area corresponding to the inactive region.

Fig. 2. Adaptation of 3D letter ‘G’ in different planes. Top-left shows GMM modeling of demonstrations, while top-right and bottom plot trajectory
adaptations in different planes (shown by colored planes), where circles denote desired points.

moves out of the deactivate region (depicted by the shaded

red area), it will comply with the constraints again.

B. Adaptation with Plane Constraint

We here consider adaptations of 3D letter ‘G’ in differ-

ent planes. Five demonstrations (depicted by gray dots in

Fig. 2 (top-left)) in terms of input t and 3D output ξ(t) =
[x(t) y(t) z(t)]⊤ are collected. The relevant parameters in

LC-KMP are λ = 5 and kh = 2. The plane constraint is

defined as

axx+ byy + czz = d. (29)

We have three groups of evaluations, whose corresponding

parameters are set as: (i) a
(1)
x = 1, b

(1)
y = 0.2, c

(1)
z =

−1.1, d(1) = −1; (ii) a
(2)
x = 0.6, b

(2)
y = 0.4, c

(2)
z =

−3, d(2) = 2; (iii) a
(3)
x = 1, b

(3)
y = 0.6, c

(3)
z = 2, d(3) = 3.

Evaluations are provided in Fig. 2, showing that LC-KMP

can learn and adapt demonstrations into different planes

and meanwhile considering various start-/via-/end- points in

terms of both position and velocity.

C. Stable Walking Trajectories for Humanoid Robot

We now consider a more challenging task, where a stable

walking trajectory for a humanoid robot is required. As

suggested in [27], [28], the capture region which is defined

by proper constraints over the position and velocity profiles

of the center of mass (CoM) can be used to ensure the

stability. In this example, we aim to plan CoM trajectories

to accomplish the non-periodic walking (i.e., switch from

forward motion to backward motion) over three periods (each

period lasts 0.7s). Specifically, we design the capture regions

as12

xl ≤ axx+ bxẋ ≤ xu

yl ≤ ayy + by ẏ ≤ yu
(30)

12The parameters of linear constraints are determined according to the
physical features of the simulated humanoid platform [29].



Fig. 3. Learning and adapting walking trajectories. Green solid curves and ellipses denote demonstrations and GMM components, respectively. Yellow
solid curves and green dashed curves respectively represent adapted trajectories by using LC-KMP and vanilla KMP. Circles depict desired points.

Fig. 4. Evaluations of stability criteria, where yellow solid curves and green dashed curves correspond to LC-KMP and vanilla KMP, respectively. Dashed
red and blue curves depict the upper and lower bounds of capture regions, respectively.

Fig. 5. Snapshots of walking movement of a simulated humanoid robot, where LC-KMP is used to plan the CoM trajectories. Arrows represent the CoM
motion direction.

with ax = ay = 1, bx = by = (hcom

g
)

1

2 , where hcom =
0.8898 and g = 9.8. xl, xu, yl and yu are set by (i) if 0<
t ≤ 0.7, xl = −0.03, xu = 0.025, yl = −0.18, yu = 0; (ii)

if 0.7< t≤ 1.4, xl =−0.16, xu =0, yl =−0.18, yu =0; (iii)

if 1.4 < t ≤ 2.1, xl = −0.16, xu = −0.1, yl = −0.234, yu =
−0.025. LC-KMP parameters are λ = 6 and kh = 2.

We first use optimization solver [30] to generate four

training trajectories (solid green curves in Fig. 3), which

serve as demonstrations for our framework. For the sake of

comparison, both LC-KMP and vanilla KMP are employed

to generate the adapted CoM trajectories. As can be seen

from Fig. 3 (the third - sixth plots), both LC-KMP (solid

yellow curves) and vanilla KMP (dashed green curves)

are capable of adapting trajectories towards various desired

points (depicted by circles).

In addition, evaluations of axx + bxẋ and ayy + by ẏ are

provided in Fig. 4, where LC-KMP (solid yellow curves)

fulfills the constraints of capture regions in both X and Y

directions, while vanilla KMP (dashed green curves) exceeds

the capture region in Y direction. Therefore, in contrast

to vanilla KMP, LC-KMP can indeed take into account

additional linear constraints while performing learning and

adaptations of demonstrations. Snapshots of walking motions

on the simulation platform [29] are illustrated in Fig. 5.

VI. CONCLUSIONS

As an extension of KMP, we have developed an imitation

learning framework capable of addressing the learning and

adaptation issues while considering additional linear con-

straints. This framework has been verified through several

examples, comprising adapting 2D letters with (partial) mo-

tion limits, adapting 3D letter in different planes, as well as

planning stable walking trajectories for a humanoid robot.

In this paper, we only focus on learning time-driven

trajectories. In fact, due to the kernel treatment, the proposed

framework can be extended to the learning of trajectories

with high-dimensional inputs. In our previous work [6], KMP

has been proven effective in a human-robot collaboration

setting, where the user’s hand positions (6D input) were

used to drive the robot movement straightforwardly. Thus,

it would be interesting to exploit LC-KMP in this direction.

Besides, incorporating orientation learning [31] into the LC-

KMP framework could also be promising.

It is worth mentioning that the constraints throughout this

paper are linear. In order to address the non-linear cases,

one possible way is to employ the linearization treatment,

as done in [32]. In addition, we assume that the constraints

are known beforehand, which may prohibit the applications

of our framework in highly dynamic environments where

constraints are unknown. Thus, further studies on inferring

constraints from tasks or demonstrations are needed.
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