
GenTree: Using Decision Trees to Learn
Interactions for Configurable Software

KimHao Nguyen and ThanhVu Nguyen
University of Nebraska-Lincoln, USA
{kdnguyen,tnguyen}@cse.unl.edu

Abstract—Modern software systems are increasingly designed
to be highly configurable, which increases flexibility but can
make programs harder to develop, test, and analyze, e.g., how
configuration options are set to reach certain locations, what
characterizes the configuration space of an interesting or buggy
program behavior? We introduce GenTree, a new dynamic
analysis that automatically learns a program’s interactions—
logical formulae that describe how configuration option settings
map to code coverage. GenTree uses an iterative refinement
approach that runs the program under a small sample of
configurations to obtain coverage data; uses a custom classifying
algorithm on these data to build decision trees representing
interaction candidates; and then analyzes the trees to generate
new configurations to further refine the trees and interactions in
the next iteration. Our experiments on 17 configurable systems
spanning 4 languages show that GenTree efficiently finds precise
interactions using a tiny fraction of the configuration space.

I. INTRODUCTION

Modern software systems are increasingly designed to be
configurable. This has many benefits, but also significantly
complicates tasks such as testing, debugging, and analysis
due to the number of configurations that can be exponentially
large—in the worst case, every combination of option settings
can lead to a distinct behavior. This software configuration
space explosion presents real challenges to software develop-
ers. It makes testing and debugging more difficult as faults are
often visible under only specific combinations of configuration
options. It also causes a challenge to static analyses because
configurable systems often have huge configuration spaces and
use libraries and native code that are difficult to reason about.

Existing works on highly-configurable systems [1]–[4]
showed that we can automatically find interactions to con-
cisely describe the configuration space of the system. These
works focus on program coverage (but can be generalized to
arbitrary program behaviors) and define an interaction for a
location as a logically weakest formula over configuration
options such that any configuration satisfying that formula
would cover that location. These works showed that inter-
actions are useful to understand the configurations of the
system, e.g., determine what configuration settings cover a
given location; determine what locations a given interaction
covers; find important options, and compute a minimal set of
configurations to achieve certain coverage; etc. In the software
production line community, feature interactions and presence
conditions (§VII) are similar to interactions and has led to
many automated configuration-aware testing techniques to

debug functional (e.g., bug triggers, memory leaks) and non-
functional (e.g., performance anomalies, power consumption)
behaviors. Interactions also help reverse engineering and im-
pact analysis [5], [6], and even in the bioinformatics systems
for aligning and analyzing DNA sequences [7].

These interaction techniques are promising, but have several
limitations. The symbolic execution work in [1] does not scale
to large systems, even when being restricted to configuration
options with a small number of values (e.g., boolean); needs
user-supplied models (mocks) to represent libraries, frame-
works, and native code; and is language-specific (C programs).
iTree [2], [3] uses decision trees to generate configurations
to maximize coverage, but achieves very few and imprecise
interactions. Both of these works only focus on interactions
that can be represented as purely conjunctive formulae.

The iGen interaction work [4] adopts the iterative refinement
approach often used to find program preconditions and invari-
ants (e.g., [8]–[11]). This approach learns candidate invariants
from program execution traces and uses an oracle (e.g., a
static checker) to check the candidates. When the candidate
invariants are incorrect, the oracle returns counterexample
traces that the dynamic inference engine can use to infer
more accurate invariants. iGen adapts this iterative algorithm
to finding interactions, but avoids static checking, which
has limitations similar to symbolic execution as mentioned
above. Instead, iGen modifies certain parts of the candidate
interaction to generate new configurations and run them to test
the candidate. Configurations that “break” the interaction are
counterexamples used to improve that interaction in the next
iteration. However, to effectively test interactions and generate
counterexample configurations, iGen is restricted to learning
interactions under specific forms (purely conjunctive, purely
disjunctive, and specific mixtures of the two) and thus cannot
capture complex interactions in real-world systems (§VI).

In this paper, we introduce GenTree, a new dynamic
interaction inference technique inspired by the iterative in-
variant refinement algorithm and iGen. Figure 1 gives an
overview of GenTree. First, GenTree creates an initial set
of configurations and runs the program to obtain (location)
coverage. Then for each covered location l, GenTree builds
a decision tree, which represents a candidate interaction, from
the configurations that do and do not cover l.

Because GenTree works with just a sample of all config-
urations, the decision trees representing candidate interactions
may be imprecise. To refine these trees, GenTree analyzes

ar
X

iv
:2

10
2.

06
87

2v
1

 [
cs

.S
E

]
 1

3
Fe

b
20

21

Program
and

Testsuite

Configs

Final
Interactions

No

1-way
covering array

New
Trees ?

post
processing

Coverage

classifierrun program

Yes

gen new configs

Fig. 1: GenTree overview

// 9 configuration options:
// s, t, u, v (bool); a, b, c, d, e ∈ {0, 1, 2}

printf ("L0\n"); // True

if (a ≡ 1 ∨ b ≡ 2) {
printf ("L1\n"); //a ≡ 1 ∨ b ≡ 2

}
else if (c ≡ 0 ∧ d ≡ 1) {

// a ∈ {0, 2} ∧ b ∈ {0, 1} ∧ c ≡ 0 ∧ d ≡ 1
printf ("L2\n");

}

if (u ∧ v) {
printf ("L3\n"); //u ∧ v
return ;
}
else {

printf ("L4\n"); //ū ∨ v̄

if (s ∧ e ≡ 2){
// s ∧ e ≡ 2 ∧ (ū ∨ v̄)
printf ("L5\n");
return ;
}
}

// (s̄ ∨ e ∈ {0, 1}) ∧ (ū ∨ v̄)
printf ("L6\n");

if (e ≡ 2) {
// s̄ ∧ e ≡ 2 ∧ (ū ∨ v̄)
printf ("L7\n");
if (u ∨ v) {

// s̄ ∧ e ≡ 2 ∧ ((u ∧ v̄) ∨ (ū ∧ v))
printf ("L8\n");

}
}

Fig. 2: A program having nine locations L0–L8 annotated with interactions

them to generate new configurations. In the next iteration,
these configurations may provide the necessary data to inval-
idate the current trees (i.e., counterexamples) and build more
precise trees, which correspond to better interactions. This
process continues until we obtain no new coverage or trees
for several consecutive iterations, at which point GenTree
returns the final set of interactions.

The design of GenTree helps mitigate several limitations
of existing works. By using dynamic analysis, GenTree is
language agnostic and supports complex programs (e.g., those
using third party libraries) that might be difficult for static
analyses. By considering only small configuration samples,
GenTree is efficient and scales well to large programs. By in-
tegrating with iterative refinement, GenTree generates small
sets of useful configurations to gradually improve its results.
By using decision trees, GenTree supports expressive inter-
actions representing arbitrary boolean formulae and allows for
generating effective counterexample configurations. Finally, by
using a classification algorithm customized for interactions,
GenTree can build trees from small data samples to represent
accurate interactions.

We evaluated GenTree on 17 programs in C, Python, Perl,
and OCaml having configuration spaces containing 1024 to
3.5 × 1014 configurations. We found that interaction results
from GenTree are precise, i.e., similar to what GenTree
would produce if it inferred interactions from all possible
configurations. We also found that GenTree scales well
to programs with many options because it only explores a
small fraction of the large configuration spaces. We examined
GenTree’s results and found that they confirmed several
observations made by prior work (e.g., conjunctive interactions
are common but disjunctive and mixed interactions are still
important for coverage; and enabling options, which must
be set in a certain way to cover most locations, are com-
mon). We also observed that complex interactions supported
by GenTree but not from prior works cover a non-trivial
number of locations and are critical to understand the program

behaviors at these locations.
In summary, this paper makes the following contributions:

(i) we introduce a new iterative refinement algorithm that uses
decision trees to represent and refine program interactions; (ii)
we present a decision tree classification algorithm optimized
for interaction discovery; (iii) we implement these ideas in the
GenTree tool and make it freely available; and (iv) we eval-
uate GenTree on programs written in various languages and
analyze its results to find interesting configuration properties.
GenTree and all benchmark data are available at [12].

II. ILLUSTRATION

We use the C program in Figure 2 to explain GenTree.
This program has nine configuration options listed on the
first line of the figure. The four options s, t, u, v are boolean-
valued, and the other five options, a, b, c, d, e, range over the
set {0, 1, 2}. The configuration space of this program thus has
24 × 35 = 3888 possible configurations.

The code in Figure 2 includes print statements that mark
nine locations L0–L8. At each location, we list the associated
desired interaction. For example, L5 is covered by any con-
figuration in which s is true, e is 2, and either u or v is
false. L0 is covered by every configuration (i.e., having the
interaction true), but L6 is not covered by every configuration
because the program returns when it reaches L3 or L5.

Prior interaction inference approaches are not sufficient for
this example. The works of Reisner et. al [1] and iTree [2], [3]
only support conjunctions and therefore cannot generate the
correct interactions for any locations except L0, L2, and L3.
The iGen tool [4], which supports conjunctions, disjunctions,
and a limited form of both conjunctions and disjunctions, also
cannot generate the interactions for locations L6 and L8.

Initial Configurations: GenTree first creates a random
1-way covering array [13], [14] to obtain a set of initial
configurations, which contains all possible settings of each
individual option. Figure 3 shows the initial configurations
and their coverage information for the running example.

config s t u v a b c d e cov (L)

c1 1 1 0 0 0 1 2 1 0 0, 4, 6
c2 0 1 1 0 2 0 0 2 2 0, 4, 6, 7, 8
c3 1 0 1 1 1 2 1 0 1 0, 1, 3

s

h (a) 1 m (b) 2

0 1
Fig. 3: Initial configurations using 1-way covering array and the decision tree for L8 built from these configurations. The label
at the leaf, e.g., h (a) 1, indicates the classification (hit or miss) of the path from the root to this leaf, the (name) of the path,
and the number of configurations used for this classification

config s t u v a b c d e cov (L)

c4 0 1 1 1 1 1 0 1 0 0, 1, 3
c5 0 0 0 0 0 2 2 0 1 0, 1, 4, 6
c6 0 1 0 0 2 0 1 2 2 0, 4, 6, 7
c7 0 1 0 1 0 0 1 2 2 0, 4, 6, 7, 8

u

e

m (a) 2 m (b) 2

m (c) 1

v

h (d) 1

h (e) 1

210

10

0 1

Fig. 4: New configurations created from path (a) in the tree in Figure 3 (counterexamples are underlined) and new decision
tree for L8.

config s t u v a b c d e cov (L) path in Fig. 4

c8 0 0 0 0 0 0 2 2 2 0, 4, 6, 7 c
c9 1 1 0 0 2 1 1 0 2 0, 4, 5 c
c10 1 0 0 0 1 2 0 1 2 0, 1, 4, 5 c
c11 0 0 0 1 2 2 1 0 2 0, 1, 4, 6, 7, 8 d
c12 0 0 0 1 1 0 2 1 2 0, 1, 4, 6, 7, 8 d
c13 1 1 0 1 0 1 0 2 2 0, 4, 5 d
c14 0 1 1 1 1 2 1 0 2 0, 1, 3 e
c15 1 0 1 0 0 0 2 1 2 0, 4, 5 e
c16 1 0 1 0 2 1 0 2 2 0, 4, 5 e

v

e

m (a) 1 m (b) 1

m (c) 2

u

h (d) 1

s

m (g) 7

h (e) 3

u

m (f) 1

0 1

0 1 2

0 1

0 1 0 1

Fig. 5: New configurations created from paths (c), (d), (e) in the tree in Figure 4 and new decision tree for L8.

Decision Trees: For each covered location l, GenTree
uses a classification algorithm called C5i, developed specifi-
cally for this work, (§IV-B) to build a decision tree represent-
ing the interaction for l. To build the tree for l, C5i uses two
sets of data: the hit sets consisting of configurations covering
l and the miss set consisting of configurations not covering
l. For example, for L8, GenTree builds the decision tree in
Figure 3 from the hit sets {c2} and the miss set {c1, c3}.

From the given configurations C5i determines that the
coverage of L8 just requires option s being 0 (false). Thus,
the interaction for L8, represented by the condition of the
hit path (a) of the tree in Figure 3, is s̄. This interaction
is quite different than s̄ ∧ e ≡ 2 ∧ ((u ∧ v̄) ∨ (ū ∧ v)), the
desired interaction for L8. However, even with only three
initial configurations, the tree is partially correct because
configurations having s as true would miss L8 and s being
false is part of the requirements for hitting L8.

New Configurations: GenTree now attempts to create
new configurations to refine the tree representing the inter-
action for location l. Observe that if a hit path is precise,
then any configuration satisfying its condition would cover l

(similarly, any configuration satisfying the condition of a miss
path would not cover l). Thus, we can validate a path by gener-
ating configurations satisfying its condition and checking their
coverage. Configurations generated from a hit (or miss) path
that do not (or do) cover l are counterexample configurations,
which show the imprecision of the path condition and help
build a more precise tree in the next iteration.

In the running example, GenTree selects the condition s̄
of the hit path (a) of the tree shown in Figure 3 and generates
four new configurations shown in Figure 4 with s = 0 and
1-covering values for the other eight variables. If path (a) is
precise, then these configurations would cover L8. However,
only configuration c7 covers L8. Thus, c4, c5, c6, which do
not cover L8, are counterexamples showing that path (a) is
imprecise and thus s̄ is not the correct interaction for L8.

Note that we could also generate new configurations using
path (b), which represents the interaction for not covering L8.
However, GenTree prefers path (a) because the classifier
uses one configuration for path (a) and two for path (b),
i.e., the condition s̄ for covering l is only supported by one
configuration and thus is likely more imprecise.

Next Iterations: GenTree now repeats the process of
building trees and generating new configurations. Continuing
with our example on finding the interaction for L8, GenTree
adds c7 to the hit set and c4, c5, c6 to the miss set and builds
the new tree for L8 in Figure 4. The combination of the hit
paths (d) and (e) gives e ≡ 2∧ (u∨ (ū∧ v)) as the interaction
for L8. This interaction contains options e, u, v, which appear
in the desired interaction s̄ ∧ e ≡ 2 ∧ ((u ∧ v̄) ∨ (ū ∧ v)).

To validate the new interaction for L8, GenTree generates
new configurations from paths (c), (d), (e) of the tree in
Figure 4, because they have the fewest number of supporting
configurations. Figure 5 shows the nine new configurations.

Note that (c) is a miss path and thus c8, c9, c10 are not
counterexamples because they do not hit L8. Also, in an actual
run, GenTree would select only one of these three paths and
take two additional iterations to obtain these configurations.
For illustration purposes, we combine these iterations and
show the generated configurations all together.

In the next iteration, using the new configurations and the
previous ones, GenTree builds the decision tree in Figure 5
for L8. The interaction obtained from the two hit paths (d) and
(e) is s̄ ∧ e ≡ 2 ∧ ((v̄ ∧ u) ∨ (v ∧ ū)), which is equivalent to
the desired one and thus would remain unchanged regardless
of any additional configurations GenTree might create.

Finally, GenTree stops when it cannot generate new cov-
erage or refine existing trees for several consecutive iterations.
In a postprocessing step, GenTree combines the hit path
conditions of the decision tree for each location l into a logical
formula representing the interaction for l.

Complete Run: GenTree found the correct interactions
for all locations in the running example within eight iterations
and under a second. The table below shows the number of
iterations and configurations used to find the interaction for
each location. For example, the desired interaction for L8
took 58 configurations and is discovered at iteration 4, and
the interaction true of L0 was quickly discovered from the
initial configurations.

L0 L1 L2 L3 L4 L5 L6 L7 L8
Iter. Found 1 2 6 1 2 5 3 3 4
Configs 3 27 144 15 30 123 50 47 58

Overall, GenTree found all of these interactions by analyz-
ing approximately 360 configurations (median over 11 runs)
out of 3888 possible ones. The experiments in §VI show that
GenTree analyzes an even smaller fraction of the possible
configurations on programs with larger configuration spaces.

III. PRELIMINARIES

A configurable software consists of multiple configuration
options, where each option plays a similar role as a global
program variable, but often has a finite domain (e.g., boolean)
and does not change during program execution. A configu-
ration is a set of settings of the form x = v, where x is a
configuration option and v is a (valid) value of x.

a) Interactions: An interaction for a location l charac-
terizes of the set of configurations covering l. For example,
we see from Figure 2 that any configuration satisfying u ∧ v
(i.e., they have the settings u = 1 and v = 1) is guaranteed to
cover L3. Although we focus on location coverage, interaction
can be associated with more general program behaviors, e.g.,
we could use an interaction to characterize configurations
triggering some undesirable behavior. To obtain coverage, we
typically run the program using a configuration and a test
suite, which is a set of fixed environment data or options
to run the program on, e.g., the test suite for the Unix ls
(listing) command might consist of directories to run ls on.
In summary, we define program interactions as:

Definition III.1. Given a program P , a test suite T , and a
coverage criterion X (e.g., some location l or behavior b), an
interaction for X is a formula α over the (initial settings of
the) configuration options of P such that (a) any configuration
satisfying α is guaranteed to cover X under T and (b) α is
the logically weakest such formula (i.e., if β also describes
configurations covering X then β ⇒ α).

b) Decision Trees: We use a decision tree to represent the
interaction for a location l. A decision tree consists of a root,
leaves, and internal (non-leaf) nodes. Each non-leaf node is
labeled with a configuration option and has k outgoing edges,
which correspond to the k possible values of the option. Each
leaf is labeled with a hit or miss class, which represents the
classification of that leaf. The path from the root to a leaf
represents a condition leading to the classification of the leaf.
This path condition is the conjunction of the settings collected
along that path. The union (disjunction) of the hit conditions
is the interaction for l. Dually, the disjunction of the miss
conditions is the condition for not covering l. The length of a
path is the number of edges in the path.

For illustration purposes, we annotate each leaf with a label
t (a) k, where t is either the (h) hit or (m) miss class, a is
the path name (so that we can refer to the path), and k is the
number of supporting configurations used to classify this path.
Intuitively, the more supporting configurations a path has, the
higher confidence we have about its classification.

For example, the decision tree in Figure 5 for location L8
consists of four internal nodes and seven leaves. The tree has
five miss and two hit paths, e.g., path (d), which has length 4
and condition s̄ ∧ e ≡ 2 ∧ v̄ ∧ u, is classified as a hit due to
one configuration hitting L8 (c2 in Figure 3), and (g) is a miss
path with condition s because seven configurations satisfying
this condition miss L8. The interaction for L8 is s̄ ∧ e ≡
2∧((v̄∧u)∨(v∧ū)), the disjunction of the two hit conditions.

IV. THE GENTREE ALGORITHM

Figure 6 shows the GenTree algorithm, which takes as
input a program, a test suite, and an optional set of initial
configurations, and returns a set of interactions for locations
in the program that were covered. Initial configurations, e.g.,
default or factory-installed configurations, if available, are
useful starting points because they often give high coverage.

input : program P ; test suite T ; initial configs I (optional)
output : a set of interactions of P

1 configs← I ∪ oneway_covering_configs()
2 cov← run(P, T, configs)
3 trees← ∅
4 explore iters← 0
5 while explore iters < max explore iters do
6 explore iters← explore iters + 1
7 explore mode← explore iters > 1
8 foreach location l ∈ cov do
9 hits← hit(cov, l)

10 misses← miss(cov, l)

11 need rebuild← is_null(trees[l]) ∨
¬test_tree(trees[l], hits,misses)

12 if need rebuild ∨ explore mode then
13 if need rebuild then
14 explore iters← 0
15 trees[l]← build_tree(hits,misses)

16 paths← select_ranked_paths(trees[l])
17 if explore mode then
18 paths← paths ∪

select_random_paths(trees[l])

19 configs← gen_new_configs(paths)
20 cov← cov ∪ run(P, T, configs)

21 interactions← post_process(trees)
22 return interactions

Fig. 6: GenTree’s iterative refinement algorithm

GenTree starts by creating a set of configurations using a
randomly generated 1-covering array and the initial configu-
rations if they are available. GenTree then runs the program
on configs using the test suite and obtain their coverage.

Next, GenTree enters a loop that iteratively builds a
decision tree for each covered location (§IV-B) and generates
new configurations from these trees (§IV-A) in order to refine
them. GenTree has two modes: exploit and explore.
It starts in exploit mode and refines incorrect trees in each
iteration. When GenTree can no longer refine trees (e.g.,
it is stuck in some plateau), it switches to explore mode
and generates random configurations, hoping that these could
help improve the trees (and if so, GenTree switches back to
exploit mode in the next iteration).

For each covered location l, GenTree performs the fol-
lowing steps. First, we create hit and miss sets consisting
of configurations hitting or missing l, respectively. Second, if
GenTree is in exploit mode, we build a decision tree for l
from the hit and miss sets of configurations if either l is a new
location (a tree for l does not exist) or that the existing tree for
l is not correct (the test_tree function checks if the tree
fails to classify some configurations). If both of these are not
true (i.e., the existing tree for l is correct), we continue to the
next location. Otherwise, if GenTree is in explore mode,
we continue to the next step. Third, we rank and select paths
in the tree that are likely incorrect to refine them. If GenTree
is in explore mode, we also select random paths. Finally,

u

e

m (a) 2 m (b) 2

m (c) 1

v

h (d) 1

h (e) 2

0 1 2

0 1

0 1

s t u v a b c d e

0 0 0 0 0 0 2 2 2
1 1 0 0 2 1 1 0 2
1 0 0 0 1 2 0 1 2

Fig. 7: A decision tree and new configurations created from
path (c) of the tree

we generate new configurations using the selected paths and
obtain their coverage. GenTree uses these configurations to
validate and refine the decision tree for l in the next iteration.
GenTree repeats these steps until existing trees remain

the same and no new trees are generated (i.e., no new
coverage) for several iterations. In the end, GenTree uses a
postprocessing step to extract logical formulae from generated
trees to represent program interactions.

A. Selecting Paths and Generating Configurations

Given a decision tree, GenTree ranks paths in the tree
and generates new configurations from high-ranked ones.
Intuitively, we use configurations generated from a path to
validate that path condition, which represents an interaction.
If these configurations do not violate the path condition, we
gain confidence in the corresponding interaction. Otherwise,
these configurations are counterexamples that are subsequently
used to learn a new tree with more accurate paths.

a) Selecting Paths: To select paths to generate new
configurations, GenTree favors those with fewer support-
ing configurations because such paths are likely inaccurate
and thus generating counterexample configurations to “break”
them is likely easier.

If there are multiple paths with a similar number of support-
ing configurations, we break ties by choosing the longest ones.
Paths with few supporting configurations but involving many
options are likely more fragile and inaccurate. If there are
multiple paths with a similar length and number of supporting
configurations, we pick one arbitrary.

For example, paths (c) and (d) in the tree shown in Fig-
ure 7 have the highest rank because they each have just one
supporting configuration. Paths (a), (b), and (e) have two
configurations each, but path (e) is longer and thus ranked
higher. The final ranking for this tree is then (c), (d), (e), (a),
and (b).

b) Generating Configurations: From the highest-ranked
path, GenTree generates 1-covering configurations that sat-
isfy the path condition, i.e., these configurations have the same
settings as those in the condition of that path. GenTree keeps
generating new configurations this way for the next highest-
ranked paths until it achieves up to a certain number of new
configurations (currently configured to generate at least two
new configurations).

t

s

m (a) 10

m (b) 5

h (d) 1

z

m (g) 1m (c) 1 h (f) 1h (e) 1

0 1

0 1

0 1 2 3 4

(a)

m (a) 20/3

(b)

t

s

m (a) 10

1

m (b) 5 h (c) 5/2

0 1

0 1

(c)

Fig. 8: Ideal tree (a) and C5.0 trees (b,c)

Using high-ranked paths to generate configurations is a
greedy approach, which might not always give useful con-
figurations that help improve the tree. Thus, GenTree also
selects random paths during the explore mode, i.e., when a
tree remains unchanged in the previous iteration so that lower-
ranked paths can also be improved.

Figure 7 shows one possible set of configurations generated
from the highest-ranked path c. The condition of path c is
e ≡ 2 ∧ u ≡ 0 ∧ v ≡ 0 and thus all generated configurations
have values of e, u, v fixed to 2, 0, 0, respectively.

B. Building Decision Trees

GenTree uses a specialized classification algorithm to
build decision trees. While many decision tree classifiers
exist (e.g., the popular family of ID3, C4.5, and C5.0 algo-
rithms [15], [16]), they do not fit our purpose because they
employ aggressive pruning strategies to simplify trees and
need large dataset to produce accurate results.

1) Limitations of C5.0: Consider an example where we
have three options: s, t are bool and z ranges over the values
{0, 1, 2, 3, 4}. Assume we use all 2×2×5 = 20 configurations
as sample data and use the interaction s∧ t∧ (1 ≤ z ∧ z ≤ 3)
to classify these configurations: 3 hits (there are only 3
configurations satisfy this interaction) and 17 misses.

The C5.0 algorithm would not be able to create a decision
tree, e.g., the one shown in Figure 8a, that perfectly classifies
this data set to represent the desired interaction. For example,
the official C5.0 implementation [17] with default settings
yields the tree in Figure 8b, which represents the interaction
False. This is because by default, the tool determines that
most samples were misses (17/20) and prunes nodes to create a
tree reflecting this belief1. After tweaking the tool’s parameters
to avoid pruning2, we obtain the tree in Figure 8c that
represents the interaction s ∧ t, which is more accurate, but
is still far from the desired one shown in Figure 8a. Even
with this full set of configurations, we cannot modify C5.0
to obtain the desired interaction, because C5.0, like many
other ML techniques, requires a very large set of sample
data to be accurate (leaves with too few samples, e.g., the 3

1The label 20/3 indicates this classification has a total of 20 samples, but
3 of them are incorrect.

2Using the custom parameters -c 100 -m 1 -g.

hit configurations in this example, are given low “confidence
level” and therefore are pruned).

2) The C5i algorithm: We develop C5i, a “simplified”
version of C5.0 for interaction learning. Similarly to C5.0, C5i
builds a decision tree to split a training sample (e.g., hit and
miss configurations) based on the feature (e.g., configuration
options) that provides the highest information gain. Each
subsample is then split again using a different feature, and
the process repeats until meeting some stopping criteria.

Classification algorithms including ID3, C4.5, C5.0, CART
are designed around the concept of pruning, i.e., “remove parts
of the tree that do not contribute to classification accuracy
on unseen cases, producing something less complex and thus
more comprehensible” [15]. But pruning leads to inaccuracy
as shown in §IV-B1. Thus, C5i avoids pruning to achieve
a 100% accuracy on the training sample, i.e., every sample
configuration is correctly classified.

Other than pruning, the two algorithms have several main
differences. First, we use two classification categories (hit and
miss) and features (configuration options) with finite domains,
e.g., boolean or over a finite set of values. Our training samples
do not contain unknown values (C5.0 allows some values in
the training data to be omitted). The sample data also does not
contain noise, e.g., if c is an interaction for a location, then any
configuration satisfies c will guarantee to hit c. We give similar
weights to samples and similar costs for misclassifications
(C5.0 allows different cost assignments to misclassification).
Finally, we perform splitting until we can no longer split
subsamples while C5.0 uses heuristics to decide when to stop
splitting and prune the rest.

Using the set of 20 configurations in the example in §IV-B1,
C5i generates the tree in Figure 8a, which represents the
desired interaction. In fact, C5i can generate the same tree
using just 14 configurations. However, by requiring exact,
instead of more generalized, trees, C5i is prone to “overfitting”,
i.e., generating trees that are correct for the sample data
but might not in general. GenTree’s iterative refinement
phase is specifically designed to mitigate this problem, i.e., by
generating counterexample configurations to gradually correct
overfitting mistakes. In §VI, we show that the integration of
C5i and iterative refinement helps GenTree scale to programs
with very large configuration spaces and learn trees represent-
ing accurate interactions using small sets of configurations.

V. SUBJECT PROGRAMS

GenTree is implemented in C++ and uses the Z3 SMT
solver [18] to encode and simplify interactions. We also use
Z3 to analyze interactions as described in §VI (e.g., checking
that interactions are equivalent to ground truth).

A. Subject Programs

To evaluate GenTree, we used the subject programs listed
in Table I. For each program, we list its name, language,
version, and lines of code as measured by SLOCCount [19].
We also report the number of configuration options (opts)
and the configuration spaces (cspace).

TABLE I: Subject programs

prog lang ver loc opts cspace

id C 8.32 342 10 1024
uname C 8.32 282 11 2048
cat C 8.32 484 12 4096
mv C 8.32 378 11 5120
ln C 8.32 521 12 10 240
date C 8.32 501 7 17 280
join C 8.32 895 12 18 432
sort C 8.32 3366 22 6 291 456
ls C 8.32 3972 47 3.5× 1014

grin Python 1.2.1 628 22 4 194 304
pylint Python 1.9.5 15 493 28 2.9× 1011

unison Ocaml 2.51.2 30 074 27 2.0× 108

bibtex2html Ocaml 1.99 9258 33 1.3× 1010

cloc Perl 1.86 12 427 23 16 777 216
ack Perl 3.4.0 3244 28 5.4× 108

vsftpd C 2.0.7 10 482 30 2.1× 109

ngircd C 0.12.0 13 601 13 294 912

These programs and their setups (§V-B) are collected from
iGen. We include all programs that we can reproduce the
iGen’s setup and omit those that we cannot (e.g., the runscripts
and tests are not available for the Haskell and Apache httpd
used in iGen). In total, we have 17 programs spanning 4
languages (C, Python, Perl, and Ocaml).

The first group of programs comes from the widely used
GNU coreutils [20]. These programs are configured via
command-line options. We used a subset of coreutils
with relatively large configuration spaces (at least 1024 con-
figurations each). The second group contains an assortment
of programs to demonstrate GenTree’s wide applicability.
Briefly: grin and ack are grep-like programs; pylint is
a static checker for Python; unison is a file synchronizer;
bibtex2html converts BibTeX files to HTML; and cloc
is a lines of code counter. These programs are written in
Python, Ocaml, and Perl and have the configuration space size
ranging from four million to 1011. The third group contains
vsftpd, a secure FTP server, and ngircd, an IRC daemon.
These programs were also studied by [1], who uses the Otter
symbolic execution tool to exhaustively compute all possible
program executions under all possible settings. Rather than
using a test suite, we ran GenTree on these programs in a
special mode in which we used Otter’s outputs as an oracle
that maps configurations to covered lines.

B. Setup

We selected configuration options in a variety of ways. For
coreutils programs, we used all options, most of which
are boolean-valued, but nine can take on a wider but finite
range of values, all of which we included, e.g., all possible
string formats the program date accepts. We omit options
that range over an unbounded set of values. For the assorted
programs in the second group, we used the options that we
could get working correctly and ignore those that can take
arbitrary values, e.g., pylint options that take a regexp or
Python expression as input. For vsftpd and ngircd we
used the same options as in iGen.

We manually created tests for coreutils to cover com-
mon usage. For example, for cat, we wrote a test that read
data from a normal text file. For ls, we let it list the files
from a directory containing some files, some subdirectories,
and some symbolic links.

Finally, we obtained line coverage using gcov [21] for C,
coverage [22] for Python, Devel::Cover [23] for Perl,
and expression coverage using Bisect [24] for OCaml. We
used a custom runner to get the coverage for vsftpd and
ngircd using Otter’s result as explained in §V-A.

Our experiments were performed on a 64-core AMD CPU
2.9GHz Linux system with 64 GB of RAM. GenTree and
all experimental data are available at [12].

VI. EVALUATION

To evaluate GenTree we consider four research ques-
tions: can GenTree learn accurate program interactions (R1-
Accuracy)? how does it perform and scale to programs with
large configuration spaces (R2-Performance)? what can we
learn from the discovered interactions (R3-Analysis)? and how
does GenTree compare to iGen (R4-Comparing to iGen)?

Table II summarizes the results of running GenTree on the
benchmark programs (§V), taking median across 11 runs and
their variance as the semi-interquartile (SIQR) range [25]. For
each program, columns configs and cov report the number
of configurations generated by GenTree and the number
of locations covered by these configurations, respectively.
The next two columns report the running time of GenTree
(search is the total time minus the time spent running
programs to obtain coverage). The next five columns report
the number of distinct interactions inferred by GenTree.
Column single shows the number of interactions that are
true, false, or contain only one option, e.g., s̄. Columns
conj, disj, mix, total show the number of pure con-
junction, pure disjunction, mixed (arbitrary form), and all of
these interactions, respectively. The low SIQR values on the
discovered coverage and interactions indicate that GenTree,
despite being non-deterministic3, produces relatively stable
results across 11 runs. The next two columns list the max
and median interaction lengths, which are further discussed
in §VI-C. Column min cspace lists the results for the
experiment discussed in §VI-C.

A. R1-Accuracy

To measure the accuracy of inferred interactions, we evalu-
ated whether GenTree produces the same results with its iter-
ative algorithm as it could produce if it used all configurations
(i.e., the results GenTree inferred using all configurations are
“ground truths”, representing the real interactions). To do this
comparison, we use all coreutils programs (except ls),
grin, and ngircd because we can exhaustively enumerate
all configurations for these programs.

3GenTree has several sources of randomness: the initial one-way covering
array, the selection of paths used for generating new configurations, the
selection of option values in those new configurations, and the creation of
the decision tree by the classification algorithm.

TABLE II: Results. Column min cspace lists the results for the experiment in §VI-C

time(s) interaction types inter. lengths min
prog configs cov search total single conj disj mix total max median cspace

id 609 277 150 1 0 0 0 0 3 0 17 3 1 1 11 5 32 8 10 2 5 2 10
uname 189 359 98 1 0 0 0 0 11 0 4 1 0 1 8 2 23 3 6 4 1 0 4
cat 1660 109 205 0 0 0 1 0 12 0 7 0 1 0 7 0 27 0 12 0 1 0 6
mv 4532 61 167 0 5 1 6 1 9 0 3 0 3 0 6 0 21 0 11 0 1 0 4
ln 2143 114 171 0 0 0 2 0 10 0 7 0 2 0 5 0 24 0 8 0 1 0 5
date 12050 741 125 0 4 1 7 1 2 0 3 0 2 0 10 0 17 0 6 0 6 0 7
join 4001 797 365 0 1 1 4 1 4 0 17 1 2 0 10 1 33 0 12 0 12 0 6
sort 141935 23903 1085 0 744 310 1069 345 12 0 5 0 2 0 132 0 151 0 22 0 16 0 18
ls 112566 26356 1289 0 31 5 579 66 46 0 40 0 1 0 106 0 193 0 47 0 4 0 14

grin 1828 132 332 0 0 1 103 7 3 0 5 0 0 0 9 0 17 0 7 0 5 0 6
pylint 6850 27 10757 0 26 1 3868 14 1 0 12 0 2 0 8 0 23 0 7 0 5 0 6
unison 9690 790 3565 0 5 0 252 12 3 0 39 0 1 0 19 0 62 0 10 0 7 0 7
bibtex2html 38317 2311 1437 0 26 4 5195 201 35 0 11 0 1 0 113 0 160 0 33 0 1 0 10
cloc 12284 931 1147 0 612 1 9494 530 3 0 35 0 1 0 20 0 59 0 9 0 5 0 9
ack 65553 6708 1212 2 13 5 10214 603 2 0 10 1 1 0 59 4 72 5 28 1 22 1 14

vsftpd 10920 614 2549 0 2 1 6 1 5 0 36 0 2 0 9 0 52 0 7 0 5 0 5
ngircd 28711 1335 3090 0 18 1 148 4 4 0 8 0 2 0 51 0 65 0 11 0 4 0 5

TABLE III: Comparing GenTree

(a) vs. exhaustive (b) vs. iGen (§VI-D)

cov interactions mixed
prog δ exact total pure ok fail

id 0 32 32 21 2 9
uname -1 22 27 17 7 3
cat 0 27 27 20 6 1
mv 0 21 21 15 2 4
ln 0 24 25 20 3 2
date 0 17 17 7 0 10
join 0 33 33 23 3 7
sort 0 148 151 19 10 122

grin 0 17 17 8 9 0
ngircd 0 64 65 14 4 47

Table IIIa shows the comparison results. Column δ cov
compares the locations discovered by GenTree and by ex-
haustive runs (0 means no difference, −k means GenTree
found k fewer locations). The next two columns show inter-
actions found by GenTree (exact) that exactly match the
interactions discovered by exhaustive runs (total).

Overall, GenTree generates highly accurate results com-
paring to ground truth, while using only a small part of
the configuration space as shown in Table II and further
described in §VI-B. For uname, GenTree misses location
uname.c:278, which is guarded by a long conjunction
of 11 options of uname (thus the chance of hitting it is
1/2048 configurations). Also, for 8/11 times, GenTree infers
inaccurately uname.c:202, which is a long disjunction of
11 options. For ln, GenTree was not able to compute
the exact interaction for location ln.c:495 in all runs.
Manual investigation shows that the interaction of this lo-
cation is a long disjunction consisting of all 12 run-time
options and thus is misidentified by GenTree as true. For
sort, three locations sort.c:3212, sort.c:3492,
sort.c:3497 are non-deterministic (running the program
on the same configuration might not always hit or miss these

locations) and thus produce inaccurate interactions.

B. R2-Performance

Table II shows that for programs with large configuration
spaces, GenTree runs longer because it has to analyze more
configurations, and the run time is dominated by running
the programs on these configurations (total − search).
In general, GenTree scales well to large programs because
it only explores a small portion of the configuration space
(shown in Table I). For small programs (e.g., id, uname,
cat), GenTree analyzes approximately half of the configu-
ration space. However, for larger programs (e.g., sort, ls,
pylint, bibtex2html), GenTree shows its benefits as
the number of configurations analyzed is not directly propor-
tional to the configuration space size. For example, ls has
eight more orders of magnitude compared to sort, but the
number of explored configurations is about the same. Note
that cloc and ack’s long run times are due to them being
written in Perl, which runs much slower than other languages
such as C (and even Python on our machine).

Convergence: Figure 9 shows how GenTree converges
to its final results on the programs used in Table III, which
we can exhaustively run to obtain ground truth results. The x-
axis is the number of explored configurations (normalized such
that 1 represents all configurations used by GenTree for that
particular program). The y-axis is the number of discovered
interactions equivalent to ground truth (normalized such that
1 represents all interactions for that program). These results
show that GenTree converges fairly quickly. At around
40% of configurations, GenTree is able to accurately infer
more than 90% of the total ground truth interactions. It then
spent the rest of the time refining few remaining difficult
interactions.

Comparing to Random Search: We also compare interac-
tions inferred from GenTree’s configurations and randomly
generated configurations. For each program, we generate the
same number of random configurations as the number of

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

configurations (normalized)

ex
ac

t
in

te
ra

ct
io

ns
(n

or
m

al
iz

ed
)

id
id

uname
uname

cat
cat
mv
mv
ln
ln

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

configurations (normalized)

ex
ac

t
in

te
ra

ct
io

ns
(n

or
m

al
iz

ed
)

date
date
join
join
sort
sort
grin
grin

ngircd
ngircd

Fig. 9: Progress of GenTree on generating interactions (italic program name indicates randomized version)

configurations GenTree uses and then run C5i on these
configurations to obtain interactions.

Figure 9 shows that GenTree’s configurations help the tool
quickly outperform random configurations and stay dominated
throughout the runs. Comparing to random configurations,
GenTree’s configurations also learns more accurate interac-
tions, especially for large programs or those with complex
interactions, e.g., random configurations can only achieve
about 56% (84/151) of the ground truth interactions for sort.

C. R3-Analysis

We analyze discovered interactions to learn interesting prop-
erties in configurable software. These experiments are similar
to those in previous interaction works [1]–[4].

Interaction Forms: Table II shows that singular and
conjunctive interactions are common, especially in small pro-
grams. However, disjunctive interactions are relatively rare,
e.g., only 1-2 disjunctions occur in the subject programs.
Mixed interactions are also common, especially in large pro-
grams (e.g., in sort, ls, unison, and bibtext2html).
Existing works do not support many of these interactions and
thus would not able to find them (see §VI-D).

Interaction Length: Table II shows that the number of
obtained interactions is far fewer than the number of possible
interactions, which is consistent with prior works’ results.
For example, for id, which has 10 boolean options, 1024
total configurations, and 21024 possible interactions, GenTree
found only 32 interactions, which are many orders of magni-
tude less than 21024.

Also, most interactions are relatively short, regardless of
the number of configurations (e.g., all but join, sort, and
ack have the median interaction lengths less than 10). We
also observe that we can achieve 74% coverage using only
interactions with length at most 3 and 93% coverage with
length at most 10. This observation is similar to previous
works.

Enabling Option: Enabling options are those that must
be set in a certain way to achieve significant coverage. For

example, many locations in coreutils programs have in-
teractions involving the conjunction help∧version. Thus,
both help and version are enabling options that must be
turned off to reach those locations (because if either one is
one, the program just prints a message and exits). We also have
the enabling options Z for id (because it is only applicable
in SELinux-enabled kernel) and ListenIPv4 for ngircd
(this option need to be turned on to reach most of locations).
In general, enabling options are quite common, as suggested
in previous works [1], [4].

Minimal Covering Configurations: A useful application
of GenTree is using the inferred interactions to compute a
minimal set of configurations with high coverage. To achieve
this, we can use a greedy algorithm, e.g., the one described
in iGen, which combines interactions having high coverage
and no conflict settings, generates a configuration satisfying
those interactions, and repeats this process until the generated
configurations cover all interactions.

Column min cspace in Table II shows that GenTree’s
interactions allow us to generate sets of high coverage configu-
rations with sizes that are several orders of magnitude smaller
than the sizes of configuration spaces. For example, we only
need 10/1024 configurations to cover 150 lines in id and
18/6291456 configurations to cover 1085 lines in sort.

D. R4-Comparing to iGen

Comparing to iGen, GenTree generally explored more
configurations but discovered more expressive interactions.
Table IIIb compares the interactions inferred by GenTree
and iGen. Column pure shows the number of single, purely
conjunctive, and pure disjunctive interactions supported (and
thus inferred) by both tools. Columns ok and fail show the
numbers of mixed interactions supported and not supported by
iGen, respectively (GenTree found all of these). For example,
both iGen and GenTree discovered the purely conjunctive in-
teraction help∧version∧Z for id.c:182 and the mixed
interaction help∧version∧Z∧u∧(g∨G) for id.c:198.
However, only GenTree inferred the more complex mixed

interaction help∧ version∧ Z∧ g∧ G∧ n∧ (u∨ (r∧ z))
for location id.c:325.

For small programs, we observe that many interactions
are pure conjunctive or disjunctive, and hence, supported by
both tools. However, for larger and more complex programs
(e.g., sort, ngircd), iGen could not generate most mixed
interactions while GenTree could. For example, iGen failed
to generate 122/132 of the mixed interactions in sort while
GenTree generated most of them.

E. Threats to Validity

Although the benchmark systems we have are popular and
used in the real world, they only represent a small sample
of configurable software systems. Thus, our observations
may not generalize in certain ways or to certain systems.
GenTree runs the programs on test suites to obtains cov-
erage information. Our chosen tests have reasonable, but not
complete, coverage. Systems whose test suites are less (or
more) complete could have different results. Our experiments
used a substantial number of options, but do not include
every possible configuration options. We focused on subsets
of configuration options that appeared to be important based
on our experience. Finally, GenTree cannot infer interactions
that cannot be represented by decision trees (e.g., configuration
options involving non-finite numerical values). Interactions
involving such options might be important to the general
understanding and analysis of configurable software.

VII. RELATED WORK

Interaction Generation: As mentioned, GenTree is
mostly related to iGen, which computes three forms of in-
teractions: purely conjunctive, purely disjunctive, and specific
mixtures of the two. In contrast, we use decision trees to
represent arbitrary boolean interactions and develop our own
classification algorithm C5i to manipulate decision trees. To
illustrate the differences, consider the interaction for location
id.c:325, help∧version∧Z∧g∧G∧n∧ (u∨ (r∧z)),
which can be written as the disjunction of two purely con-
junctive interactions: (help ∧ version ∧ Z ∧ g ∧ G ∧
n ∧ u) ∨ (help ∧ version ∧ Z ∧ g ∧ G ∧ n ∧ r ∧ z).
iGen can infer each of these two purely conjunctions, but
it cannot discover their disjunction because iGen does not
support this form, e.g., (a ∧ b) ∨ (a ∧ c). For this example,
even when running on all 1024 configurations, iGen only
generates help∧version∧Z∧g∧G∧n∧u, which misses
the relation with r and z. In contrast, GenTree generates
this exact disjunctive interaction (and many others) using 609
configurations in under a second (Table II in §VI-B).

Moreover, while both tools rely on the iterative guess-
and-check approach, the learning and checking components
and their integration in GenTree are completely different
from those in iGen, e.g., using heuristics to select likely
fragile tree paths to generate counterexamples. Also, while
C5i is a restricted case of C5.0, it is nonetheless a useful
case that allows us to generate a tree that is exactly accurate
over data instead of a tree that approximates the data. We

developed C5i because existing classification algorithms do
not allow easy interaction inference (due to agressive pruning
and simplification as explained in §IV-B2).

Precondition and Invariant Discovery: Researchers have
used decision trees and general boolean formulae to repre-
sent program preconditions (interactions can be viewed as
preconditions over configurable options). The work in [26]
uses random SAT solving to generate data and decision trees
to learn preconditions, but does not generate counterexample
data to refine inferred preconditions, which we find crucial
to improve resulting interactions. Similarly, PIE [27] uses
PAC (probably approximately correct algorithm) to learn CNF
formula over features to represent preconditions, but also does
not generate counterexamples to validate or improve inferred
results. Only when given the source code and postconditions
to infer loop invariants PIE would be able to learn additional
data using SMT solving.
GenTree adopts the iterative refinement approach used in

several invariant analyses (e.g., [8]–[11]). These works (in par-
ticular [9], [10] that use decision trees) rely on static analysis
and constraint solving to check (and generate counterexam-
ples) that the inferred invariants are correct with respect to the
program with a given property/assertion (i.e., the purpose of
these works is to prove correct programs correct). In contrast,
GenTree is pure dynamic analysis, in both learning and
checking, and aims to discover interactions instead of proving
certain goals.
GenTree can be considered as a dynamic invariant tool

that analyzes coverage trace information. Daikon [28], [29]
infers invariants from templates that fit program execution
traces. GenTree focuses on inferring interactions represented
by arbitrary formulae and combines with iterative refinement.
DySy is another invariant generator that uses symbolic execu-
tion for invariant inference [30]. The interaction work in [1]
also uses the symbolic executor Otter [31] to fully explore
the configuration space of a software system, but is limited to
purely conjunctive formulae for efficiency. Symbolic execution
techniques often have similar limitations as static analysis, e.g.,
they require mocks or models to represent unknown libraries or
frameworks and are language-specific (e.g., Otter only works
on C programs). Finally, GenTree aims to discover new
locations and learns interactions for all discovered locations.
In contrast, invariant generation tools typically consider a few
specific locations (e.g., loop entrances and exit points).

Binary decision diagrams (BDDs): The popular BDD
data structure [32] can be used to represent boolean formulae,
and thus is an alternative to decision trees. Two main advan-
tages of BDDs are that a BDD can compactly represent a large
decision tree and equivalent formulae are represented by the
same BDD, which is desirable for equivalence checking.

However, our priority is not to compactly represent inter-
actions or check their equivalences, but instead to be able to
infer interactions from a small set of data. While C5i avoids
aggressive prunings to improve accuracy, it is inherently a
classification algorithm that computes results by generalizing
training data (like the original C5.0 algorithm, GenTree

performs generalization by using heuristics to decide when to
stop splitting nodes to build the tree as described in §IV-B2).
To create a BDD representing a desired interaction, we would
need many configurations, e.g., 2n + 1 miss or 2n − 1 hit
configurations to create a BDD for a∧ (b1 ∨ b2 ∨ · · · ∨ bn). In
contrast, C5i identifies and generalizes patterns from training
data and thus require much fewer configurations. For instance,
the configuration space size of the example in Figure 3 is
3888, and from just 3 configurations c1, c2, c3, C5i learns the
interaction s̄ because it sees that whenever s ≡ 1, L8 is
miss, and whenever s ≡ 0, L8 is hit. BDD would need 1944
configurations to infer the same interaction.

Combinatorial Interaction Testing and Variability-Aware
Analyses: Combinatorial interaction testing (CIT) [13], [14]
is often used to find variability bugs in configurable systems.
One popular CIT approach is using t-way covering arrays to
generate a set of configurations containing all t-way com-
binations of option settings at least once. CIT is effective,
but is expensive and requires the developers to choose t a
priori. Thus developers will often set t to small, causing higher
strength interactions to be ignored. GenTree initializes its set
of configurations using 1-way covering arrays.

Variability-Aware is another popular type of analysis to find
variability bugs [33]–[42]. [36] classify problems in software
product line research and surveys static analysis to solve
them. GenTree’s interactions belong to the feature-based
classification, and we propose a new dynamic analysis to
analyze them. [40] study feature interactions in a system and
their effects, including bug triggering, power consumption, etc.
GenTree complements these results by analyzing interactions
that affect code coverage.

VIII. CONCLUSION

We presented GenTree, a new dynamic analysis technique
to learn program interactions, which are formulae that describe
the configurations covering a location. GenTree works by
iteratively running a subject program under a test suite and
set of configurations; building decision trees from the resulting
coverage information; and then generating new configurations
that aim to refine the trees in the next iteration. Experimental
results show that GenTree is effective in accurately finding
complex interactions and scales well to large programs.

IX. DATA AVAILABILITY

GenTree and all benchmark data are available at the public
Github repository [12]. A snapshot of the tool and benchmark
used in this paper is available at [43].

ACKNOWLEDGMENT

We thank the anonymous reviewers for helpful comments.
This work was supported in part by awards CCF-1948536
from the National Science Foundation and W911NF-19-1-
0054 from the Army Research Office. KimHao Nguyen is
also supported by the UCARE Award from the University of
Nebraska-Lincoln.

REFERENCES

[1] E. Reisner, C. Song, K. Ma, J. S. Foster, and A. Porter, “Using symbolic
evaluation to understand behavior in configurable software systems,” in
International Conference on Software Engineering. ACM, 2010, pp.
445–454.

[2] C. Song, A. Porter, and J. S. Foster, “iTree: Efficiently discovering
high-coverage configurations using interaction trees,” in International
Conference on Software Engineering, Zurich, Switzerland, June 2012,
pp. 903–913.

[3] ——, “iTree: Efficiently discovering high-coverage configurations using
interaction trees,” Transactions on Software Engineering, vol. 40, no. 3,
pp. 251–265, 2014.

[4] T. Nguyen, U. Koc, J. Cheng, J. S. Foster, and A. A. Porter, “iGen: Dy-
namic interaction inference for configurable software,” in Foundations
of Software Engineering, 2016, pp. 655–665.

[5] S. She, R. Lotufo, T. Berger, A. Wkasowski, and K. Czarnecki, “Reverse
engineering feature models,” in International Conference on Software
Engineering. ACM, 2011, pp. 461–470.

[6] T. Berger, S. She, R. Lotufo, A. Wkasowski, and K. Czarnecki, “Vari-
ability modeling in the real: A perspective from the operating systems
domain,” in Automated Software Engineering. ACM, 2010, pp. 73–82.

[7] M. Cashman, M. B. Cohen, P. Ranjan, and R. W. Cottingham, “Navigat-
ing the maze: the impact of configurability in bioinformatics software,”
in Automated Software Engineering, 2018, pp. 757–767.

[8] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori,
“A data driven approach for algebraic loop invariants,” in European
Symposium on Programming. Springer, 2013, pp. 574–592.

[9] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Ice: A robust
framework for learning invariants,” in Computer Aided Verification.
Springer, 2014, pp. 69–87.

[10] P. Garg, D. Neider, P. Madhusudan, and D. Roth, “Learning invariants
using decision trees and implication counterexamples,” ACM Sigplan
Notices, vol. 51, no. 1, pp. 499–512, 2016.

[11] T. Nguyen, M. B. Dwyer, and W. Visser, “Symlnfer: Inferring program
invariants using symbolic states,” in Automated Software Engineering.
IEEE, 2017, pp. 804–814.

[12] K. Nguyen and T. Nguyen, “GenTree,” 2021, accessed on 2021-02-01.
[Online]. Available: https://github.com/unsat/gentree

[13] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J. Colbourn, “Con-
structing test suites for interaction testing,” in International Conference
on Software Engineering. IEEE, 2003, pp. 38–48.

[14] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton, “The combi-
natorial design approach to automatic test generation,” IEEE Software,
vol. 13, no. 5, pp. 83–88, 1996.

[15] J. R. Quinlan, C4.5: Programs for Machine Learning. Elsevier, 2014.
[16] M. Kuhn and K. Johnson, Applied predictive modeling. Springer, 2013,

vol. 26.
[17] RuleQuest, “Data mining tools,” 2019, accessed on 2021-02-01.

[Online]. Available: https://www.rulequest.com/see5-info.html
[18] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools

and Algorithms for the Construction and Analysis of Systems. Springer,
2008, pp. 337–340.

[19] D. A. Wheeler, “SLOCCount; LOC counter,” 2009, accessed on
2021-02-01. [Online]. Available: http://www.dwheeler.com/sloccount/

[20] GNU Software, “GNU Coreutils,” 2007, accessed on 2021-02-01.
[Online]. Available: https://www.gnu.org/software/coreutils/

[21] ——, “gcov: A test coverage program,” accessed on 2021-02-01.
[Online]. Available: https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

[22] N. Batchelder, “Code coverage measurement for Python,” accessed on
2021-02-01. [Online]. Available: https://pypi.org/project/coverage/

[23] P. Johnson, “Devel::Cover - code coverage metrics for Perl,” accessed
on 2021-02-01. [Online]. Available: http://search.cpan.org/%7Epjcj/
Devel-Cover-1.20/lib/Devel/Cover.pm

[24] X. Clerc, “Bisect: coverage tool for OCaml,” accessed on 2021-02-01.
[Online]. Available: http://bisect.x9c.fr

[25] D. M. Lane, “Semi-interquartile range,” 2020, accessed on 2021-02-01.
[Online]. Available: http://davidmlane.com/hyperstat/A48607.html

[26] S. Sankaranarayanan, S. Chaudhuri, F. Ivančić, and A. Gupta, “Dynamic
inference of likely data preconditions over predicates by tree learning,”
in International Symposium on Software Testing and Analysis, 2008, pp.
295–306.

https://github.com/unsat/gentree
https://www.rulequest.com/see5-info.html
http://www.dwheeler.com/sloccount/
https://www.gnu.org/software/coreutils/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://pypi.org/project/coverage/
http://search.cpan.org/%7Epjcj/Devel-Cover-1.20/lib/Devel/Cover.pm
http://search.cpan.org/%7Epjcj/Devel-Cover-1.20/lib/Devel/Cover.pm
http://bisect.x9c.fr
http://davidmlane.com/hyperstat/A48607.html

[27] S. Padhi, R. Sharma, and T. Millstein, “Data-driven precondition infer-
ence with learned features,” ACM SIGPLAN Notices, vol. 51, no. 6, pp.
42–56, 2016.

[28] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin, “Dynamically
discovering likely program invariants to support program evolution,”
Transactions on Software Engineering, vol. 27, no. 2, pp. 99–123, 2001.

[29] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao, “The daikon system for dynamic detection of
likely invariants,” Science of computer programming, vol. 69, no. 1-3,
pp. 35–45, 2007.

[30] C. Csallner, N. Tillmann, and Y. Smaragdakis, “Dysy: Dynamic sym-
bolic execution for invariant inference,” in International Conference on
Software Engineering. ACM, 2008, pp. 281–290.

[31] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic
execution,” in Static Analysis Symposium. Springer, 2011, pp. 95–111.

[32] S. B. Akers, “Binary decision diagrams,” IEEE Computer Architecture
Letters, vol. 27, no. 06, pp. 509–516, 1978.

[33] K. Lauenroth, K. Pohl, and S. Toehning, “Model checking of domain ar-
tifacts in product line engineering,” in Automated Software Engineering.
IEEE, 2009, pp. 269–280.

[34] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Type safety
for feature-oriented product lines,” Automated Software Engineering,
vol. 17, no. 3, pp. 251–300, 2010.

[35] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis

of the variability in forty preprocessor-based software product lines,” in
International Conference on Software Engineering, 2010, pp. 105–114.

[36] T. Thüm, S. Apel, C. Kästner, M. Kuhlemann, I. Schaefer, and G. Saake,
“Analysis strategies for software product lines,” School of Computer
Science, University of Magdeburg, Tech. Rep. FIN-004-2012, 2012.

[37] C. Kästner, S. Apel, T. Thüm, and G. Saake, “Type checking annotation-
based product lines,” Transactions on Software Engineering and Method-
ology, vol. 21, no. 3, pp. 1–39, 2012.

[38] J. Liebig, A. Von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer,
“Scalable analysis of variable software,” in Foundations of Software
Engineering, 2013, pp. 81–91.

[39] A. Mordahl, J. Oh, U. Koc, S. Wei, and P. Gazzillo, “An empirical study
of real-world variability bugs detected by variability-oblivious tools,” in
Foundations of Software Engineering, 2019, pp. 50–61.

[40] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and B. Garvin,
“Exploring feature interactions in the wild: the new feature-interaction
challenge,” in Feature-Oriented Software Development, 2013, pp. 1–8.

[41] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-oriented software
product lines. Springer, 2016.

[42] J. Meinicke, C. Wong, C. Kästner, T. Thüm, and G. Saake, “On essential
configuration complexity: measuring interactions in highly-configurable
systems,” in Automated Software Engineering, 2016, pp. 483–494.

[43] K. Nguyen and T. Nguyen, “Artifact for GenTree: Using decision
trees to learn interactions for configurable software,” 2021. [Online].
Available: https://doi.org/10.5281/zenodo.4514778

https://doi.org/10.5281/zenodo.4514778

	I Introduction
	II Illustration
	III Preliminaries
	IV The GenTree Algorithm
	IV-A Selecting Paths and Generating Configurations
	IV-B Building Decision Trees
	IV-B1 Limitations of C5.0
	IV-B2 The C5i algorithm

	V Subject Programs
	V-A Subject Programs
	V-B Setup

	VI Evaluation
	VI-A R1-Accuracy
	VI-B R2-Performance
	VI-C R3-Analysis
	VI-D R4-Comparing to iGen
	VI-E Threats to Validity

	VII Related Work
	VIII Conclusion
	IX Data Availability
	References

