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Abstract— Modern navigation algorithms based on deep re-
inforcement learning (RL) show promising efficiency and ro-
bustness. However, most deep RL algorithms operate in a risk-
neutral manner, making no special attempt to shield users from
relatively rare but serious outcomes, even if such shielding might
cause little loss of performance. Furthermore, such algorithms
typically make no provisions to ensure safety in the presence of
inaccuracies in the models on which they were trained, beyond
adding a cost-of-collision and some domain randomization
while training, in spite of the formidable complexity of the
environments in which they operate. In this paper, we present
a novel distributional RL algorithm that not only learns an
uncertainty-aware policy, but can also change its risk measure
without expensive fine-tuning or retraining. Our method shows
superior performance and safety over baselines in partially-
observed navigation tasks. We also demonstrate that agents
trained using our method can adapt their policies to a wide
range of risk measures at run-time.

I. Introduction
Deep reinforcement learning (RL) is attracting consider-

able interest in the field of mobile-robot navigation, due to its
promise of superior performance and robustness compared
with classical planning-based algorithms [1], [2]. Despite
this interest, few existing works on deep-RL-based navigation
attempt to design risk-averse policies. This is surprising for
several reasons. First, a navigating robot might cause harm to
humans, to other robots, to itself or to its surroundings, and
risk-averse policies may be safer than risk-neutral policies,
while avoiding the over-conservative behaviour typical of
policies based on worst-case analyses [3]. Second, in en-
vironments with such complex structure and dynamics that
it is impractical to provide accurate models, policies opti-
mizing certain risk measures are an appropriate choice, as
they actually provide guarantees on robustness to modelling
errors [4]. Third, the end-users, insurers and designers of
navigation agents are risk-averse humans [5], so risk-averse
policies seem to be the natural choice.
To address the issue of risk in RL, recent works [6], [7]

have introduced the concept of distributional RL. Distribu-
tional RL learns the distribution of accumulated rewards,
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Fig. 1: The robot and environment used in the real-world
experiments of Section IV.

rather than just the mean of that distribution. By applying an
appropriate risk measure, which is simply a mapping from
this distribution of rewards to a real number, distributional
RL algorithms can infer risk-averse or risk-seeking policies.
Distributional RL has shown superior sample efficiency
and performance on arcade games [8], simulated robotics
benchmarks [9], [10], and real-world grasping tasks [11].
However, the theoretical basis for these excellent results is
not understood [12], and it is not clear that these advantages
would necessarily extend to navigation tasks. Moreover, one
might prefer risk-averse policies in one environment, for
instance to avoid scaring pedestrians, but such policies might
be too risk-averse to pass through a narrow passage. So, one
might need to train policies with different risk measures,
suited to each environment, which would be computationally
expensive and time-consuming.
In this paper, to efficiently train an agent that can adapt

to multiple risk measures, we present the risk-conditioned
distributional soft actor-critic (RC-DSAC) algorithm which
learns a wide range of risk-sensitive policies concurrently.
In our experiments, RC-DSAC showed superior performance
and safety compared with both non-distributional and distri-
butional baselines. It could also adapt its policy to different
risk measures without retraining.
In summary, our main contributions are:
• A novel navigation algorithm based on distributional
RL, that can learn a variety of risk-sensitive policies
concurrently;

• Improved performance over baselines in multiple simu-
lation environments;

• Generalization to a wide range of risk measures at run-
time.
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The next section discusses related work. Subsequent sec-
tions, explain our method and present experiments demon-
strating its effectiveness.

II. Related Work
A. Risk in Mobile-Robot Navigation
Although this paper takes a deep RL approach to safe

and low-risk robot navigation, there is a vast literature on
classical model-predictive-control (MPC) and graph-search
approaches. This literature considers diverse sources of risk,
ranging from simple sensor noise and occlusion [13], [14],
to uncertainty about the traversability of the edges (e.g.
doors) of a navigation graph [15], and the unpredictability
of pedestrian movements [16].
This literature has explored a wide variety of risk mea-

sures, ranging from collision probabilities [17] used as
chance constraints [18], to entropic risk [19]. Interestingly,
[19] took a hybrid approach, coupling deep learning for
pedestrian motion prediction with nonlinear MPC, arguing
that only such a hybrid approach allows a robot’s risk-metric
parameters to be changed at run-time, unlike approaches
relying on RL. To the contrary, the results of our paper
demonstrate that such run-time parameter-tuning is straight-
forward for deep RL.
While [3] recently argued that coherent risk measures are

well-suited to robotics, and we use coherent risk measures
in this paper, the only work that we are aware of that uses a
coherent risk-metric coupled with MPC for robot navigation
is [20], which extends its authors’ previous work [21], in
which risk measures were applied to inventory control.

B. Deep RL for Mobile-Robot Navigation
Deep RL has received much attention in the field

of mobile-robot navigation due to its success in many
game [22], [23] and robotics [11], [24]–[26] domains. Com-
pared to classic approaches such as MPC, RL methods are
known to be able to infer optimal actions without expensive
trajectory predictions, and to perform more robustly when
the cost or reward has local optima [2], [27], [28].
Recently, several deep-RL-based navigation methods have

been proposed that explicitly account for risks arising from
uncertainty about the environment. As individual deep net-
works may make overconfident predictions on far-from-
distribution samples, [29] applied MC-dropout [30] and
bootstrapping [31] to predict collision probabilities. An
uncertainty-aware RL method was proposed in [9], which
has an additional observation-prediction model, and uses the
prediction variance to adjust the variance of the actions taken
by the policy. Meanwhile, [32] designed ‘risk rewards’ that
encourage the safe behaviour of autonomous driving policies
at lane intersections, and [33] proposed switching between
two RL-based driving policies, based on the estimated un-
certainty about future pedestrian motions. Although these
works show promising performance and improved safety
in uncertain environments, they either require an additional
prediction model, carefully shaped reward functions, or ex-
pensive Monte Carlo sampling at run-time.

In contrast to existing works on RL-based navigation,
we use distributional RL to learn computationally-efficient
risk-sensitive policies, without using an additional prediction
model or a specifically-tuned reward function.

C. Distributional RL and Risk-Sensitive Policies
Distributional RL models the distribution of the accumu-

lated reward, rather than just its mean. While distributional
RL was proposed over a decade ago [6], it received only scant
mention in a comprehensive review of safe RL [34] from
2015, and it has only been widely studied since its integration
with deep learning [8], [35]. Existing distributional RL
algorithms rely on the recursion

𝑍 𝜋 (𝑠, 𝑎) 𝐷
= 𝑟 (𝑠, 𝑎) +𝛾 𝑍 𝜋 (𝑆′, 𝐴′), (1)

where the random return 𝑍 𝜋 (𝑠, 𝑎) is defined as the dis-
counted sum of rewards when starting in state 𝑠 and taking
action 𝑎 under policy 𝜋, the notation 𝐴 𝐷

= 𝐵 indicates that the
random variables 𝐴 and 𝐵 have identical distributions, 𝑟 (𝑠, 𝑎)
is the random reward given the state-action pair, 𝛾 ∈ [0,1) is
the discount factor, the random state 𝑆′ follows the transition
distribution given (𝑠, 𝑎), and the random action 𝐴′ is drawn
from policy 𝜋 in state 𝑆′.
Empirically, distributional RL algorithms have shown su-

perior performance and sample efficiency in many game
domains [7], [36]. It has been argued that this is because
predicting quantiles serves as an auxiliary task that enhances
representation learning, but as yet there is little supporting
evidence for this conjecture [12].
Of central importance to this paper, is the fact that

distributional RL facilitates the learning of risk-sensitive
policies. To extract a risk-sensitive policy, [8], [37] learned to
predict arbitrary quantiles of the distribution of the random
return, and select risk-sensitive actions by estimating various
‘distortion risk measures’ by sampling quantiles. As such
sampling must be performed for each potential action, this
approach is not possible for continuous action spaces. So
instead, [38] recently combined the soft actor-critic (SAC)
framework [24] with distributional RL, achieving a new
state-of-the-art in risk-sensitive control tasks. In robotics,
[39] considered a sample-based distributional policy gradient
algorithm and demonstrated improved robustness to actuation
noise on OpenAI Gym tasks when using coherent risk
measures. Meanwhile, [11] proposed the use of distributional
RL to learn risk-sensitive policies for grasping tasks, showing
superior performance over non-distributional baselines on
real-world grasping data.
Despite the impressive performance demonstrated in these

existing works, they are all limited to learning a policy for a
single risk measure at a time. This can be problematic since
the desired risk measure can vary with the environment and
situation. So, in this work, we train a single policy that can
adapt to a wide variety of risk measures.

III. Approach
In this section, we discuss the problem formulation and

proposed method in detail.



A. Problem Formulation
We consider a differential-wheeled robot navigating in two

dimensions. The robot’s shape is an octagon (Figure 3a),
and its objective is to pass a sequence of waypoints without
colliding with obstacles.
We formalize this problem as a partially-observed Markov

decision process (POMDP) [40], with sets of states SPO,
observations Ω and actions A, a reward function 𝑟 : SPO ×
A → R, and distributions for the initial state, for state 𝑠𝑡+1 ∈
SPO given state-action (𝑠𝑡 , 𝑎𝑡 ) ∈ SPO×A and for observation
𝑜𝑡 ∈ Ω given (𝑠𝑡 , 𝑎𝑡 ). As is typical when applying RL, we
treat this POMDP as a Markov decision process (MDP) with
set of states S given by the episode-histories of the POMDP:

S = {(𝑜0, 𝑎0, 𝑜1, 𝑎1 . . . , 𝑜𝑇 ) : 𝑜𝑡 ∈ Ω, 𝑎𝑡 ∈ A,𝑇 ∈ Z≥0}.

The MDP has the same action space A as the POMDP, and
its reward, initial-state and transition distributions are those
implicitly defined by the POMDP. Note that the reward is
random variable for the MDP, even though we define it as a
function for the POMDP.

1) States and Observations: The full state, which is a
member of the set SPO, is the location of all waypoints,
coupled with the locations, velocities and accelerations of
all obstacles, but real-world agents only sense a fraction of
this state. So in this work, an observation

(𝑜rng, 𝑜waypoint, 𝑜velocity) ∈ R180×R6×R4 =:Ω

consists of range-sensor measurements describing the lo-
cation of nearby obstacles, measurements of the robot’s
location relative of the next two waypoints, and information
about the robot’s velocity. Specifically, we define

𝑜rng,𝑖 = I{𝑑𝑖 ∈ (0.01,3)m}(2.5+ log10 𝑑𝑖),

where I{·} is the indicator function, 𝑑𝑖 is the distance in
meters to the nearest obstacle in the angular range [2𝑖−2,2𝑖)
degrees, relative to the 𝑥-axis of the robot’s coordinate frame,
and we set 𝑜rng,𝑖 = 0 if there are no obstacles in the given
direction. The waypoint observation is of the form

𝑜waypoint = [log10 𝛿1,cos𝜃1, sin𝜃1, log10 𝛿2,cos𝜃2, sin𝜃2],

where 𝛿1, 𝛿2 are the distances to the next waypoint and
the waypoint after that, clipped to [0.01,100]m, and 𝜃1, 𝜃2
are the angles of those waypoints relative to the robot’s 𝑥-
axis. Lastly, the velocity observation 𝑜velocity = [𝑣c,𝜔c, 𝑣u,𝜔u]
consists of the robot’s current linear and angular velocities
𝑣c, 𝜔c, and the desired linear and angular velocities 𝑣u, 𝜔u
calculated from the agent’s previous action.

2) Actions: We use normalized two-dimensional vectors
𝑢 = (𝑢0, 𝑢1) ∈ [−1,1]2 =:A as actions, in terms of which the
desired linear and angular velocity of the robot are

𝑣u = 𝑤minv (1−𝑢0)/2+𝑤maxv (1+𝑢0)/2,
𝜔u = I{|𝑤max𝜔𝑢1 | ≥ 15deg/s}𝑤max𝜔𝑢1,

where 𝑤minv = −0.2m/s, 𝑤maxv = 0.6m/s, 𝑤max𝜔 = 90deg/s.
These desired velocities are sent to the robot’s motor

controller, which clips them to the ranges [𝑣c−𝑤accvΔ𝑡, 𝑣c +

𝜔accvΔ𝑡] and [𝜔c − 𝑤acc𝜔Δ𝑡,𝜔c + 𝑤acc𝜔Δ𝑡] for maximum
accelerations 𝑤accv = 1.5m/s2 and 𝑤acc𝜔 = 120deg/s2, where
Δ𝑡 = 0.02s is the control period of the motor controller.
The agent’s control period is larger than Δ𝑡, being uniformly
sampled from {0.12,0.14,0.16} s when an episode begins in
the simulation, and 0.15s in real-world experiments.

3) Reward: Our reward function encourages the agent to
follow the waypoints efficiently, while avoiding collisions.
Omitting dependence on the state and action for brevity, the
reward has the form

𝑟 = 𝑟base + 𝑟goal + 𝑟waypoint · 𝑟angular + 𝑟coll.

The base reward 𝑟base = −0.02 is given at every step, to
penalize the agent for the time taken to reach the goal (the last
waypoint), and 𝑟goal = 10 is given when the distance between
the agent and the goal is less then 0.15m.
The waypoint reward is

𝑟waypoint =max{−0.1,max{0, 𝑣𝑐} cos𝜃1},

where 𝜃1 is the angle of the next waypoint relative to the
robot’s 𝑥-axis and 𝑣𝑐 is the current linear velocity. We set
𝑟waypoint to zero when the agent is in contact with an obstacle.
Reward 𝑟angular encourages navigation in straight lines,

𝑟angular =

{
1.2 if |𝜔𝑢 | < 15deg/s
max

{
0.5,1− |𝜔𝑢 |

(120deg/s)

}
otherwise,

and 𝑟coll =−10 is given if the agent collides with an obstacle.
4) Risk-Sensitive Objective: As in (1), let 𝑍 𝜋 (𝑠, 𝑎) be the

random return given by

𝑍 𝜋 (𝑠, 𝑎) =
∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑆𝑡 , 𝐴𝑡 ), (2)

where (𝑆𝑡 , 𝐴𝑡 )𝑡 ∈Z≥0 is the random state-action sequence with
(𝑆0, 𝐴0) = (𝑠, 𝑎), given by the MDP’s transition distribution
and policy 𝜋, and 𝛾 ∈ [0,1) is the discount factor.
There are two main approaches to defining risk-sensitive

decisions. Either one defines a utility function 𝑈 : R→ R, as
in [41] and selects an action 𝑎 that maximizes E𝑈 (𝑍 𝜋 (𝑠, 𝑎))
when in state 𝑠. Alternatively, as in [8], [42] one considers
the quantile function of 𝑍 𝜋 , defined by 𝑍 𝜋

𝜏 (𝑠, 𝑎) := inf{𝑧 ∈
R : P(𝑍 𝜋 (𝑠, 𝑎) ≤ 𝑧) ≥ 𝜏} for quantile fraction 𝜏 ∈ [0,1]. Then
one defines a distortion function, which is a mapping 𝜓 :
[0,1] → [0,1] from quantile fractions to quantile fractions,
and selects an action 𝑎 that maximizes the distortion risk
measure E𝜏∼𝑈 ( [0,1])𝑍

𝜋
𝜓 (𝜏) (𝑠, 𝑎) when in state 𝑠.

In this work, we focus on two distortion risk measures,
each with a scalar parameter 𝛽 that we call the risk-
measure parameter. The first is the widely-used [4], [8], [38]
conditional value-at-risk (CVaR), which is the expectation
of the fraction 𝛽 of least-favourable random returns, and
corresponds to the distortion function

𝜓CVaR (𝜏; 𝛽) := 𝛽𝜏 for 𝛽 ∈ (0,1].



Lower 𝛽 results in a more risk-averse policy and 𝛽 = 1 gives a
risk-neutral policy. The second is the power-law risk measure,
given by the distortion function

𝜓pow (𝜏; 𝛽) := 1− (1− 𝜏)1/(1−𝛽) for 𝛽 < 0,

motivated by its good performance in grasping experi-
ments [11]. For the given parameter ranges, both risk mea-
sures are coherent in the sense of [43].

B. Risk-Conditioned Distributional Soft Actor-Critic

To efficiently learn a wide range of risk-sensitive policies,
we propose the risk-conditioned distributional soft actor-
critic (RC-DSAC) algorithm.

1) Soft Actor-Critic Algorithm: Our algorithm is based
on the soft actor-critic (SAC) algorithm [24], the term
‘soft’ indicating entropy-regularized. SAC maximizes the
accumulated rewards and the entropy of the policy jointly:

𝐽 (𝜋) = E𝜋
[ ∞∑︁
𝑡=0

𝛾𝑡 [𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝛼𝐻 (𝜋(·|𝑠𝑡 ))]
]
, (3)

where the expectation is over state-action sequences given
by the policy 𝜋 and transition distribution, 𝛼 ∈ R≥0 is
a temperature parameter which trades-off the optimization
of reward and entropy, and 𝐻 (𝑝(·)) := −E𝑎∼𝑝 (𝑎) log 𝑝(𝑎)
denotes the entropy of a distribution over actions which is
assumed to have a probability density 𝑝(·).
SAC has a critic network that learns a soft state-action

value function 𝑄 𝜋 : S ×A → R, using the soft Bellman
operator

𝑇 𝜋𝑄 𝜋 (𝑠𝑡 , 𝑎𝑡 ) := E𝜋
[

𝑟 (𝑠𝑡 , 𝑎𝑡 ) +𝛾 (𝑄 𝜋 (𝑠𝑡+1, 𝑎𝑡+1) −𝛼 log𝜋(𝑎𝑡+1 |𝑠𝑡+1))
�� 𝑠𝑡 , 𝑎𝑡 ] ,

and an actor network that minimizes the Kullback-Leibler
divergence between the policy and a distribution given by
the exponential of the soft value function,

𝜋new = argmin
𝜋′∈Π

E𝑠∼D 𝜋old

[
𝐷KL

(
𝜋′(·|𝑠)

 𝑒
𝑄

𝜋old (𝑠,·)
𝛼

𝑍
𝜋old
part. (𝑠)

)]
,

where Π is the set of policies that can represented by the actor
network, D 𝜋 is the distribution over states induced by policy
𝜋 and the transition distribution, which is approximated in
practice by experience replay, and 𝑍

𝜋old
part. (𝑠𝑡 ) is the partition

function normalizing the distribution.
In practice, the reparameterization trick is often used. In

that case, SAC samples actions as 𝑎𝑡 = 𝑓 (𝑠𝑡 , 𝜖𝑡 ) where 𝑓 (·, ·)
is the mapping implemented by the actor network, and 𝜖𝑡 is
a sample from a fixed distribution like a spherical Gaussian
N . The policy objective then has the form

𝐽 (𝜋) = E𝑠∼D 𝜋 , 𝜖∼N [𝑄(𝑠, 𝑓 (𝑠, 𝜖)) −𝛼 log𝜋( 𝑓 (𝑠, 𝜖) |𝑠)] . (4)

For more details about SAC, we refer the reader to [24], [44].

2) Distributional SAC and Risk-Sensitive Policies: To
capture the full distribution of accumulated rewards, rather
than just its mean, [38] recently proposed distributional SAC
(DSAC). As in previous work on distributional RL [7], [8],
[37], DSAC uses quantile regression to learn this distribution.
Such previous work is limited to finite action spaces, and
DSAC overcomes this limitation using ideas from SAC.
Rather than using the random return 𝑍 𝜋 from equation (2),

DSAC works with the soft random return appearing in (3),
given by

𝑍𝛼,𝜋 (𝑠, 𝑎) :=
∞∑︁
𝑡=0

𝛾𝑡 [𝑟 (𝑆𝑡 , 𝐴𝑡 ) −𝛼 log𝜋(𝐴𝑡 |𝑆𝑡 ))],

where (𝑆𝑡 , 𝐴𝑡 )𝑡 ∈Z≥0 is as in (2).
Like SAC, the DSAC algorithm has an actor and a critic.

To train the critic, some quantile fractions 𝜏1, . . . , 𝜏𝑁 and
𝜏′1, . . . , 𝜏

′
𝑁 ′ are sampled independently, and the critic mini-

mizes the loss

𝐿 (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) =
1
𝑁 ′

𝑁∑︁
𝑖=1

𝑁 ′∑︁
𝑗=1

𝜌𝜏𝑖
(
𝛿
𝜏𝑖 ,𝜏

′
𝑗

𝑡

)
, (5)

where for 𝑥 ∈ R, the quantile regression loss is

𝜌𝜏 (𝑥) = |𝜏− I{𝑥 < 0}| min{𝑥2,2|𝑥 | −1}/2, (6)

and the temporal difference is

𝛿
𝜏,𝜏′

𝑡 = 𝑟𝑡 +𝛾 [�̂� ′
𝜏′ (𝑠𝑡+1, 𝑎𝑡+1) −𝛼 log𝜋(𝑎𝑡+1 |𝑠𝑡+1)] − �̂�𝜏 (𝑠𝑡 , 𝑎𝑡 ),

where (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) is a transition from the replay buffer,
�̂�𝜏 (𝑠, 𝑎) is the output of the critic, which is an estimate of
the 𝜏-quantile of 𝑍𝛼,𝜋 (𝑠, 𝑎), and �̂� ′

𝜏′ (𝑠, 𝑎) is the output of a
delayed version of the critic known as the target critic [24].
To train a risk-sensitive actor network, DSAC works with

a distortion function 𝜓. Rather than direcly maximizing
the corresponding distortion risk measure, DSAC substitutes
𝑄(𝑠, 𝑎) = Ê𝜏∼𝑈 ( [0,1])𝑍𝜓 (𝜏) (𝑠, 𝑎) in equation (4), where Ê
denotes the average of a sample.

3) Risk-Conditioned DSAC: Although risk-sensitive poli-
cies learnt by DSAC show promising results [38] in multiple
simulation environments, DSAC can learn only one type
of risk-sensitive policy at a time. This may be problematic
for mobile-robot navigation if the appropriate risk-measure
parameter differs with the environment, and users wish to
tune it at run-time.
To address this issue, we propose the risk-conditioned

distributional SAC (RC-DSAC) algorithm, which extends
DSAC to learn a wide range of risk-sensitive policies con-
currently and can change its risk-measure parameter without
retraining. RC-DSAC learns risk-adaptable policies for a
distortion function 𝜓(·; 𝛽) with parameter 𝛽, by supplying 𝛽

as an input to the policy 𝜋(·|𝑠, 𝛽), the critic �̂�𝜏 (𝑠, 𝑎; 𝛽), and
the target critic �̂� ′

𝜏′ (𝑠, 𝑎; 𝛽). Specifically, the critic’s objective
(5) becomes

𝐿 (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝛽) =
1
𝑁 ′

𝑁∑︁
𝑖=1

𝑁 ′∑︁
𝑗=1

𝜌𝜏𝑖
(
𝛿
𝜏𝑖 ,𝜏

′
𝑗
,𝛽

𝑡

)
, (7)



Fig. 2: Architecture of the networks used in RC-DSAC.
FC denotes a fully-connected layer, Conv1D denotes a
one-dimensional convolutional layer with the given number
of channels/kernel_size/stride, and GRU denotes a gated
recurrent unit [45]. Multiple arrows pointing to a single
block indicate concatenation and � denotes element-wise
multiplication.

where 𝜌𝜏 (·) is as in (6) and the temporal difference is

𝛿
𝜏,𝜏′,𝛽
𝑡 = 𝑟𝑡 +𝛾 [�̂� ′

𝜏′ (𝑠𝑡+1, 𝑎𝑡+1; 𝛽) −𝛼 log𝜋(𝑎𝑡+1 |𝑠𝑡+1, 𝛽)]
− �̂�𝜏 (𝑠𝑡 , 𝑎𝑡 ; 𝛽),

and the actor’s objective (4) becomes

𝐽 (𝜋) = E𝑠∼D 𝜋 , 𝜖∼N,𝛽∼B
[

𝑄(𝑠, 𝑓 (𝑠, 𝜖 , 𝛽); 𝛽) −𝛼 log𝜋( 𝑓 (𝑠, 𝜖 , 𝛽) |𝑠)
]
, (8)

where 𝑄(𝑠, 𝑎; 𝛽) = Ê𝜏∼𝑈 ( [0,1]) �̂�𝜓 (𝜏;𝛽) (𝑠, 𝑎; 𝛽) and B is a
distribution for sampling 𝛽 as we now explain.
During training, the risk-measure parameter 𝛽 is uniformly

sampled from B = 𝑈 ( [0,1]) for 𝜓CVaR, and 𝑈 ( [−2,0]) for
𝜓pow. As in other RL algorithms, each iteration has a data-
collection phase and a model-update phase. In the data-
collection phase, we sample 𝛽 at the start of each episode
and fix it until the episode’s end. For the model-update
phase, we explore the following two alternatives. The first
alternative, called stored, stores the 𝛽 used in data-collection
in the experience-replay buffer, and only uses that stored 𝛽 for
updates. The second alternative, called resampling, samples
a new 𝛽 for each experience in a mini batch at every iteration.

4) Network Architectures: We represent 𝜏 and 𝛽 using
a cosine embedding, and use element-wise multiplication
to fuse these with information about the observation and
quantile fraction (Figure 2).

(a) PyBullet simulator

(b) Narrow

(c) Sparse

Fig. 3: (a) An example of our procedurally-generated envi-
ronment. (b,c) Sensor settings: green octagons denote the
robot and gray areas are the sensors’ fields of view.

As in DSAC [38], only the critic network of RC-DSAC
depends on 𝜏. However, both the actor and critic networks
of RC-DSAC depend on 𝛽. So, we calculate embeddings
𝜙𝛽 ∈ R64, 𝜙𝜏 ∈ R64, with elements 𝜙𝛽

𝑖
= cos(𝜋𝑖𝛽) and 𝜙𝜏

𝑖
=

cos(𝜋𝑖𝜏). Then, we apply element-wise multiplication

𝑔actor (𝑜0:𝑡 ) � 𝑔actorRisk (𝜙𝛽)

to the actor network and

𝑔critic (𝑜0:𝑡 , 𝑢𝑡 ) � 𝑔criticRisk ( [𝜙𝛽; 𝜙𝜏])

to the critic network, where 𝑔actor (𝑜0:𝑡 ), 𝑔critic (𝑜0:𝑡 , 𝑢𝑡 ) ∈ R128
are the embeddings of the observation history (and the cur-
rent action for the critic) calculated using a gated recurrent
unit (GRU) [45] and a fully-connected layer, 𝑔actorRisk :R64→
R128 and 𝑔criticRisk : R128 → R128 are fully-connected layers,
and [𝜙𝛽; 𝜙𝜏] is the concatenation of vectors 𝜙𝛽 and 𝜙𝜏 .

IV. Experiments

In this section, we describe the simulation environment
used for the training. Then we compare the performance of
our method against baselines and demonstrate the trained
policy using a real-world robot.

A. Training Environment

We use the same procedural environment-generation al-
gorithm as in [25], and use PyBullet [46] to simulate the
robot dynamics, as shown in Figure 3 (a). To increase the
throughput of data collection, we run 10 simulations in
parallel. Specifically, for each environment generated, we run
10 episodes in parallel, where the episodes involve agents
with distinct start and goal positions, as well as distinct risk-
metric parameters 𝛽. Each episode terminates after 1,000
steps, and a new goal is sampled when an agent reaches its
goal.
To study the impact of partial observation on our method,

we conduct experiments using two different sensor config-
urations, as shown in Figure 3 (b,c). The narrow setting
zeros out 𝑜rng,22:158, and the sparse setting zeros out all 𝑜rng,𝑖
except those with 𝑖 ≡ 0 (mod 10).



B. Training Agents

We compare the performance of RC-DSAC with SAC [24]
and DSAC [38]. We also compare with Algorithm 1 in [25],
applied to this paper’s reward function, calling this method
reward-component-weight randomization (RCWR).
We train two RC-DSAC agents, one for each of the

distortion functions 𝜓CVaR and 𝜓pow. Then RC-DSAC with
𝜓CVaR is evaluated for 𝛽 ∈ {0.25,0.5,0.75,1}, and RC-DSAC
with 𝜓pow is evaluated for 𝛽 ∈ {−2,−1.5,−1,−0.5}.
For DSAC, we use 𝜓CVaR with 𝛽 ∈ {0.25,0.75}, and 𝜓pow

with 𝛽 ∈ {−2,−1}, each DSAC agent being trained and
evaluated for a single 𝛽.
For RCWR, we use only one navigation parameter [25]

𝑤coll ∼𝑈 ( [0.1,2]). The reward 𝑟coll is replaced by 𝑤coll𝑟coll,
when calculating the reward 𝑟 , with higher values of 𝑤coll
making an agent more collision-averse while still remaining
risk-neutral. We use 𝑤coll ∈ {1,1.5,2} for evaluation.
All baselines use the same network architecture as RC-

DSAC, with the following exceptions. DSAC does not use
𝑔actorRisk, and 𝑔criticRisk depends only on 𝜙𝜏 . RCWR has an
extra 32-dimensional fully-connected layer in its observa-
tion encoder for 𝑤coll. Lastly, RCWR and SAC use neither
𝑔actorRisk nor 𝑔criticRisk.
We use the hyperparameters in Table I for all algorithms.

TABLE I: Hyperparameters
Parameter Value Parameter Value

Learning rate 3×10−4 Quantile fraction
samples (𝑁 , 𝑁 ′) 16

Discount factor (𝛾) 0.99 Experience replay
buffer size 5×106

Target network
update coefficient 0.001 Mini-batch size 100

Entropy target [24] -2 GRU unroll 64

We train each algorithm for 100,000 weight updates (5,000
episodes in 500 environments). Then we evaluate the algo-
rithms on 50 environments not seen in training. We evaluate
for 10 episodes per environment, with agents having distinct
start and goal positions, but having a common value for 𝛽
or 𝑤coll.
To ensure fairness and reproducibility, we use fixed ran-

dom seeds for training and evaluation, so different algorithms
are trained and evaluated on exactly the same sequences of
environments, and starting/goal positions.

C. Performance Comparison

Table II presents the mean and standard deviation of the
number of collisions and reward of each method, averaged
over the 500 episodes across the 50 evaluation environments.
RC-DSAC with 𝜓pow and 𝛽 = −1 had the highest rewards

in the narrow setting, and RC-DSAC with 𝜓pow and 𝛽 = −1.5
had the fewest collisions in the both settings.
The risk-sensitive algorithms (DSAC, RC-DSAC) all had

fewer collisions than SAC, and some of them could achieve
this while attaining a higher reward. Also, the results for
RCWR suggest that distributional risk-aware approaches can

TABLE II: Performance evaluation against baselines.

Agent 𝜓 𝛽
Narrow Sparse

Collisions Rewards Collisions Rewards

RC-DSAC
(resample)

CVaR

0.25 0.67 ±2.06 403.9 ±186.2 0.19 ±0.48 487.8 ± 88.2
0.5 0.59 ±1.03 451.3 ±125.4 0.29 ±0.62 512.0 ± 54.8
0.75 0.81 ±1.75 452.0 ±145.9 0.42 ±0.93 507.6 ± 65.1
1 1.15 ±2.48 458.8 ±140.3 0.55 ±1.03 505.2 ± 60.1

pow

-2 0.50 ±0.84 509.4 ± 99.2 0.21 ±0.68 473.4 ±113.9
-1.5 0.48 ±0.89 511.7 ± 98.8 0.17 ±0.53 479.0 ±107.4
-1 0.58 ±1.36 514.7 ± 96.4 0.21 ±0.58 482.2 ±101.9
-0.5 0.68 ±1.18 506.7 ±113.3 0.23 ±0.75 488.3 ±104.2

RC-DSAC
(stored)

CVaR

0.25 0.68 ±3.47 443.5 ±168.3 0.37 ±0.68 494.7 ± 89.3
0.5 1.00 ±5.14 397.7 ±173.2 0.38 ±0.80 499.4 ± 87.7
0.75 1.10 ±2.27 431.0 ±152.3 0.39 ±0.77 501.0 ± 86.0
1 1.59 ±8.09 298.4 ±246.9 1.00 ±1.63 477.7 ± 97.6

pow

-2 0.87 ±3.90 465.0 ±151.6 0.42 ±0.72 492.3 ± 84.5
-1.5 0.73 ±2.11 471.4 ±130.0 0.68 ±1.32 468.4 ±335.8
-1 1.13 ±3.40 460.1 ±122.2 0.58 ±0.96 504.5 ± 80.6
-0.5 0.95 ±3.30 459.1 ±122.9 1.12 ±1.52 496.7 ± 84.0

DSAC
CVaR 0.25 1.05 ±1.75 431.9 ±127.6 0.76 ±1.18 417.2 ±117.8

0.75 0.72 ±3.00 299.6 ±199.2 0.63 ±1.03 515.4 ± 74.1

pow -2 1.14 ±4.02 469.2 ±212.6 0.54 ±1.29 525.5 ± 76.8
-1 0.73 ±2.57 499.4 ±115.7 0.80 ±1.80 513.3 ± 84.5

RCWR
𝑤coll = 2 1.58 ±2.68 488.2 ±122.5 0.81 ±1.08 506.1 ± 81.1
𝑤coll = 1.5 1.50 ±2.39 491.7 ±108.8 1.17 ±1.71 491.9 ±101.2
𝑤coll = 1 1.60 ±2.55 493.7 ±116.7 1.23 ±1.59 490.8 ± 93.5

SAC - 1.76 ±2.02 476.7 ±105.4 1.62 ±2.48 491.8 ±103.5

be more effective than simply increasing the penalty for
collisions.
We compare DSAC with the two alternative implementa-

tions of RC-DSAC by averaging over both risk measures,
but only for the two values of 𝛽 on which DSAC was
evaluated. In the narrow setting, RC-DSAC (stored) had a
comparable number of collisions (0.95 vs. 0.91) but higher
rewards (449.9 vs. 425.0) than DSAC, whereas in the sparse
setting RC-DSAC (stored) had fewer collisions (0.44 vs.
0.68) but comparable rewards (498.1 vs. 492.9). Overall, RC-
DSAC (resampling) had the fewest collisions (0.64 in the
narrow setting and 0.26 in the sparse setting), and attained the
highest rewards in the narrow setting (470.0). This shows the
algorithm’s ability to adapt to a wide range of risk-measure
parameters, without the retraining required by DSAC.
In addition, the number of collisions made by RC-DSAC

shows a clear positive correlation with 𝛽, for the CVaR risk
measure. One would expect this, as low 𝛽 corresponds to
risk aversion.

D. Real-World Experiments
To demonstrate the proposed method in the real world, we

build a mobile-robot platform and test the agents trained in
simulation (as described in Section IV-B), in a challenging
office environment (Figure 1). The robot has four depth
cameras on its front, and point cloud data from these sensors
is mapped into the observation 𝑜rng corresponding to the
narrow setting. Then we deploy RC-DSAC (resampling) and
baseline agents. For each agent, we ran two experiments in a
course of length 53.7m, making a run forward and another
in the reverse direction.
Table III presents the number of collisions and required

time to reach the goal for each agent. As can be seen, SAC
had more collisions than distributional risk-averse agents.
DSAC had no collisions throughout the experiments but



TABLE III: Results of real-world experiment.

Agent 𝜓 𝛽
Forward Reverse

Collision Required Time (s) Collision Required Time (s)

RC-DSAC
CVaR 0.25 0 107 0 114

0.75 0 112 1 109

pow -2 0 110 0 116
-1 0 107 1 107

DSAC
CVaR 0.25 0 141 0 128

0.75 0 104 0 114

pow -2 0 109 0 104
-1 0 111 0 104

SAC - - 3 115 2 111

showed over-conservative behaviour and took the longest
time to reach the goal with 𝜓CVaR and 𝛽 = 0.25. RC-DSAC
performed competitively with DSAC except minor collisions
in less risk-averse modes, and could adapt its behaviour
according to 𝛽.
We refer the supplementary video for the detailed trajec-

tories and characteristics of each agent.

V. Conclusion
This paper proposed a novel distributional-RL method

that produces agents that can adapt to a wide range of
risk measures at run-time. In our experiments, this method
showed superior performance over the baselines, as well as
adjustable risk-sensitivity. We also demonstrated the method
using a real-world robot.
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