2106.11365v1 [cs.RO] 21 Jun 2021

arxXiv

Distributed Heuristic Multi-Agent Path Finding with Communication

Ziyuan Ma'*, Yudong Luo'* and Hang Ma'!

Abstract— Multi-Agent Path Finding (MAPF) is essential
to large-scale robotic systems. Recent methods have applied
reinforcement learning (RL) to learn decentralized polices in
partially observable environments. A fundamental challenge of
obtaining collision-free policy is that agents need to learn co-
operation to handle congested situations. This paper combines
communication with deep Q-learning to provide a novel learn-
ing based method for MAPF, where agents achieve cooperation
via graph convolution. To guide RL algorithm on long-horizon
goal-oriented tasks, we embed the potential choices of shortest
paths from single source as heuristic gunidance instead of using a
specific path as in most existing works. Our method treats each
agent independently and trains the model from a single agent’s
perspective. The final trained policy is applied to each agent for
decentralized execution. The whole system is distributed during
training and is trained under a curriculum learning strategy.
Empirical evaluation in obstacle-rich environment indicates the
high success rate with low average step of our method.

I. INTRODUCTION

Multi-Agent Path Finding [1] is a path arrangement prob-
lem for a team of agents. Each agent is required to move
from its given start location to its given goal location while
avoiding collisions with other agents. MAPF arises in many
real world applications of multi-agent systems, such as ware-
house and office robots [2], [3], aircraft-towing vehicles [4],
and video games [5], [6].

MAPF is NP-hard to solve optimally on graphs [7] and
even 2D grids [8]. Traditional centralized planning methods
reduce MAPF to other well-studied problems, e.g., ILP [9]
and SAT [10], or solve it with search-based algorithms, e.g.,
enhanced A* search in joint state space [11], [12], Conflict-
Based Search [13] and their improved variants [14]. The
limitation of these centralized planning methods is that they
do not scale well to a large number of agents.

Recently, RL with decentralized execution has been ap-
plied to address this issue. During execution, each agent
follows a policy individually and makes decisions based
on its local observations. A common approach is to train
a reactive policy that corrects actions of an agent to avoid
collisions during execution [15], [16]. However, such policies
often lead to deadlocks or livelocks in cluttered and tight en-
vironments [17]. State-of-the-art methods guide RL with imi-
tation learning (IL) [17] or a single-agent shortest path [18].
Nevertheless, the environment settings and the algorithmic
designs of these methods still need to be improved to allow
for using RL effectively in the standard MAPF setting [1] for
cluttered and tight environments. For example, [17] assumes
that agents take actions one at a time, and [18] assumes that

1School of Computing Science, Simon Fraser University, Canada
{ziyuanma, yudong-luo, hangma}l@sfu.ca
* indicates equal contribution.

agents are removed from the environment upon reaching their
goal locations. These assumptions differ from the standard
MAPF setting and simplify the problem. The resulting poli-
cies are not trained to handle collisions when agents move
simultaneously or to handle deadlocks and livelocks when
an agent reaches its goal location but obstructs other agents
from getting to their goal locations. Moreover, these methods
can also be improved to use guidance more intelligently.
For instance, [17] generates expert demonstrations with a
centralized MAPF planner, which requires solving a MAPF
problem instance and is thus time-consuming. Also, [18]
gives extra shaped rewards to each agent that incentivize the
agent to follow one single-agent shortest path, which can
mislead the agents since paths to their goal locations are not
unique and forcing the agents to follow paths individually
could harm their cooperation in multi-agent settings.

To tackle the above issues, in this work, we propose a
deep Q-network with single-agent heuristic guidance and
multi-agent communication to facilitate long-horizon path
finding and cooperation of agents. We follow the standard
MAPF setting [1] where agents move simultaneously and
are kept in the environment after reaching their goals. Instead
of providing a specific path as guidance and modifying the
individual rewards accordingly, we embed all the potential
choices of shortest paths from single source as the heuristic
guidance in the input to the Q-network, and the model learns
rational knowledge from the heuristic by itself. As it is
also crucially important for agents to learn cooperation, we
formalize the multi-agent environment as a graph and let
agents communicate with neighbors via graph convolution.
Multi-head attention is employed as convolutional kernel
to extract the relation representation between agents. We
treat each agent independently and leverage single-agent Q-
learning for multi-agent partially observable Markov game
without learning a joint action value, making it easy to
scale. To speed up learning and enhance the performance,
our system is distributed during training based on the Ape-
X framework [19] and is trained under a curriculum learn-
ing [20] strategy. During decentralized execution, each agent
adopts the same policy and moves simultaneously. Empirical
results show the high success rate with low average step of
our method compared with its counterpart.

Contributions. Our main contributions are summarized as
follows.

1) A learning environment close to standard MAPF set-
ting, where agents move simultaneously and are kept
in the environment upon reaching the goals.

2) A novel heuristic deep Q-learning method with graph
convolutional communication for goal-oriented path

finding and cooperation of agents.

3) A distributed independent Q-learning method for par-
tially observable Markov games, scaling to large
amount of agents.

II. PROBLEM DEFINITION

The MAPF problem is formalized as follows. Given an
undirected graph G = (V,E) and an agent set NN, each
agent 7 is assigned a unique start vertex s; € V and a
unique goal vertex g; € V. At each discrete time step
t = 0,...,00, each agent can either move to an adjacent
vertex or wait at its current vertex. A path for agent ¢ contains
a sequence of adjacent (indicating a moving) or identical
(indicating a waiting) vertices beginning at the start vertex
s; and terminating at the goal vertex g;. A collision between
agents is either a vertex collision, which is a tuple (i, j,v,t)
where agents ¢ and j reaching at the same vertex v at time
t, or an edge collision, defined as a tuple (i, j, u, v, t) where
agents ¢ and j traverse the same edge (u,v) in opposite
directions at time ¢. A solution to MAPF is a set of collision-
free path, one for each agent. The quality of a solution is
measured by the sum of arrival time of all agents at their
goal vertices. We focus on 2D 4-neighbor grids, while our
method can be easily generalized to higher dimensions.

I1I. BACKGROUND
A. Partially Observable Markov Game

We consider the MAPF problem as a Markov
game [21] with partial observability, represented as a
tuple (N,S,{A:},{O;},{R:},P,7). N is a finite set of
agents, indexed by 1,...,n. S is a finite state set. A; is a
finite action set available to agent 7, and A = A; X ... x A,
is the set of joint actions. O; is a finite observation
set for agent i, and O = O; x ... x O, is the set of
joint observations. P(s’,d]s,d) is the state transition and
observation probability function, where @ and ¢ are instances
of Aand O. R; : S x A — R is the reward function for
agent . < is the discount factor. Agents simultaneously
choose an action and receive a reward and an observation
from the environment. The aim for each agent is to
maximize its expected total return during the game.

B. Q-Learning and Deep Q-Networks (DQN)

Q-Learning and DQN [22] are popular methods in single-
agent and fully-observable RL settings. An agent observes
current state s; € S and selects an action a; € A according
to a policy m at each time step ¢. The agent’s objective
is to maximize the expectation of discounted total return
Ry = r¢ + yreg1 + ¥?rii2 + ..., where r; is the reward
received at time t. Q-Learning utilizes an action value
function for policy 7 as Q7 (s,a) = E[R¢|s: = s,a: = a
and can be recursively defined by Q™ (s,a) = Eu[r +
YEarr [QT (s, a")]]. The optimal action value, Q*(s,a) =
max, Q™ (s,a), satisfies the Bellman optimality equation
Q*(s,a) = Eg[r+vymax, Q*(s',a’)|s, a]. DQN learns the
action value function using neural networks parameterised
by 6, represented as Q(s, a;). The optimal policy is trained

by minimizing the loss £(0) = E; 4« [(Q*(s,a;0) — y)?],
where iy = r+ymax, Q*(s',a’;0). Here, 0 is the parameter
of a target network and is updated periodically with the
most recent . In partially observable environment, agents in
general need to condition on an observation-action history.
In this setting, DQN is equipped with a recurrent unit such

as LSTM [23] or GRU [24].

C. Independent Q-Learning (IQL)

Q-Learning can be directly extended to multi-agent set-
tings by each agent learning its own action value function
Q' independently and simultaneously, treating other agents
as part of the environment [25]. Empirical results have shown
that IQL works well in some multi-agent settings like two-
player pong [26].

IV. RELATED WORK
A. Multi-Agent Reinforcement Learning (MARL)

Apart from IQL, the framework of centralized training
with decentralized execution has been widely adopted by
MARL. These approaches can be divided into two cat-
egories, value-based and actor-critic methods. For value-
based methods, value decomposition networks (VDN) [27]
proposes to have separate action value function for multiple
agents when only one shared team reward is available. It
aims to learn a joint action-value function by summing up
individual action-value linearly. QMIX [28] extends VDN
by mixing individual action values in a nonlinear way.
For actor-critic methods, counterfactual multi-agent (COMA)
policy gradient [29] learns a single centralized critic for
all agents to estimate Q-function and multiple decentralized
actors to optimize policies. In order to address multi-agent
credit assignment, it estimates a counterfactual advantage
value for each agent. In contrast with COMA, Multi-Agent
DDPG (MADDPG) [30] learns separate actors and critics
for different agents. The centralized critic of each agent has
access to observations and actions of all the agents during
learning. It should be noted that the above methods are all
applied to fully cooperative Markov game, where agents
share the same reward function, different from our setting,
where agents have their individual ones.

B. Reinforcement Learning based MAPF

Deep RL has achieved great success in single-agent path
planning [31]. Recently, solving MAPF via RL approach
has drawn great attention to researchers. A well known
framework is called PRIMAL [17], which is a hybrid method
combining RL and IL to learn a decentralized policy in
partially observable environment. The RL part relies on the
asynchronous advantage actor critic (A3C) network [32],
where each agent (thread) shares the same global parameters.
The IL part is simply behaviour cloning, requiring training
data generated from a centralized planner. The idea of
utilizing centralized planner as guidance is also adopted by
Global-to-Local Autonomy Synthesis (GLAS) [33]. How-
ever, computational complexity grows significantly when
generating demonstrations in complex environment with a

large number of agents using centralized planners. Other
works consider using single-agent path planner as guid-
ance. For instance, MAPPER [18] and Globally Guided
RL (G2RL) [34] use A* for single-agent path generation.
In addition, they all apply an off-route penalty if agents
failed to follow the path. However, as single-agent shortest
path is usually not unique and is not global optimal for
multi-agent cases, off-route penalty may mislead the agents.
Another promising direction is to achieve cooperation be-
tween agents via communication. Differentiable inter-agent
learning (DIAL) [35] uses parameter and gradient sharing for
communication. Recently, graph convolution has been widely
adopted to deduce the mutual interplay between agents, such
as graph convolutional reinforcement learning (DGN) [36]
and targeted multi-agent communication (TarMAC) [37].

TABLE I: Reward Function Design

Actions Reward
Move (Up/Down/Left/Right) -0.075
Stay (on goal, away goal) 0, -0.075
Collision (obstacle/agents) -0.5
Finish 3

V. LEARNING ENVIRONMENT

In this section, we introduce our environment design for
MAPF. We detail the observation representation, action space
and reward design of our environment.

A. Environment Setup

We build a discrete gridworld environment for MAPF,
where each agent only has partial observability. Many real
world robot applications can be naturally transformed into
partially observable gridworld by each agent equipped with
a radar sensor to localize itself and detect surroundings.
Formally, the entire space is a m X m binary matrix, where
0 represents a free location and 1 is an obstacle. Each time,
n beginning positions and n goal positions are randomly
chosen from the free locations for n agents. We make sure
there is no overlap among 2n selected positions and each
goal is reachable if staring from the corresponding beginning
point. Different from PRIMAL where agents are operated
sequentially, our environment moves agents simultaneously
and collisions are handled properly. Also, unlike MAPPER
where the problem is simplified by removing agents from
the environment after reaching their goals, we retain all the
agents, which is more realistic for real world problem.

B. Observation Representation

In partially observable settings, each agent can only ob-
serve the environment inside its field of view (FOV) with size
¢ x £ (£ < m). We use an odd number for ¢/ to make sure
agents are at the center of FOV. The observation information
is grouped into two channels. Specifically, the first channel
is a binary matrix representing the obstacles inside the FOV,
and the second channel is a binary matrix indicating the
locations of other agents if within the FOV. We also add

four heuristic channels to the input of our model (see [VI-A).
As the goal location of each agent can be inferred from these
four channels, it is not included in the input.

C. Action Space

Agents take discrete actions in the gridworld. At each
time step, agents can choose to move to the adjacent grid
or stay still. We do not consider diagonal movement, thus
the action space for all agents are 5. During training or
execution, agents may choose invalid actions, which leads to
hitting obstacles or collision between agents. PRIMAL only
samples valid actions for execution, and an additional loss
function is defined to force this selection. We do not filter out
invalid actions. If invalid actions are taken, we recursively
recover the related agents to previous states until no collision
exits. Our environment design makes learning more robust
compared with PRIMAL.

D. Reward Design

Motivated by the common reward design that agents are
punished every step for not staying on goal to facilitate goal
reaching, we design our reward function as shown in Table I}
Different from PRIMAL and MAPPER, where agents are
penalized more for staying still, we treat every movement and
staying (if not on the goal) as the same because in complex
cases, one agent should stop and let another agent pass first
in order to avoid collision.

VI. DISTRIBUTED HEURISTIC LEARNING WITH
COMMUNICATION

We present the detailed design of our model in this
section. We refer to it as DHC []_1 which represents three key
components: Distributed, Heuristic and Communication. The
main ideas of DHC are to guide RL with heuristic and to
achieve cooperation between agents by independent learning
and graph convolutional communication. The independent
learning schema can be naturally distributed to speed up
learning procedure and achieve better performance.

A. Agent Q-Network Design

We build a Dueling DQN [38] with recurrent units to
approximate agent’s policy in partially observable gridworld,
which maps the current observation and communication
messages to Q-values of each action. The agent network
consists of the following three modules: observation encoder,
communication block, and Q-network, as shown in Fig. E}
The observation encoder consists of eight convolutional
layers and a GRU. The convolutional layers are organized as
three residual blocks (each contains two convolutional layers)
and two independent ones. For network of agent ¢, the local
observation o is first encoded into 6} by eight convolutional
layers. Then the GRU gets 6! and the hidden state e;/tfl, and
generates the intermediate message e!, where e;/tfl is the
last step communication outcome. € is then used for current
communication between agents. The communication block is
a graph convolutional network followed by a GRU. Messages

Code available at https:/github.com/ZiyuanMa/DHC

t t
. l"' iol Heuristic Channels
et Observation‘ Observation|_) €"j*! \ Gridworld
encoder encoder \
H et Gl Up \
Communication block X P
¢e'it ¢e'j' Multi-Head Attention Down \\
Communication block \‘\
&t et \
v v Left
Q-network Q-network O
vai v
Conv. 3x3 + Right
ReLU et -
[adVﬁF"éageS} {S‘a‘i’éa'“e] Fig. 2: Heuristic channels for the yellow
/ circle agent, with 3 x 3 FOV. The red flag is
Vet t
Qi

the goal, and the gray blocks are obstacles.

Fig. 1: DHC consists of three modules: observation encoder (blue), commu- Four chagnels indicate .whether agent get
nication block (green), and Q-network (orange). The two communication closer to its goal by taking a certain action

blocks are identical.

el and efgi are first integrated by graph convolution, where
B; is the neighbors of agent i, to a feature vector é¢. Then é!
is sent to the GRU along with e serving as the hidden state
to generate information e;t. By communicating for multiple
rounds, an agent gradually gathers more information from
neighbors, which, in turn, increases the cooperation scope.
We use two rounds in our model. The output from the last
round works as the input for next round using the same
block. The final information e;lt is adopted by Q-network
to calculate Q-values for each action in a dueling manner.
The state value and action advantages are separated into
two streams, and then merged for the final Q function. The
optimal action is chosen by the maximum Q-value.

1) Heuristic: Motivated by assisting RL with guid-
ance [17], [18], [33], we introduce four heuristic channels. To
reduce computational complexity, we use information pro-
vided by single-agent path planners instead of a centralized
planner. Unlike MAPPER and G2RL where a specific single-
agent shortest path is embedded and an off-route penalty is
applied, we extract information from single source shortest
paths (goal is the source) without special reward design.
As the single-agent shortest path is usually not unique, we
provide all the potential choices and agents are supposed
to learn rational knowledge by themselves. The potential
path information is embedded as follows. The four channels
correspond to four actions Up, Down, Left, and Right. Each
channel has the same size as the FOV, where a location is
marked as 1 if and only if the agent gets closer to its goal
by taking the associated action of this channel. A small case
example is shown in Fig. 2] The right action is optimal for
all the locations (apart from obstacle) in FOV, thus these
locations in the Right channel is marked as 1 in the figure.
These four channels along with the two observation channels
serve as the input of our model.

B. Graph Convolutional Communication

Communication is one of the effective ways for coop-
eration in multi-agent systems. Motivated by the recent

at those locations. Purple color means 1.

Updated priorities

>
GlobalBuffer

Batched training data {
Actor

Local buffer

Learner |
e

Updated parameters |
16 actors
Fig. 3: The overview of distributed IQL framework. 16 actors
generate multi-agent experiences in their own instances of
environment, adding to a prioritized global buffer. The single
learner updates the network and the priority of experiences.

success of graph convolution for multi-agent communication,
in this work, we treat each agent as a node, and a graph
is formalized by connecting neighboring nodes. Two nodes
are regarded as neighbors if they are inside the FOV of
each other. Then graph convolution can be applied to derive
communication. Inspired by DGN and TarMAC, we adopt
multi-head dot-product attention as the convolutional kernel
to compute interactions among agents. For each agent ¢, the
intermediate message e! is projected to Query, Key and Value
by matrix W}é, wh ,and W}(/ in each independent attention
head h. Let B, denotes the set {B;, i}, the relation between
7 and j € B, in the h-th attention head is computed as

Whet . (Whet)T
Qz\/(%K j))7 (1)

where dj is the dimension of Keys and +/dj serves as
a scaling factor to stabilize training. The output of each
attention head for agent ¢ is the weighted summation of
Values over B, . Then the outputs are concatenated for all H
attention heads and passed though one neural network layer
fo to produce the final output of graph convolution

et =f, (concatenate(Z M%W}\L/BEWWL < H)> 2)

JEB;+

uﬁ’j = softmax(

For multi-round communication (two rounds in our case),

the outcome message é! and the initial message e! are first

aggregated by a GRU, then the output e;t acts as the initial
message for the next round by repeating Equations 1-2.

C. Multi-Agent Distributed Prioritized Experience Replay

In MAPF, agents has their individual goals instead of a
common goal, thus IQL is more suitable for this problem
compared with centralized MARL. The appealing merit of
IQL is that it avoids the scalability problem in centralized
training, which requires to learn a Q-function for joint actions
over all agents. The joint action space grows exponentially
as the number of agents increases. On the other hand,
IQL is naturally appropriate to learn decentralized policy
for partially observable settings, because each agent makes
decision only based on its own observation. As each agent
in the MAPF environment plays the same role as others, to
simplify the training process, instead of learning multiple
policies for multiple agents, we train a single model from a
single agent’s perspective while treating others as part of its
environment. The final trained policy can be applied to each
agent for decentralized execution.

To speed up deep RL with the advancement of computa-
tional resources, many RL algorithms have been promoted
by distributed training, such as A3C [32] and Distributed
PPO [39]. The idea behind these distributed versions of
algorithms is parallelizing the gradient computation so as
to facilitate parameter optimization. Specifically, PRIMAL
is distributed using A3C as a backend. Another direction
to distributed RL is parallelizing experience data generation
and selection with a shared replay memory, such that more
high priority data can be gathered to benefit the model.
This is referred to as Ape-X architecture, where multiple
actors generate experience and a single learner updates the
network [19]. Our IQL from a single agent’s perspective
method can be naturally distributed by Ape-X framework.

Fig. [3] illustrates our system flow. In the experiments,
we setup sixteen independent actors running on CPUs to
generate data, and a single learner on GPU to train. Each
actor has a copy of the environment with current Q-network
and keep generating new transitions from multiple agents and
initializing priorities for them. The transitions from all actors
are fed into a shared prioritized replay buffer. Then learner
samples the most useful experiences from the buffer and
updates the network and priorities of the experience. Note
that although the model is trained for a single agent, the tran-
sitions of all the agents need to be stored for communication
purpose, and the priorities are initialized and updated from
that agent’s perspective. As priorities are shared, the good
experiences explored by any actor can improve the learner.

The final loss function is a multi-step TD error

L(0) = Huber(R; — Q(s¢, at,0)) (3)

with Ry = ry + yree1 + oo + Y Q(St4n, At1n,), where
R, is the total return of the agent we care about, s; and
a; are the state and action of that agent, and 0 denotes the
parameters of the target network, a periodical copy of the
online parameters 6.

VII. EXPERIMENTS

Learning directly from a large size environment with lots
of agents is hard. Instead, we use curriculum learning method
by gradually introducing more difficult tasks to agents [20].
Starting from a easy task with only one agent in a 10 X
10 environment, we establish two new challenging tasks for
agents by increasing the agent amount by one or increasing
the environment size by five, if the success rate of the current
task exceeds 0.9. As the training scale grows, the final task
with twelve agents in a 40 x 40 environment is reached.

In real world problem, the communication latency are
restrictive and bandwidth is limited. Full communication
with neighbors leads to huge communication overhead and
latency. In the experiment, we choose the nearest two neigh-
bors for communication. In addition, to make the policy more
robust, the agent that we are focusing on takes e—greedy
actions during training, while no random action is taken by
other agents to make the environment more stationary.

For other parameter settings during training, the obstacle
density of the environment is sampled from a triangular
distribution between 0 and 0.5 with a peak at 0.33 (same as
PRIMAL). The FOV size is 9 x 9 (10 x 10 in PRIMAL, we
make it odd). The maximum episode length is 256. We train
the network with a batch size of 192 and a sequence length
of 20 (limit by memory). We use a dynamic learning rate
beginning at 10~* and decreasing by fifty percent at 100k
step and 300k step. The maximum training step is 500k.

A. Success Rate and Average Step

We examine the performance of our model and one of the
state-of-the-art methods, PRIMAL, with respect to success
rate and average step. Success rate measures the ability
to complete a task within the given time steps. Average
step measures the average time consumed for a task, where
smaller value indicates better policy. (We average all cases to
calculate average step). PRIMAL uses a very similar environ-
ment as ours, making the results comparable. MAPPER does
not stick to standard MAPF setting, so we do not compare
with it here. We set up two different maps, 40 x40 and 80x80
for testing. To highlight the ability of DHC to handle obstacle
rich environments, we set the obstacle density = 0.3, the
highest density used in PRIMAL. For each agent number
{4,8,16,32,64}, we set up 200 test cases. The maximum
time step for 40 x40 map is 256, and 386 for 80 x 80 map, the
same as the PRIMAL’s setting. We also include ODrM* [12],
a centralized planner, as a reference for average step.

Fig. @] shows the success rate of our method compared with
PRIMAL in these two different environments. Our method
outperforms PRIMAL in all the cases. PRIMAL preforms
better in relatively small environment (40 x 40) than larger
one (80 x 80), which shows the IL part of PRIMAL does not
deliver a good guidance to its RL component during learning,
thus it suffers performance degradation on long-horizon task.
By self-learning potential shortest paths from the heuristic
guidance, our model can find paths for agents in larger map
much easier. In congested cases where a large number of
agents operate in a small environment, for example, 32 and

. . Map size 80x80, obstacle density=0.3
Map size 40x40, obstacle density=0.3 4 o
0 * ’

* >

> *
08 — * 0.8 1
. Q
o [P
s 206
806 8
8 504 \
a x @ *
o +— DHC 02 —+ DHC e
—+— PRIMAL S~
02 —+— PRIMAL ¥
- 4 8 16 32 64
4 8 16 32 64 Agents
Agents

Fig. 4: Success rate of our method compared with PRIMAL
in two different scenarios.

TABLE II: Average Step in two different environments with
obstacle density = 0.3

Average Step Map size 40 x 40 Map size 80 x 80
Agents ODrM* | DHC PRIMAL | ODrM* | DHC PRIMAL
4 50.00 52.33 79.08 93.40 96.72 134.86
8 52.17 63.90 76.53 104.92 | 109.24 153.20
16 59.78 79.63 107.14 11475 | 122.54 180.74
32 67.39 100.10 155.21 12131 | 138.32 250.07
64 82.60 147.26 170.48 13442 | 163.50 321.63

64 agents in 40 x 40 map, PRIMAL can not handle collisions
properly. In contrast, DHC teaches agents to cooperate with
neighbors via communication, which leads to coordinated
behaviours and higher success rates. Table |l verifies these
two merits of DHC with respect to the average step. DHC
requires a less step increment to find paths when switches
from 40 x40 map to 80x 80 map, which indicates DHC learns
useful information from heuristic to better identify paths in
larger environment. In addition, DHC always consumes less
time steps to finish tasks, showing that the communication
helps to handle collisions and accelerates path finding.

B. With and Without Heuristic or Communication

To further assess the functionality of the heuristic and
communication components of our method, we develop a
baseline model and a DHC variant. The baseline model
does not contain heuristic channels or communication block.
However, we do not simply remove these two parts from
DHC to form the baseline, instead, to provide sufficient infor-
mation of the environment and goal locations to agents, we
modify the input to have the same format as PRIMAL, which
contains the obstacle positions, the nearby agent positions,
the projected goal positions of nearby agents (project to the
boundary of FOV if outside of FOV), and the position of
the agent’s own goal is within the FOV. The DHC variant,
denoted by DHC/Comm, uses the same input as DHC but
omits the communication block (graph convolution). These
two models are both distributed during training and use the
same training parameters as DHC.

We compare the success rate of DHC/Comm with baseline
model as shown in the first row of Fig. [5] to demonstrate
the reasonable design of the heuristic channels. Although
the baseline model uses information rich input, the lack of
learning rational knowledge from heuristic guidance leads

Map size 80x80, obstacle density=0.3

Map size 40x40, obstacle density=0.3 1.0

1.0 A A
A A
0.8
0.8
A 2 :
Q
o6 @ 06 4— DHC/Comm
@] Baseline
@ S 0.4
S04 @
@ 0.2
02 — 4 DHC/Comm
Baseline
4 8 16 32 64
4 8 16 32 64 Agents
Agents
Map size 40x40, obstacle density=0.3 Map size 80x80, obstacle density=0.3
1.0 % A 1.0 % * *
> —%
 \ A
*
. A
08 X 08
L A L X
Y Y A
20.6 © 06
o} o}
Q Q
g xS
N 0.4 ®» 0.4 *
*— DHC *— DHC
0.2 —4 DHC/Comm 92 . DpHe/comm \
4 8 16 32 64 4 8 16 32 64 128
Agents Agents

Fig. 5: Success rates of baseline, DHC/Comm, and DHC
with respect to heuristic channels and communication block.

to a sharp decrease of the performance. Also, the absence
of heuristic makes baseline model behave worse in long-
horizon tasks in larger environment. To reveal the capacity
of communication, we compares DHC with DHC/Comm as
shown in the second row of Fig. [5] When the agent density
is low, for instance, 4 and 8 agents in both maps, there is
little difference between their performances, because agents
have less chances to encounter with each other and thus
less cooperation is required. In tight environments, such
as 64 agents in 40 x 40 map and 128 agents in 80 x 80
map, DHC achieves much higher success rates due to the
communication ability.

VIII. CONCLUSIONS

We propose a distributed heuristic deep Q-learning method
with communication for MAPF with standard MAPF envi-
ronment settings. Our aims are to deliver guidance to RL by
self learning so as to handle long-horizon goal-oriented tasks,
and to achieve cooperation between agents through commu-
nication for coordinated behaviours in congested situations.
We introduce the embedding of shortest paths from single
source instead of a specific single-agent shortest path as
heuristic to incorporate guidance in RL. Graph convolution
mechanism is adopted as communication to gain cooperation
between agents. The model is distributed and trained from
a single agent’s perspective, leading to good scalability.
In experiments, our method is more adequate for long-
horizon tasks and achieves highest success rate with lowest
average step in both sparse and tight environments compared
with PRIMAL. As we fix the number of communication
agents, an important direction for future work is to increase
communication scope while reduce the overhead and latency.

ACKNOWLEDGMENT

This work was supported by Natural Sciences and Engi-
neering Research Council under grant RGPIN-2020-06540.

[1]

[2]

[3]

[7

—

[8

[t

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar, ef al., “Multi-agent pathfinding: Def-
initions, variants, and benchmarks,” in Symposium on Combinatorial
Search, 2019, pp. 151-159.

P. R. Wurman, R. D’ Andrea, and M. Mountz, “Coordinating hundreds
of cooperative, autonomous vehicles in warehouses,” Al magazine,
vol. 29, no. 1, pp. 9-9, 2008.

M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal, “Cobots: Robust
symbiotic autonomous mobile service robots,” in Proc. International
Joint Conference on Artificial Intelligence (IJCAI'15), 2015.

R. Morris, C. S. Pasareanu, K. S. Luckow, W. Malik, H. Ma, T. S.
Kumar, and S. Koenig, “Planning, scheduling and monitoring for
airport surface operations.” in AAAI Workshop: Planning for Hybrid
Systems, 2016.

D. Silver, “Cooperative pathfinding,” in Proc. AAAI Conference on Ar-
tificial Intelligence and Interactive Digital Entertainment (AIIDE’05),
2005, pp. 117-122.

H. Ma, J. Yang, L. Cohen, T. Kumar, and S. Koenig, “Feasibility
study: Moving non-homogeneous teams in congested video game
environments,” in Proc. AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE’05), 2017, pp. 270-272.

J. Yu and S. M. LaValle, “Structure and intractability of optimal multi-
robot path planning on graphs,” in Proc. AAAI Conference on Artificial
Intelligence (AAAI’13), 2013.

J. Banfi, N. Basilico, and F. Amigoni, “Intractability of time-optimal
multirobot path planning on 2d grid graphs with holes,” IEEE Robotics
and Automation Letters, vol. 2, no. 4, pp. 1941-1947, 2017.

J. Yu and S. M. LaValle, “Planning optimal paths for multiple robots
on graphs,” in Proc. IEEE International Conference on Robotics and
Automation (ICRA’13). 1EEE, 2013, pp. 3612-3617.

P. Surynek, A. Felner, R. Stern, and E. Boyarski, “Efficient sat
approach to multi-agent path finding under the sum of costs objective,”
in Proc. European Conference on Artificial Intelligence (ECAI’16),
2016, pp. 810-818.

M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. C.
Holte, and J. Schaeffer, “Enhanced partial expansion a*,” Journal of
Artificial Intelligence Research, vol. 50, pp. 141-187, 2014.

G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artificial Intelligence, vol. 219, pp. 1-24, 2015.

G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40-66, 2015.

J. Li, A. Felner, E. Boyarski, H. Ma, and S. Koenig, “Improved
heuristics for multi-agent path finding with conflict-based search.”
in Proc. International Joint Conference on Artificial Intelligence
(IJCAI’19), 2019, pp. 442-449.

Y. E. Chen, M. Liu, M. Everett, and J. P. How, “Decentralized non-
communicating multiagent collision avoidance with deep reinforce-
ment learning,” in Proc. IEEE international conference on robotics
and automation (ICRA)’17. 1EEE, 2017, pp. 285-292.

P. Long, T. Fanl, X. Liao, W. Liu, H. Zhang, and J. Pan, “Towards
optimally decentralized multi-robot collision avoidance via deep re-
inforcement learning,” in Proc. IEEE International Conference on
Robotics and Automation (ICRA)’18. 1EEE, 2018, pp. 6252-6259.
G. Sartoretti, J. Kerr, Y. Shi, G. Wagner, T. S. Kumar, S. Koenig,
and H. Choset, “Primal: Pathfinding via reinforcement and imitation
multi-agent learning,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 2378-2385, 2019.

Z. Liu, B. Chen, H. Zhou, G. Koushik, M. Hebert, and D. Zhao,
“Mapper: Multi-agent path planning with evolutionary reinforcement
learning in mixed dynamic environments,” in Proc. of the IEEE
International Conference on Intelligent Robots and Systems (IROS’20),
2020.

D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver, “Distributed prioritized experience re-
play,” in Proc. International Conference on Learning Representations
(ICLR’1S), 2018.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35

[36]

[37]

[38]

[39]

Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. International Conference on Machine Learning
(ICML’09), 2009, pp. 41-48.

M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in Proc. International Conference on Machine
Learning (ICML’94), 1994, pp. 157-163.

V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518, pp. 529-533,
2015.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735-1780, 1997.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv
preprint arXiv:1412.3555, 2014.

M. Tan, “Multi-agent reinforcement learning: Independent vs. cooper-
ative agents,” in Proc. International Conference on Machine Learning
(ICML’93), 1993, pp. 330-337.

A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru,
J. Aru, and R. Vicente, “Multiagent cooperation and competition with
deep reinforcement learning,” PloS one, vol. 12, no. 4, p. e0172395,
2017.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. F. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, et al.,
“Value-decomposition networks for cooperative multi-agent learning
based on team reward,” in AAMAS, 2018, pp. 2085-2087.

T. Rashid, M. Samvelyan, C. S. De Witt, G. Farquhar, J. Foerster, and
S. Whiteson, “Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning,” in Proc. International Conference
on Machine Learning (ICML’18), 2018, pp. 4295-4304.

J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Proc. AAAI Confer-
ence on Artificial Intelligence (AAAI'1S), 2018.

R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and 1. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Proc. Advances in Neural Information Processing Systems
(NIPS’17), 2017, pp. 6379-6390.

A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value iter-
ation networks,” in Proc. Advances in Neural Information Processing
Systems (NIPS’16), 2016, pp. 2154-2162.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proc. International Conference on Machine
Learning (ICML’16), 2016, pp. 1928-1937.

B. Riviere, W. Honig, Y. Yue, and S.-J. Chung, “Glas: Global-to-local
safe autonomy synthesis for multi-robot motion planning with end-to-
end learning,” IEEE Robotics and Automation Letters, vol. 5, no. 3,
pp. 4249-4256, 2020.

B. Wang, Z. Liu, Q. Li, and A. Prorok, “Mobile robot path plan-
ning in dynamic environments through globally guided reinforcement
learning,” arXiv preprint arXiv:2005.05420, 2020.

J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” in Proc.
Advances in Neural Information Processing Systems (NIPS’16), 2016,
pp. 2137-2145.

J. Jiang, C. Dun, T. Huang, and Z. Lu, “Graph convolutional rein-
forcement learning,” in Proc. International Conference on Learning
Representations (ICLR’20), 2020.

A. Das, T. Gervet, J. Romoff, D. Batra, D. Parikh, M. Rabbat, and
J. Pineau, “Tarmac: Targeted multi-agent communication,” in Proc.
International Conference on Machine Learning (ICML’19), 2019, pp.
1538-1546.

Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
Proc. International Conference on Machine Learning (ICML’16),
2016, pp. 1995-2003.

N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa,
T. Erez, Z. Wang, S. Eslami, et al., “Emergence of locomotion
behaviours in rich environments,” arXiv preprint arXiv:1707.02286,
2017.

	I INTRODUCTION
	II PROBLEM DEFINITION
	III BACKGROUND
	III-A Partially Observable Markov Game
	III-B Q-Learning and Deep Q-Networks (DQN)
	III-C Independent Q-Learning (IQL)

	IV RELATED WORK
	IV-A Multi-Agent Reinforcement Learning (MARL)
	IV-B Reinforcement Learning based MAPF

	V LEARNING ENVIRONMENT
	V-A Environment Setup
	V-B Observation Representation
	V-C Action Space
	V-D Reward Design

	VI DISTRIBUTED HEURISTIC LEARNING WITH COMMUNICATION
	VI-A Agent Q-Network Design
	VI-A.1 Heuristic

	VI-B Graph Convolutional Communication
	VI-C Multi-Agent Distributed Prioritized Experience Replay

	VII EXPERIMENTS
	VII-A Success Rate and Average Step
	VII-B With and Without Heuristic or Communication

	VIII CONCLUSIONS
	References

