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Abstract— Recent advancements toward perception and
decision-making of flexible endoscopes have shown great poten-
tial in computer-aided surgical interventions. However, owing
to modeling uncertainty and inter-patient anatomical variation
in flexible endoscopy, the challenge remains for efficient and
safe navigation in patient-specific scenarios. This paper presents
a novel data-driven framework with self-contained visual-
shape fusion for autonomous intelligent navigation of flexible
endoscopes requiring no priori knowledge of system models and
global environments. A learning-based adaptive visual servoing
controller is proposed to online update the eye-in-hand vision-
motor configuration and steer the endoscope, which is guided by
monocular depth estimation via a vision transformer (ViT). To
prevent unnecessary and excessive interactions with surround-
ing anatomy, an energy-motivated shape planning algorithm is
introduced through entire endoscope 3-D proprioception from
embedded fiber Bragg grating (FBG) sensors. Furthermore,
a model predictive control (MPC) strategy is developed to
minimize the elastic potential energy flow and simultaneously
optimize the steering policy. Dedicated navigation experiments
on a robotic-assisted flexible endoscope with an FBG fiber in
several phantom environments demonstrate the effectiveness
and adaptability of the proposed framework.

I. INTRODUCTION

Robotic endoscope technologies have been widely de-
ployed in a variety of diagnoses and treatments to ease med-
ical devices’ accessibility and alleviate physicians’ burden.
Before the future prevalence of wireless endoscopy using
capsule devices or magnetic manipulation [1], [2], traditional
flexible endoscopes, such as gastroscopes, colonoscopes, and
bronchoscopes, are utilized in dominant endoscopic interven-
tions for their cost-effectiveness and reliability [3]. Currently,
endoscopic navigation based on offline trajectory and search-
ing algorithms is well-studied [4], [5]. However, flexible
endoscope operation on patient-specific and unstructured
scenarios is still challenging considering unknown priori
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environmental information, nonlinear system characteristics,
and decision-making safety issues [2], [6].

Usually, endoscopic navigation leverages close visualiza-
tion of intracorporeal scenes from the embedded camera,
and utilizes lumen centralization and feature tracking for
primary guidance [3], [6]–[8]. The lumen center and vi-
sual target can be determined by dark region segmentation
[1], [7], depth estimation [8], or contours detection [2].
In real applications, dark region segmentation is impaired
by complex lighting conditions, while versatile occlusions
limit contours detection effectiveness [2]. Depth estimation
methods with higher reliability can be mainly classified into
multi-view stereo methods, learning-based approaches, and
structured light solutions [6], [8]–[14]. Multi-view stereo
methods can reconstruct 3-D scenes with depth estimation
while requiring distinguishable features [6], [10]. Learning-
based approaches demonstrate their empowered intelligence,
among which self-supervised and unsupervised algorithms
have been investigated for depth estimation of endoscopic
scenes [8], [11], [13]. However, these methods either cannot
compute the depth map in real time or adopt binocular im-
ages for estimation when perceiving the 3-D scene structure.
Recently, vision transformer (ViT) shows great potential in
image processing tasks, which extracts features without ex-
plicit downsampling and has a global receptive field through
all stages [15], thus benefiting depth estimation.

After acquiring the effective visual target as guidance
and feedback, various planning and control methodologies
have been developed for visual servoing of flexible endo-
scopes [16]. For model-based methods, nonlinear structural
properties and unknown disturbances can result in unknown
deviations in the priori system modeling. Model-less and
learning-based strategies show great potentials for this task,
which update the robot behavior with eye-in-hand vision
configuration by estimation and learning approaches [17]–
[19]. Amongst, neural networks (NNs) were commonly uti-
lized to learn the system models for visual servoing of soft
and continuum manipulators [20], [21]. Deep reinforcement
learning was also investigated for image-based control of
colonoscopy navigation by devising an end-to-end policy
[7]. Although they alleviate priori modeling, data exploration
and offline training are required [19]. In addition to vision-
based control, follow-the-leader deployment maintaining the
endoscope shape while maneuvering the tip, is desired for
flexible endoscopic navigation [6], [22].

To further reduce the patient’s discomfort and prevent

ar
X

iv
:2

30
2.

13
21

9v
1 

 [
cs

.R
O

] 
 2

6 
Fe

b 
20

23



Fig. 1: The proposed data-driven framework for autonomous navigation of flexible endoscopes, including robotic-assisted endoscope,
monocular visual guidance, FBG-based proprioception unit, and learning-based model predictive control.

damage to anatomical tissue resulting from unexpected inter-
actions, force sensing and haptic guidance were deployed for
monitoring the cognitive load during autonomous navigation
of flexible endoscopy [4], [23]. Alternatively, deflection and
external force in confined spaces can be estimated based
on the principle of the minimum total potential energy
[24], [25]. Fiber Bragg grating (FBG) sensors have been
widely utilized for tip localization and shape sensing of
continuum medical robots [20], [26]–[33], because of small
size, high biocompatibility, and high sampling rate without
line-of-sight constrains. With the working principle of strain
measurements, FBGs can be also used to acquire the elastic
potential energy of flexible endoscopes from distributed
bending/torsion signals [26], [29]. However, studies about
energy prediction and 3-D shape planning to avoid exces-
sive contact forces on surrounding anatomy during flexible
endoscope navigation have not been reported.

In this paper, we propose a novel data-driven framework
as shown in Fig. 1, which can automatically navigate flexible
endoscopes without priori data exploration and offline trajec-
tory. To the best of our knowledge, this is the first work in
consideration of minimizing potential energy flow for plan-
ning and autonomous navigation of unmodeled endoscopes,
by incorporating learning-based monocular visual guidance
and control, together with FBG-based proprioception of 3-D
configuration. The proposed method can effectively online
learn the vision-motor behavior with the convergences of
image tracking error and learning parameters, and adaptively
compensate for the modeling uncertainty with disturbances.
Our main contributions are summarized as follows:

1) Design and implementation of a ViT-based depth es-
timation network for monocular endoscopic guidance,
and a learning-based adaptive visual servoing strategy
to online update the eye-in-hand vision-motor config-
uration of the flexible endoscope, and simultaneously
track the image region of interest (ROI).

2) Development of an energy-motivated shape planning
algorithm by leveraging FBG-based proprioception,
which can not only measure the endoscope 3-D con-
figuration but also monitor and minimize its potential
energy flow to improve the navigation performance.

3) Integration of depth guidance with learning-based
shape flow and energy prediction into a model pre-
dictive control (MPC) framework for steering policy
optimization of autonomous endoscope navigation.

4) Experimental validations on a robotic-assisted colono-
scope system embedded with FBG sensors in several
phantoms, the results of which demonstrate the feasi-
bility and adaptability of the proposed framework.

II. MONOCULAR DEPTH-GUIDED VISUAL SERVOING

This section introduces the depth-guided visual servoing
strategy, including ViT-based depth estimation and image-
based data-driven control of flexible endoscopes.

A. ViT-Based Monocular Depth Guidance

Our ViT-based depth estimation network (VDEN) is de-
signed on an encoder-decoder structure using ViT as the
encoder basic block as shown in Fig. 2. We rearrange the
embeddings from the encoder into image-like feature maps
and combine them from a three-stage decoder into the final
dense depth. The standard transformer receives as input a
1-D sequence of token embeddings, so we first map the
endoscopic image X ∈ RH×W×C into a stacked sequence
K0 ∈ R(Np+1)×D in matrix form, where (H,W ) denotes the
resolution of the image, and C is the number of channels.
Specifically, the image X is divided into NP patches with the
size of P × P × C, where (P, P ) represents the resolution
of each patch and NP = H · W/P 2. Then, these patches
are flattened into vectors x1,x2, ...,xn ∈ R1×(P 2·C), n ∈
{1, 2, ..., NP }. To obtain the spatial position of each patch,
we concatenate these patches with a position embedding and



Fig. 2: The proposed ViT-based depth estimation for monocular
visual guidance and feedback with endoscopic image as input and
depth map as output.

a special projection embedding, and refer to the output of this
concatenation as the patch embeddings. Thus, these patch
embeddings can be calculated from K0 as:

K0 =
[
xᵀ

0 E
ᵀ
xᵀ

1 E
ᵀ
xᵀ

2 · · · E
ᵀ
xᵀ

NP

]ᵀ
+Epos (1)

where x0 is a learned embedding to aggregate features into
the image level, E ∈ R(P 2·C)×D is the projection embed-
ding, and Epos ∈ R(Np+1)×D is the position embedding with
D being the feature dimension of each patch embedding.

The patch embeddings are input into ViT-based encoder
with L ViT layers, and they are converted to new feature
maps Kl, l ∈ {1, ..., L}, which are the output of the l-th
ViT layer. Here, we adopt the transformer encoder designed
by [34]. Each encoder layer has multi-head self-attention and
multi-layer perception. Therefore, the global image features
can be efficiently extracted from the encoder. Afterwards,
we build the decoder [15], each layer of which for depth
estimation consists of three parts:

Input : R(Np+1)×D → RNp×D

Arrange : RNp×D → R
H
P

×W
P

×D

Sample : R
H
P

×W
P

×D → R
H
r
×W

r
×D

′
(2)

where r is the output size ratio of the feature map w.r.t. the
input image and D

′
is the dimension of the decoder output.

After the decoder, we combine the extracted feature maps
using a residual convolution unit-based fusion block and
gradually upsample the map in each fusion stage. Finally,
a depth estimation output head is used to produce the depth
maps. In addition, we adopt the scale-invariant trimmed loss
[35] to train the whole model. The region of interest (ROI)
Ω is determined from the largest connected component of
the deepest 5 % pixels, as the navigation guidance.

B. Eye-in-Hand Vision-Motor Configuration

Given the current ROI Ω with its center of mass p ∈ R2

from VDEN represented by the blue contour and green
point in the monocular visual guidance module of Fig. 1,
respectively, a learning-based adaptive controller for online
update of the flexible endoscope model together with eye-
in-hand visual model, and simultaneous visual servoing, is
designed to drive the image central region towards the current

ROI Ω. Therefore, the mass center pd ∈ R2 of the desired
region Ωd (red contour) is located at the image center,
which can be also chosen manually by the clinician. we
implement a region-based visual servoing method here, the
details of which can be found in a previous work [36]. We
accordingly define the composed image feature as y ∈ R2,
which represents the smoothed mass center coordinates of Ω
to ensure its continuity through winding number calculation.

To derive the visual servoing controller, we first define the
vision-motor model with the task-space velocity, i.e., eye-
in-hand camera velocity vc ∈ R6, and the motor position
input of the endoscope system as q =

[
q1 q2 q3

]ᵀ ∈ R3,
where q1 and q2 represent the motor positions corresponding
to deflections of the distal continuum mechanism, and q3

is the motor position for insertion motion. The differential
kinematics of the flexible endoscope that relates the camera
velocity vc to the motor velocity q̇, is given as vc = J r(q)q̇,
where J r(q) ∈ R6×3 denotes the Jacobian matrix of the
endoscope system. The eye-in-hand visual model of the
flexible endoscope mapping the image feature flow ẏ to the
camera motion vc can be formulated as ẏ = Lyvc, where
Ly ∈ R2×6 represents the vision interaction matrix for the
image feature y. From above two mappings, we can derive
the vision-motor configuration of the endoscope system as

ẏ = J c(q)q̇ = LyJ r(q)q̇ (3)
where J c(q) = LyJ r(q) ∈ R2×3 denotes the combined
image Jacobian matrix of flexible endoscope mapping its
motor velocity q̇ to the image feature velocity ẏ (i.e., image
feature flow). Note that the endoscope Jacobian J r(q)
is assumed to be unknown due to its nonlinear structural
properties, hence we approximate the image Jacobian J c(q)
without any priori identification of it.

C. Learning-Based Adaptive Visual Servoing

To this end, we employ two adaptive NNs Wiθi(q), i ∈
{1, 2} as shown in Fig. 1, to learn the rows of image Jacobian
J c(q), with motor position q as input given by

J c(q) = [W1θ1(q) W2θ2(q)]
ᵀ (4)

where Wi ∈ R3×ξ, i ∈ {1, 2}, represents the ideal weight
matrix of the i-th NN with ξ neurons, and θi(q) ∈ Rξ, i ∈
{1, 2}, denotes the corresponding vector of the activation
functions. With online learning of the image Jacobian in (4),
we can linearly parameterize the image feature flow ẏ as

ẏ =
[
W1θ1(q) W2θ2(q)

]ᵀ︸ ︷︷ ︸
J c(q)

q̇ = Θᵀ(q)Qᵀ(q̇)W (5)

where Θ(q) = diag(θ1(q), θ2(q)) ∈ R2ξ×2 and Q(q̇) =
diag(q̇, q̇, · · · , q̇) ∈ R6ξ×2ξ are diagonal block matrices
grouping the activation functions θi(q), i ∈ {1, 2}, and 2ξ
motor motion q̇, respectively, and W ∈ R6ξ denotes a vector
stacking the columns of the ideal weights Wi, i ∈ {1, 2}.

Since the real image Jacobian J c(q) is unknown, we
estimate it denoted by Ĵ c(q) ∈ R2×3 through two estimated
adaptive NNs Ŵiθi(q), i ∈ {1, 2}, given by

Ĵ c(q) =
[
Ŵ1θ1(q) Ŵ2θ2(q)

]ᵀ
(6)



where Ŵi ∈ R3×ξ, i ∈ {1, 2}, represents the estimated NN
weight matrix. Therefore, we can derive the prediction error
of image feature flow ˙̃y ∈ R2, i.e., the image flow error as

˙̃y = ẏ − Ĵ c(q)q̇ = Θᵀ(q)Qᵀ(q̇)W̃ (7)

where W̃ = W − Ŵ ∈ R6ξ denotes the NN weights
estimation error in vector form, which can be updated from
a modified composite adaptation algorithm [37] as

˙̂
W = Γ−1

W

[
µeQ(q̇)Θ(q)e+ µyQ(q̇)Θ(q) ˙̃y

]
(8)

where µe and µy are positive constants, ΓW ∈ R6ξ×6ξ is a
positive definite and diagonal gain matrix, and e = y−yd ∈
R2 is denoted as the image feature error (tracking error).

Finally, we can design a velocity controller to drive the
image feature y towards the desired one yd by using the
learned image Jacobian Ĵ c(q) as q̇ = −µcĴ

+

c (q)e, where
µc is a positive constant and Ĵ

+

c (q) ∈ R3×2 denotes the
Moore–Penrose pseudo-inverse of Ĵ c(q). Under this control
algorithm, the closed-loop system stability, together with the
convergences of image feature error and image flow error to
zeros, i.e., lim

t→∞
e = 0 and lim

t→∞
˙̃y = 0, can be guaranteed,

and a similar proof of which can be found in [38] for shape
servoing tasks. Alternatively, we can apply a learning-based
MPC strategy to predict the future behavior of the flexible
endoscope over a future time horizon Φ as

arg min
q̇(t+k+1)

Φ∑
k=0

ηk ‖y(t+k+1)− yd‖22 (9)

s.t. q̇3(t+ k) ≥ 0 as insertion motion with the predicted
feature y(t+k+1) for k ∈ {0, 1, 2, ...,Φ} being

y(t+k+1) = y(t+k) + Ĵ c(q(t+k))q̇(t+k)∆t (10)

where ∆t is the iteration interval, and the image Jacobian
Ĵ c(q(t+k)), k ∈ {0, 1, 2, ...,Φ}, can be predicted through
the adaptive NNs as shown in Fig. 1.

III. ENERGY-MOTIVATED 3-D SHAPE PLANNING AND
AUTONOMOUS NAVIGATION FRAMEWORK

In this section, we describe an energy-motivated shape
planning algorithm by using FBG sensors, and a learning-
based MPC framework for flexible endoscope navigation.

A. FBG-based Proprioception of Elastic Potential Energy

To avoid unnecessary and excessive interactions with
surrounding anatomy during endoscopic navigation, we de-
sign an optimization-based planning method for minimizing
the elastic potential energy flow of the system. By solely
embedding a multi-core FBG fiber in the flexible endoscope,
a robust and accurate filtering-based algorithm was previ-
ously reported [29] to acquire the endoscope 3-D shape,
which is self-contained, independent of external sensors, and
can maintain high sensing quality against perturbations. At
current time t, we construct the entire endoscope shape by
two part including the active part sa ∈ Rma of the distal
continuum mechanism, and passive part sp ∈ Rmp with a
length of lp(t) as shown in Fig. 3 (a). In addition to shape
sensing as shown in Fig. 1, we utilized the bending and

Fig. 3: Shape prediction of flexible endoscope for elastic potential
energy minimization: (a) current shape, (b) shape at time t+1, and
(c) shape at time t+k.

torsion signals from the distributed FBG sensors to approx-
imate the elastic potential energy of the flexible endoscope
formulated by E(t) = E(sa(t), sp(t)) : Rma × Rmp 7→ R,
following the working principal of strain measurements.

To minimize the future potential energy flow, we predict
the elastic potential energy E(t+k+1), k ∈ {0, 1, 2, ...,Φ},
by dividing the entire endoscope shape into three parts: the
active part sa(t+k+1), passive part with follow-the-leader
manner sf (t+k+1) ∈ Rmf , where mf (t+k+1) is dependent
on the insertion length at each time instant, and passive part
sp(t+k+1) with the length of lp(t), as shown in Fig. 3
(b). By taking advantage of state prediction in the Kalman
filter, the sensing algorithm is hereby improved to predict
the passive part shape sp(t+k+1) as shown in the FBG-
based sensing module of Fig. 1, which is deformed due
to its interactions with anatomical tissues during endoscope
insertion. Using FBG-based proprioception of the endoscope
3-D configuration, the active part shape sa(t+k+1) can be
predicted through a learning-based approach as

sa(t+k+1) = sa(t+k) + Ĵ s(q
′
(t+k))q̇

′
(t+k)∆t (11)

where q
′

=
[
q1 q2

]ᵀ ∈ R2 denotes two motors’ positions
for distal deflections, Ĵ s(q

′
) ∈ Rma×2 is the estimated

shape Jacobian corresponding to the actual one J s(q
′
) ∈

Rma×2, which relates the active part shape flow ṡa to q̇
′
.

In a similar way updating the image Jacobian Ĵ c(q(t+k)),
we can learn and predict the shape Jacobian Ĵ s(q

′
(t+k)),

from ma adaptive NNs [38] as shown in Fig. 1.

B. Potential Energy Prediction and Shape Planning

By making the assumption of follow-the-leader behavior
[6], [22], we can predict the passive part shape sf (t+k+1),
k ∈ {0, 1, 2, ...,Φ}, following the current shape sa(t) and
the predicted ones sa(t+k+1) of the endoscope active part
as shown in Fig. 3 (b), given by

sf (t+k+1) =
[
0mi×mo Imi 0mi×mf

0mf×mo 0mf×mi Imf

] [
sa(t+k)
sf (t+k)

]
(12)

where Ia ∈ Ra×a and 0a×b ∈ Ra×b, a ∈ {mi,mf} and
b ∈ {mi,mf ,mo}, denote the identity and zero matrices, re-
spectively, and mo = ma−mi with mi being the endoscope
insertion length. Consequently, the elastic potential energy
of the flexible endoscope E(t+k

′
), k

′ ∈ {1, 2, ...,Φ}, can
be predicted from the entire endoscope shape (three parts)
predicted at time t+k

′
as shown in Fig. 3 (c), given by

E(t+k
′
) = E

(
sa(t+k

′
), sf (t+k

′
), sp(t+k

′
)
)

: Rma × Rmf × Rmp 7→ R
(13)



Fig. 4: Snapshots in Task 1, 2, and 3: top view, endoscopic view, depth map, and FBG shapes of entire colonoscope and distal part.

Therefore, a local shape trajectory with the smallest cost of
the potential energy flow can be obtained by solving the
following optimization problem as

arg min
q̇(t+k+1)

Φ∑
k=0

λk ‖E(t+k+1)− E(t+k)‖22 (14)

s.t. (11), (12), (13), and q̇3(t+k) ≥ 0. Note that the proposed
shape planning algorithm is generic and feasible for other
shape sensing techniques [27] rather than only for FBGs.

C. Learning-Based Model Predictive Control

In a combination of the depth-guided visual control and
energy-motivated shape planning described above, we de-
rive a data-driven framework for autonomous navigation
of flexible endoscopes as shown in Fig. 1, based on the
development of a learning-based MPC strategy with the
following formulation:

argmin
q̇(t+k+1)

Φ∑
k=0

{
ηk ‖y(t+k+1)− yd‖22

+ λk ‖E(t+k+1)− E(t+k)‖22
} (15)

s.t. (10) ∼ (13), and q̇3(t+k) ≥ 0, where the first term is
to control the image ROI, the second term is for potential
energy flow minimization, ηk and λk, k ∈ {0, 1, 2, ...,Φ},
denote the weights w.r.t. these two tasks. Finally, the steering
policy over a time horizon q̇(t+k+1), k ∈ {0, 1, 2, ...,Φ},

can be optimized by satisfying the above objective function
s.t. the constraints, and then input q̇(t+k+1) to the motors of
the endoscope system, which can impose the desired image
ROI and simultaneously minimize the potential energy flow.

IV. EXPERIMENTS

In this section, the experimental setup is firstly described,
and the results are accordingly presented and discussed.

A. Setup

The training dataset for the proposed depth estimation
is formulated with MIX 5 [35] and endoscopic images
[13]. The endoscopic images were constructed from virtual
capsule endoscopy, which was developed in Unity and had
21887 frames with corresponding ground truth depth maps.
Our VDEN model was implemented in PyTorch and trained
using Adam solver for 60 epochs with the batch size of 6
and the learning rate was set as le-5. In the experiments, the
original image was cropped to 384 × 384 × 3 as input. The
resolution P = 16, the number L of ViT layers was 24, and
the dimensions D = 768 and D

′
= 256 with the ratio r = 2.

We performed the experiments on a robotic-assisted flex-
ible endoscope system previously detailed in [29], which
was integrated with a colonoscope, a handle drive module
for distal deflections, a dual-wheel friction module for endo-
scope insertion, a multi-core FBG fiber, and an eye-in-hand



Fig. 5: Image tracking error, shape flow prediction error, bending
and torsion potential energy using the methods with and without
shape planning in (a) Task 1, (b) Task 2, and (c) Task 3.

camera. The system has a distal active part of 120 mm length
and a passive working length of 880 mm, hence the FBG-
based proprioception unit has 1 m sensing length in total.
The parameters in the MPC framework were set as follows:
µe = 0.01, µy = 0.2, Γ−1

W = I54 ∈ R54×54, ηk = 1/2k,
λk = 1/2k+1, k ∈ {0, 1, 2, ...,Φ}, and Φ = 20, which were
tuned according to the initial experiments with convergences
of control and prediction errors to zeros. As same with those
in [38], 9 neurons (i.e., ξ = 9) and radial basis functions
(RBFs) were employed for NNs learning of both vision and
shape prediction, and so were the center and width values.

B. Results and Discussion

To evaluate the performance of the proposed framework,
three tasks compared with the method using vision guidance
but without shape planning, were performed in two feature-
less phantoms with different shapes and one colonoscopy
phantom (Kyoto Kagaku M40) as shown in Fig. 4. The
phantoms have diameters of 50 mm and lengths of more than
1 m to mimic the endoscopic scenarios. We conducted each
task 8 times and recorded the results with snapshots in Fig. 4,
including the top view of endoscope, endoscopic view, depth
map, and FBG-based shapes of entire colonoscope and distal
part. Four qualitative results during one trial of each task
are plotted in Fig. 5 (a), (b), and (c), respectively, including
image tracking error e, 2-norm prediction error of shape
flow ‖ ˙̃sa‖, bending potential energy Eb, and torsion potential
energy Et. Moreover, we present three quantitative metrics
referring to [7], in terms of insertion time Tin, endpoint
trajectory length Let, and average 2-norm of image tracking
error ‖e‖ of three tasks in Table I.

For the performance of depth estimation, our VDEN model
running at 19 FPS, can provide reasonable depth maps with

TABLE I: Comparison results of Task 1, 2, and 3
Methods Tin (s) Let (mm) ‖e‖ (mm)

Task 1 w/o planning 179 ± 26 1752.4 ± 449.3 1.24 ± 0.27
w/ planning 125 ± 11 1181.0 ± 153.1 0.70 ± 0.29

Task 2 w/o planning 204 ± 13 1668.3 ± 141.4 1.25 ± 0.25
w/ planning 159 ± 37 1292.4 ± 173.2 0.63 ± 0.23

Task 3 w/o planning 334 ± 22 1935.5 ± 397.1 1.47 ± 0.21
w/ planning 238 ± 17 1485.6 ± 119.9 0.87 ± 0.27

accuracy of 90.88 % in Task 1, 91.08 % in Task 2, and 82.25
% in Task 3, where the overlap degree of the estimated and
real deep regions in each frame was examined. Moreover,
sharp boundaries were well kept, and the estimated depth
increased smoothly from near to far scenes as demonstrated
in the depth maps of Fig. 4, despite in unknown environments
with reflective and translucent surfaces. We can observe
the estimated depth maps during all tasks were particularly
stable, hence helpful for autonomous endoscope navigation.

As indicated in the endoscopic views of Fig. 4 as well as
the image tracking errors in the top-left images of Fig. 5,
the learning-based eye-in-hand visual servoing can robustly
and adaptively track the image ROI (blue contour) with
average image errors of 0.70, 0.63, and 0.87 mm in Task
1, 2, and 3, respectively, and complete the navigation tasks.
It is noticed that the shape flow prediction errors converged
to zeros as shown in the bottom-left plots of Fig. 5 (a), (b),
and (c), which indicate that the NN weights were learned
from their mapping in [38]. Besides, the bending and torsion
potential energy in the right plots of Fig. 5 (a), (b), and
(c), demonstrate that our planning algorithm can finish the
navigation tasks using much less elastic potential energy
as compared with that without shape planning, which can
prevent unnecessary and excessive elastic contact forces on
surrounding anatomy. From Table I, the proposed method
costs less time Tin with shorter endpoint trajectory Let
for navigation compared with the method without shape
planning, which also outperforms the manually-controlled
steering procedure (more than 15 min). These results of
phantom experiments support our claims that the framework
can perform robust compliance to deformable environments,
online learn the time-varying model, and simultaneously
steer the flexible endoscope for efficient and safe navigation.

V. CONCLUSIONS

In this paper, we propose a novel data-driven autonomous
navigation framework for flexible endoscopy, by leveraging
monocular depth guidance and energy-motivated shape plan-
ning. The method can online learn the eye-in-hand vision-
motor configuration of flexible endoscope without any priori
knowledge of system model and environmental information,
and also minimize the system potential energy flow. The
results of several phantom experiments show the feasibility
and adaptability of the framework.

In the future, we will optimize the framework with
advanced perception and control approaches to improve
its performance, which will be evaluated in more realistic
scenes. The system issues about learning approximation
errors and colliding with anatomical tissues will be taken
into consideration as well.
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