
Detecting and Mapping Trees in Unstructured Environments with a
Stereo Camera and Pseudo-Lidar

Brian H. Wang, Carlos Diaz-Ruiz, Jacopo Banfi, and Mark Campbell1

Abstract— We present a method for detecting and mapping
trees in noisy stereo camera point clouds, using a learned 3-
D object detector. Inspired by recent advancements in 3-D
object detection using a pseudo-lidar representation for stereo
data, we train a PointRCNN detector to recognize trees in
forest-like environments. We generate detector training data
with a novel automatic labeling process that clusters a fused
global point cloud. This process annotates large stereo point
cloud training data sets with minimal user supervision, and
unlike previous pseudo-lidar detection pipelines, requires no 3-
D ground truth from other sensors such as lidar. Our mapping
system additionally uses a Kalman filter to associate detections
and consistently estimate the positions and sizes of trees. We
collect a data set for tree detection consisting of 8680 stereo
point clouds, and validate our method on an outdoors test
sequence. Our results demonstrate robust tree recognition in
noisy stereo data at ranges of up to 7 meters, on 720p resolution
images from a Stereolabs ZED 2 camera. Code and data
are available at https://github.com/brian-h-wang/
pseudolidar-tree-detection.

I. INTRODUCTION

Agile autonomous navigation in complex and unstructured
environments requires a robot to plan ahead and process
noisy sensor measurements, in order to determine the ex-
istence and locations of any obstacles in its planned path.
Consider a quadrotor UAV flying through a forest—tree
trunks and branches may appear in the quadrotor’s flight path
with little warning, and agile navigation therefore depends
on the quadrotor’s ability to use noisy sensor data to reason
about the uncertain presence or absence of obstacles ahead.

Current state of the art approaches to agile autonomous
navigation typically use either lidar [1], [2] or stereo cam-
eras [3]. Lidar sensors, while accurate, are heavy, power-
hungry, and expensive. Stereo cameras are more lightweight
and less costly, but the quality of stereo depth informa-
tion degrades significantly with range [4]. For this reason,
mapping approaches designed for obstacle avoidance based
on stereo cameras generally discard sensor measurements
past a limited range, and/or limit the maximum robot speed
in complex or crowded environments where sensor noise
is more prevalent. Additionally, the computational cost of
updating 3-D occupancy grid maps grows significantly as the
maximum mapping range and/or grid resolution is increased,
creating further difficulty for planning around obstacles in
complex environments.

This work was supported by the Office of Naval Research under the BRC
grant N00014-17-1-2175 and the MURI grant N00014-17-1-2699.

1The authors are with the Sibley School of Mechanical & Aerospace
Engineering, Cornell University, Ithaca, NY 14853, USA. {bhw45},
{cad297}, {jb2639}, {mc288} @cornell.edu

Fig. 1. Results of our tree detection and mapping system, demonstrated on
sample frames in our test sequence. The colored bounding boxes indicated
different tracked objects within our tracker.

Motivated by the problem of autonomous navigation in
unstructured outdoors environments such as forests, and
inspired by recent advancements in 3-D object detection
using a pseudo-lidar representation for stereo point clouds
[4], [5], we present, to the best of our knowledge, the first
method for detecting and mapping distant trees using a stereo
camera alongside a state of the art 3-D object detector.
Figure 1 demonstrates example results of our method, which
includes the following components:

1) A labeling pipeline which generates a training data
set for the tree detector from recorded stereo camera
sensor data. This pipeline allows rapid training data
creation with minimal user effort by clustering a fused
global point cloud map.

2) A PointRCNN 3-D object detector [6], which detects
trees in sparsified stereo point clouds, using the novel
pseudo-lidar approach proposed in Wang et al. [4].

3) A Kalman filter, which performs data association on

ar
X

iv
:2

10
3.

15
96

7v
1 

 [
cs

.R
O

] 
 2

9 
M

ar
 2

02
1

https://github.com/brian-h-wang/pseudolidar-tree-detection
https://github.com/brian-h-wang/pseudolidar-tree-detection


Range 2.5m Range 7m

Fig. 2. Example of the distortion that occurs in stereo point clouds at
longer sensing ranges, using data from a ZED 2 stereo camera. Left: Side
view of a tree at a range of approximately 2.5 meters from the sensor, as
seen in the 3-D point cloud generated from a stereo image pair. Right: The
same tree, at a range of 7 meters, appears significantly more distorted.

detections in order to robustly map trees. The filter
outputs accurate estimates of the positions and sizes
of trees in front of the camera, and is scalable due to
estimating a limited set of state variables per tree.

By learning patterns from large numbers of labeled noisy
stereo point clouds, our detection and mapping system is
able to recognize trees that appear distorted in stereo data,
an example of which is shown in Figure 2. We note that
distorted objects such as this are infeasible to manually
annotate with bounding box labels for training a 3-D detector,
as there is no unbiased way for someone to judge the
true position and size of the tree. For this reason, previous
pseudo-lidar detection methods use training labels that come
from annotated lidar data [4], [5]. Our automatic labeling
method avoids this problem, enabling the first stereo image
training and detection pipeline with no dependence on lidar
sensors. Our method is also modular, and can complement
existing 3-D occupancy grid mapping approaches.

We validate our perception system on a test sequence of
stereo point clouds captured in a forest-like environment,
demonstrating accurate tree detection and mapping at ranges
up to 7 meters away from the camera, where stereo depth
noise becomes significant. To further promote creation of
data sets and obstacle detectors for forests and other chal-
lenging environments for robotic navigation, our code for
point cloud labeling, pseudo-lidar object detection, and tree
mapping, as well as our collected data set, are publicly
available at https://github.com/brian-h-wang/
pseudolidar-tree-detection.

II. RELATED WORK

A. Perception for Navigation in Unstructured Environments

Recent works have demonstrated robust and effective
perception pipelines for enabling autonomous outdoors nav-
igation. Ryll et al. [3] use an Intel RealSense D435i stereo
camera to construct a 3-D occupancy grid that a UAV can
use for navigation. However, the occupancy grid requires
consistent sensor measurements to form a reliable map for
planning; as a result, while the quadrotor could achieve peak
speeds of 8 m/s in open areas, flight speed was greatly
reduced around obstacles and narrow passageways. Mohta
et al. [1] use a similar perception component, the main
difference being the usage of a nodding 2D lidar scanner

as the main sensor for mapping. Due to computational
considerations, lidar measurements are fused into a local
occupancy grid map covering a distance only up to 7.5m
away from the quadrotor. These navigation pipelines have
demonstrated impressive results in autonomous quadrotor
flight, however the difficulty of using longer-range sensor
measurements remains a roadblock towards faster flight in
more complex environments, with [1] specifically identifying
the size of the local map as a limiting factor on flight speed.

Other works have explored the problems of detecting
trees and navigating in forests specifically. Giusti et al.
[7] use a convolutional neural network for detecting forest
trails, allowing a quadrotor to navigate through the forest
by visually following the trail. Mohta et al. [2] demonstrate
quadrotor navigation in a sparse forest environment, and Tian
et al. [8] present a multi-UAV exploration framework using
trees as landmarks for SLAM, clustering trees in order to
reduce the computational burden of mapping a forest using
an occupancy grid. Both of these pipelines use lidar sensing
for mapping and tree detection. Finally, Durand-Petiteville et
al. [9] present a method for detecting tree trunks in orchards
using stereo cameras, by reasoning about the shadows that
tree trunks cast within the stereo point cloud. This method is
computationally efficient and demonstrates that trees can be
effectively recognized in stereo point clouds, however since
it is designed specifically for usage in orchards, it depends
on a number of heuristic assumptions about the shapes and
sizes of the trees.

B. 3-D Pseudo-lidar Object Detection

Motivated in large part by autonomous driving, researchers
have made significant progress in perception and scene
understanding with 3-D sensors [10], [11], [6], [12], [13].
Recent works have greatly narrowed the gap between 3-
D object detectors that use lidar, and those that use stereo
images as inputs. Wang et al. [4] showed that this gap
was caused mainly by the representation used for stereo
data, rather than the quality of depth estimation, as was
previously assumed. By representing stereo depth images as
a 3-D point cloud, then using the resulting point cloud as an
input to a 3-D lidar object detector, they achieved massively
improved detection accuracy over previous stereo image
object detectors. Wang et al. refer to this representation
as pseudo-lidar, since the stereo point cloud mimics the
measurements produced by a lidar sensor. You et al. [5]
introduced improvements that further increased the accuracy
of stereo-based 3-D detection. Due to the reduced cost
and weight of stereo cameras as compared to lidar, these
advancements are especially impactful for UAVs and other
resource-constrained robotic platforms.

III. APPROACH

Our approach to tree detection and tracking consists of
three main components, described in detail in the following
sections: a pipeline for generating training data (Section III-
A), a 3-D tree detector (Section III-B), and a tree state
estimator (Section III-C).

https://github.com/brian-h-wang/pseudolidar-tree-detection
https://github.com/brian-h-wang/pseudolidar-tree-detection


1) Collect stereo point clouds 
and IMU measurements

2) Generate fused global point 
cloud and camera pose history

3) Cluster fused point cloud to 
obtain tree positions in global frame

4) Label point clouds and 
sparsify to pseudo-lidar⃗z1:n M

Z1:m
P1:n ⃗x 1:n

̂P1:n

B1:n

Fig. 3. Our pipeline for generating labeled stereo point cloud training data for the 3-D tree detector. See section III-A for definitions of terms.

A. Training Data Generation Pipeline

In the following section, we describe our pipeline for
generating stereo image training data with minimal user
supervision. Figure 3 illustrates the steps of this process. We
implement our pipeline in Python, using the Open3D [14]
library for 3-D data processing.

1) Data collection: Our approach uses these inputs:
• Pk, point clouds from a 3-D camera sensor.
• fx, fy,cx,cy, the camera intrinsic parameters.
• ~zk, measurements from an IMU and any accompanying

sensors used for camera pose estimation. These are used
to ensure accurate mapping and localization, which are
required for generating reliable training labels.

For the camera point clouds and other sensor data, the
index k is over the time step indices in the data collection,
k ∈ {1, . . . ,n}. We use a Stereolabs ZED 2 stereo camera
for our data collection. As described in [4], given a pair
of stereo images, the point cloud Pk can be computed by
matching pixels in the left image to corresponding pixels in
the right image, then computing a depth value to each pixel
based on the camera parameters.

We note that active RGBD sensors such as the Intel
RealSense or Microsoft Kinect can also be used to obtain
the required 3-D point cloud measurements and are therefore
compatible with our pipeline. However, these sensors tend
to perform less accurately outdoors due to their usage of
infrared sensors. Thus, the ZED 2 stereo camera better
addresses the use case we explore in this paper.

2) Global point cloud fusion and pose estimation: Given
the sensor measurements and camera parameters as inputs,
we compute the following:
• ~xk, the pose of the camera at each time step.
• M ∈RpG×3, a global point cloud map created by fusing

all Pk into a global reference frame. pG is the total
number of points in the global point cloud.

Multiple approaches for visual-inertial 3-D SLAM have
been proposed, which generate the pose and point cloud map
given a series of 3-D point clouds and inertial measurements
[15], [16], [17], [18]. Any of these approaches can, in
principle, be used to generate the required inputs for our
labeling pipeline. Our current implementation uses the spatial
mapping API of the Stereolabs ZED SDK1, which uses

1https://www.stereolabs.com/docs/spatial-mapping/

stereo vision alongside the built-in IMU, magnetometer, and
barometer on the ZED 2 sensor to perform point cloud fusion
and pose optimization.

3) Global point cloud clustering: After constructing the
global point cloud, we apply a clustering algorithm in order
to determine the number, shape, and position of individual
tree trunks in the point cloud, proceeding as follows:

1) Detect the ground plane in the global point cloud using
RANSAC, and remove any points within a distance
threshold to the ground.

2) Cluster the remaining points using the DBSCAN clus-
tering algorithm [19]. The output of this step is a list of
clusters Zi ∈ Rpi×3, where pi is the number of points
in cluster i.

3) Remove any cluster i where pi < pmin, a threshold on
cluster size. This filters out small erroneous clusters
from sources such as low-hanging foliage.

4) Output the remaining tree clusters Zi, i ∈ {1, . . . ,m}.
This clustering approach is sensitive to noise in the 3-

D points; thus, it cannot be used to effectively detect trees
in the individual noisy stereo point clouds. However, noise
in the fused global point cloud is significantly reduced in
comparison, and the global cloud can therefore be accurately
clustered to determine the number, shape, and position of
individual tree trunks, as demonstrated in Figure 3.

In addition, we have developed a labeling tool which can
be optionally used to review the generated clusters, remove
any incorrect clusters, and manually annotate any trees
missed by the DBSCAN clustering by drawing bounding
boxes around groups of unclustered points in the global point
cloud (with the ground plane removed). This step ensures the
generated clusters are free of errors, which would otherwise
propagate into the detector training data.

4) Automated label generation and point cloud sparsifi-
cation: Given a cluster of 3-D points Zi for each tree in
the global frame, we can step through the individual stereo
point clouds Pk and, using the computed pose of the camera
~xk in the global frame, transform the clusters Zi to the local
camera frame to determine which trees are visible at time k.

Our label generation procedure is as follows. For each time
step k ∈ {1, . . . ,n}:

1) Initialize the set of bounding box annotations for frame
k to Bk = /0.



2) Using the computed pose (position and orientation) of
the camera ~xk, define the homogeneous transformation
matrix TW→C,k which transforms points from the global
world frame to the local camera reference frame.

3) For each cluster of 3-D points Zi, i ∈ {1, . . . ,m}, use
TW→C,k to transform the cluster to its representation in
camera frame coordinates, which we denote as ZC

i .
4) Fit a 3-D rectangular bounding box bi,k, aligned to the

axes of frame C, around the points ZC
i . We align boxes

to C, because otherwise the correct orientation of the
box is undefined, since trees have no clear front side.

5) If no points in the local point cloud Pk fall within bi,k,
discard bi,k. This removes trees which are outside the
sensing range of the camera, or are completely oc-
cluded and therefore impossible to detect. Otherwise,
add bi,k to the set Bk of labels for point cloud Pk.

In addition, following You et al. [5], we sparsify each stereo
point cloud Pk into a sparse pseudo-lidar representation P̂k
by downsampling Pk to 128 scan lines, evenly distributed
according to vertical angle to the sensor, from θ =−35◦ to
θ = +35◦ (covering the vertical field of view of the ZED
2 camera). We choose 128 scan lines because You et al.
used 64 scan lines to imitate a lidar with a vertical field of
view of approximately 30◦; since the ZED 2 vertical field
of view is 70◦, doubling the number of pseudo-lidar scan
lines maintains a roughly similar density of scan lines. The
sparsification step is required because state of the art methods
for 3-D object detection assume lidar point cloud inputs, and
exploit the sparsity property of lidar data [6]. Sparsification
has the added advantage of greatly reducing the size of the
stereo point clouds—sparsifying ZED 2 stereo point clouds
generated using 720p resolution stereo images results in an
over tenfold decrease in the number of points—significantly
reducing the storage requirements for a large data set.

The end result of this pipeline is a set of sparse stereo point
clouds P̂k, each labeled with a set of ground truth bounding
boxes Bk indicating tree positions and sizes, to be used for
3-D object detector training. By automatically clustering a
global point cloud, then optionally having a user spend a
few minutes reviewing and fixing the clustering results, we
can generate annotation bounding boxes for the hundreds or
thousands of individual stereo point clouds used to create
the fused global point cloud. We note that even when the
user needs to add additional manual annotations, annotating
a group of points in the ground plane-removed global point
cloud takes only a few seconds of user time, and this single
annotation is then used to label many tree instances in the
individual sparse point clouds P̂k.

Our approach assumes a forest environment, with all
obstacles in the point cloud map being trees. In order to
consider more general environments, with multiple object
classes present, a potential extension to our pipeline is an
extra labeling step where a user manually reviews each
computed cluster and determines an appropriate class from
a list of predefined options. This process would require little
extra user time on top of our current pipeline, and would
enable training multi-class 3-D object detectors.

B. 3-D Object Detector

We use the PointRCNN detector, developed by Shi et al.
[6] and publicly released online2, to detect trees in 3-D stereo
point clouds. Previously, You et al. [5] applied PointRCNN
to stereo point clouds, using the sparse pseudo-lidar repre-
sentation. Our training data for the detector consists of the
sparsified local stereo point clouds P̂k, as well as the 3-D tree
bounding boxes Bi,k generated through our labeling pipeline.

C. Kalman Filter Estimator

We treat 3-D bounding box detections from PointRCNN
as uncertain measurements in a Kalman filter mapping
framework, in order to consistently estimate tree positions
and sizes and account for missed detections. Our goal is to
estimate the joint probability p(ak, tk|dk) at time k, where
tk is the set of estimated tree states (position and size),
dk is the set of observed sensor measurements (frame-wise
bounding box detections), and ak the assignment of measure-
ments to mapped trees. We decouple the joint distribution
into the continuous estimation problem p(tk|ak,dk), solved
recursively via a Kalman Filter (KF), and the discrete data
assignment problem, p(ak|tk,dk), solved via global nearest-
neighbors (GNN).

1) Kalman Filter: We define a state vector for each tree
based on its global frame position and size,

ti
k =

[
x y w

]T
, (1)

where x,y is the position of the center of the tree in top-
down birds-eye view coordinates, w is the tree diameter, and
ti
k corresponds to the i-th tree at the k-th time. For the rest

of the paper, the superscript i is omitted for clarity; but it is
given that multiple trees are being tracked. The x-axis points
along the direction the camera is facing, and the y axis points
to the left. Our state vector effectively represents each tree as
a cylinder, ignoring its height. We deem this an appropriate
choice for representing tree trunks in our use case, as we
would like to enable a robot to navigate between tree trunks
in a forest, rather than flying over the tree canopies.

We assume the states of the model for each tree to be
constant relative to the global frame, and driven by a small
amount of process noise

ṫk =
[
ex ey ew

]T (2)

where ex,ey,ew are process noise values with small covari-
ances which can be tuned to balance the time response of the
filter and the pose error. This noise allows the state estimates
to adjust over time as additional data arrives.

The Kalman Filter prediction step is

t̂k+1 = At̂k (3)

Σ̂k+1 = AΣ̂kAT +Q (4)

where t̂ is the state estimate, A is the state transition matrix
(in this case identity), Σ̂ is the state error covariance, and Q
is the process noise covariance matrix.

2https://github.com/sshaoshuai/PointRCNN



Each measurement consists of direct measurements of all
three states, derived from the bounding box detector. More
specifically, we extract the following measurement vector
dm

k+1 for the m-th measurement at the k+1 time:

dm
k+1 =

[
dx dy dw

]T
, (5)

where dx,dy denote the center-bottom position of the bound-
ing box relative to the camera coordinate system, and dw
is its width. We treat the width of a bounding box as a
noisy measurement of the corresponding tree’s diameter. The
measurement function from the detections hd(·) is

dk+1 = Htk+1 + rk+1. (6)

The measurement function is modeled with additive zero-
mean Gaussian white noise rk+1. This yields the predicted
measurement and corresponding innovation covariance to be:

d̂k+1 = Ht̂k+1 (7)

Sk+1 = HΣk+1HT +R. (8)

The tree location and diameter estimates are then updated
according to the standard Kalman Filter update equations.

2) Data Association: We use the GNN algorithm to op-
timally assign measurements to tracks, using the Hungarian
algorithm [20] to minimize the Mahalanobis distance

D j,i
k+1 = (d j

k+1− d̂i
k+1)

T S−1
k+1(d

j
k+1− d̂i

k+1), (9)

where the j-th measurement is compared to the i-th estimated
measurement, derived from the i-th track, and S is the
corresponding innovation covariance matrix.

Tracks are initialized when a fixed number aminHits of
measurements are associated to the same track; our current
implementation has aminHits = 3. Track deletion, on the
other hand, requires that a current track does not receive
any measurement updates over a set amount of time steps
amaxAge, or that the object exits the field of view (FOV);
we use amaxAge = 100. For our 60FPS camera, this equates
to 1.67 seconds. This method of track deletion addresses
short temporary occlusions. We use χ2 hypothesis testing for
validation gating, where very unlikely (<5%) measurement
associations are discarded as clutter or false positives.

IV. EXPERIMENTS AND RESULTS

A. Data collection and processing

In order to train our tree detection system, we collected
data in forest-like environments near the Cornell University
campus, using a handheld Stereolabs ZED 2 camera to gather
over 40,000 stereo image pairs at 720p resolution, split up
into seven individual sequences. Due to the camera’s 60 FPS
framerate, in order to avoid including multiple highly similar
frames in our detector training data, we downsampled the
data to only include every fifth frame in our training set, for
a set of 8680 stereo point clouds in total. In terms of number
of frames, this is similar to the popular 3-D object detection
KITTI data set, which includes 7481 training frames [21].

Each of the seven data capture sequences was fused
into a separate global point cloud, which were each then

1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5 5-5.5 5.5-6 6-6.5 6.5-7 7-7.5 7.5-8 8-8.5 8.5-9

Range from camera [m]

0

200

400

600

A
ss
o
ci
at
ed

d
et
ec
ti
on

s

Number of 3-D bounding boxes matched with ground truth vs. range

1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5 5-5.5 5.5-6 6-6.5 6.5-7 7-7.5 7.5-8 8-8.5 8.5-9

Range from camera [m]

0

200

400

600

800

F
al
se

p
os
it
iv
es

Number of false positives vs. range

1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5 5-5.5 5.5-6 6-6.5 6.5-7 7-7.5 7.5-8 8-8.5 8.5-9

Range from camera [m]

0

200

400

600

800

1000

F
al
se

n
eg
at
iv
es

Number of false negatives vs. range

DBSCAN clustering Raw detections Tracker estimate means

Fig. 4. Counts of successfully matched 3-D bounding boxes, false positives,
and false negatives, shown binned over different ranges from the sensor.
We compare raw detector bounding box outputs and tracker estimates with
baseline detections generated by running DBSCAN clustering on noisy
stereo point clouds.

clustered using our automatic annotation pipeline. For the
ground plane removal, we ran RANSAC for 1000 iterations,
and removed any points within 0.5 m of the fit plane.
For the global point cloud clustering, we set the DBSCAN
parameters to ε = 0.1 and minSamples = 10. Finally, after
DBSCAN clustering, we remove any clusters containing less
than 2000 points (To give a sense of scale, the full global
point clouds from our seven training data captures each
contained between 1.1 and 2.2 million points, though the
majority of these would be removed with the ground plane).
When creating the sparsified pseudo-lidar point clouds, we
also remove stereo points past 15 meters from the camera,
to avoid creating training bounding boxes that include only
very few 3-D points.

Our training data sequences contain 110 distinct trees in
total. 98 of these were correctly automatically clustered by
our global point cloud clustering process. The automatic
clustering generated 5 incorrect clusters which a manual
annotator removed. Finally, the manual annotator added 12
clusters which were missed by the DBSCAN clustering—
most of these were very thin tree trunks which fell under
the minimum threshold for DBSCAN cluster sizes. In total,
we trained PointRCNN on 8680 pseudo-lidar point clouds
annotated with 34,386 bounding box training labels.

B. Evaluating tree detection and estimation accuracy

We evaluate our trained PointRCNN tree detector and
tracker on a test sequence of 2000 stereo point clouds,
captured in a separate forest-like environment. This site
contains two rows of trees, and is physically separated from



1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

Range from camera [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
A
b
so
lu
te

er
ro
r
X

[m
]

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

Range from camera [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
b
so
lu
te

er
ro
r
Y

[m
]

DBSCAN clustering

Raw detections

Tracker estimate means

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

Range from camera [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
b
so
lu
te

er
ro
r
d
ia
m
et
er

[m
]

Fig. 5. Absolute errors on x (forward axis) position, y (lateral axis) position, and tree diameter over different ranges. An absent bar indicates no bounding
boxes present over a given range bin.

the area where we collected our training data, in order
to evaluate our detector’s performance in an environment
outside the training domain. Figure 1 visually shows our
test site; for full results of our tree mapping system, please
see the video accompanying this paper. We create ground
truth tree annotations of this outdoors test sequence using our
clustering and bounding box generation process, additionally
using our manual annotation tool to ensure correct labels.

As a baseline for comparison, we run our ground plane
removal and DBSCAN clustering method directly on the
individual stereo point clouds Pk, fit a bounding box around
each DBSCAN cluster, and treat these as detections. This
baseline exactly mimics our clustering procedure used for
automatic training data generation, except applied on noisy
stereo point clouds rather than on the fused global point
cloud. We leave all parameters used for this baseline cluster-
ing identical to the parameters used for generating training
labels for the detector, except for running RANSAC ground
plane removal for only 50 iterations (this saves computation
time and did not significantly affect clustering, since the
ground area in Pk is much smaller than in the global point
cloud and therefore does not require as precise a plane fit).

Figure 4 shows the total number of bounding boxes suc-
cessfully associated with ground truth boxes (top), false pos-
itive bounding boxes (middle), and false negatives (bottom)
for the baseline DBSCAN detections, tree detector and the
tracker. For evaluation, we match bounding boxes to nearby
ground truth instances using linear assignment, with a max-
imum distance cutoff of 1 meter. This evaluation analyzes
how often our detection and mapping system successfully
recognizes the presence of trees ahead. We bin statistics
over various ranges, in order to analyze how performance
changes with distance from the sensor. As seen in the results,
the DBSCAN baseline correctly recognizes the majority of
ground truth trees at shorter ranges, when depth errors are
minimal. Past around 5 meters, however, the number of
false positive DBSCAN bounding boxes grows rapidly, as
DBSCAN begins to mistakenly find clusters in noisy areas
of the stereo point clouds. In contrast, our detector, trained
on data generated largely by the same DBSCAN clustering
method applied to a fused global point cloud, does not raise
these false postives, and demonstrates a low false negative

rate up to around 7 meters, significantly further than the
accurate range of DBSCAN point cloud clustering. Past 5
meters, the Kalman filter effectively compensates for missed
detections, reducing the false negative rate of the system.
Our detector noticeably misses trees at very short ranges; at
close distances, the stereo point cloud is very dense, which
may make shorter-range detections difficult for PointRCNN,
which was designed with lidar data in mind, to learn. This
is however a minor drawback, since at such a close range
depth measurements are quite reliable and could be easily
integrated into a local grid-based map.

In order to examine the quality of tree bounding boxes,
Figure 5 reports the errors in x- and y-position and tree
size for the DBSCAN baseline bounding boxes, PointRCNN
detections, and Kalman filter estimates. Errors for both
the PointRCNN detections and filtered tree states remain
consistently low over the ranges shown, indicating that the
detections closely match the ground truth positions and sizes
of trees in the test sequence. In contrast, the DBSCAN
baseline demonstrates low error up to around 3 meters, but
begins to drastically grow in error after this point, with errors
in tree sizes becoming particularly large.

V. CONCLUSION
We present a method for detecting and mapping trees

in stereo camera point clouds. In our experiments, this
system accurately recognizes trees at ranges up to 7 me-
ters, even when trained on labels generated from clustering
which is accurate in noisy stereo point clouds only up to
approximately 3-4 meters. Our automatic labeling pipeline
enables a detector to learn to recognize trees in noisy longer-
range stereo points, which are often discarded in current
mapping approaches, increasing the extent of usable sensor
information available to the robot. Additionally, our pipeline
bypasses the need for time-consuming manual labeling, and
does not depend on supervision from a lidar sensor. Future
work will focus on further extending the range of learned
3-D object detectors, enabling robots to navigate while
accounting for distant uncertain obstacles.

ACKNOWLEDGMENT
The authors would like to thank Yan Wang for helpful

discussion on training the pseudo-lidar 3-D object detector.



REFERENCES

[1] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico et al., “Fast, autonomous
flight in gps-denied and cluttered environments,” Journal of Field
Robotics, vol. 35, no. 1, pp. 101–120, 2018.

[2] K. Mohta, K. Sun, S. Liu, M. Watterson, B. Pfrommer, J. Svacha,
Y. Mulgaonkar, C. J. Taylor, and V. Kumar, “Experiments in fast,
autonomous, gps-denied quadrotor flight,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 7832–
7839.

[3] M. Ryll, J. Ware, J. Carter, and N. Roy, “Efficient trajectory planning
for high speed flight in unknown environments,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 732–738.

[4] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q.
Weinberger, “Pseudo-lidar from visual depth estimation: Bridging the
gap in 3d object detection for autonomous driving,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 8445–8453.

[5] Y. You, Y. Wang, W.-L. Chao, D. Garg, G. Pleiss, B. Hariharan,
M. Campbell, and K. Q. Weinberger, “Pseudo-lidar++: Accurate
depth for 3d object detection in autonomous driving,” arXiv preprint
arXiv:1906.06310, 2019.

[6] S. Shi, X. Wang, and H. Li, “Pointrcnn: 3d object proposal gener-
ation and detection from point cloud,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
770–779.

[7] A. Giusti, J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodrı́guez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. Di Caro et al., “A machine
learning approach to visual perception of forest trails for mobile
robots,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp.
661–667, 2015.

[8] Y. Tian, K. Liu, K. Ok, L. Tran, D. Allen, N. Roy, and J. P. How,
“Search and rescue under the forest canopy using multiple uas,” in
International Symposium on Experimental Robotics. Springer, 2018,
pp. 140–152.

[9] A. Durand-Petiteville, E. Le Flecher, V. Cadenat, T. Sentenac, and
S. Vougioukas, “Tree detection with low-cost three-dimensional sen-
sors for autonomous navigation in orchards,” IEEE Robotics and
Automation Letters, vol. 3, no. 4, pp. 3876–3883, 2018.

[10] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object
detection from point clouds,” in Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, 2018, pp. 7652–7660.

[11] A. Milioto, I. Vizzo, J. Behley, and C. Stachniss, “Rangenet++:
Fast and accurate lidar semantic segmentation,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2019, pp. 4213–4220.

[12] P. Kaul, D. De Martini, M. Gadd, and P. Newman, “Rss-net: Weakly-
supervised multi-class semantic segmentation with fmcw radar,” in
2020 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2020, pp.
431–436.

[13] S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang, and H. Li, “Pv-
rcnn: Point-voxel feature set abstraction for 3d object detection,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 10 529–10 538.

[14] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

[15] M. Labbé and F. Michaud, “Rtab-map as an open-source lidar and
visual simultaneous localization and mapping library for large-scale
and long-term online operation,” Journal of Field Robotics, vol. 36,
no. 2, pp. 416–446, 2019.

[16] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto,
“Voxblox: Incremental 3d euclidean signed distance fields for on-board
mav planning,” in 2017 Ieee/rsj International Conference on Intelligent
Robots and Systems (iros), 2017, pp. 1366–1373.

[17] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C. Cadena, R. Sieg-
wart, and J. Nieto, “Volumetric Instance-Aware Semantic Mapping and
3D Object Discovery,” IEEE Robotics and Automation Letters, vol. 4,
no. 3, pp. 3037–3044, July 2019.

[18] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an open-
source library for real-time metric-semantic localization and mapping,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 1689–1696.

[19] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with
noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.

[20] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[21] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference
on Computer Vision and Pattern Recognition, 2012, pp. 3354–3361.


	I INTRODUCTION
	II RELATED WORK
	II-A Perception for Navigation in Unstructured Environments
	II-B 3-D Pseudo-lidar Object Detection

	III APPROACH
	III-A Training Data Generation Pipeline
	III-A.1 Data collection
	III-A.2 Global point cloud fusion and pose estimation
	III-A.3 Global point cloud clustering
	III-A.4 Automated label generation and point cloud sparsification

	III-B 3-D Object Detector
	III-C Kalman Filter Estimator
	III-C.1 Kalman Filter
	III-C.2 Data Association


	IV EXPERIMENTS AND RESULTS
	IV-A Data collection and processing
	IV-B Evaluating tree detection and estimation accuracy

	V CONCLUSION
	References

