
Explaining Software Bugs Leveraging Code
Structures in Neural Machine Translation
Parvez Mahbub

Department of Computer Science
Dalhousie University
Nova Scotia, Canada
parvezmrobin@dal.ca

Ohiduzzaman Shuvo
Department of Computer Science

Dalhousie University
Nova Scotia, Canada

oh599627@dal.ca

Mohammad Masudur Rahman
Department of Computer Science

Dalhousie University
Nova Scotia, Canada
masud.rahman@dal.ca

Abstract—Software bugs claim ≈ 50% of development time
and cost the global economy billions of dollars. Once a bug
is reported, the assigned developer attempts to identify and
understand the source code responsible for the bug and then
corrects the code. Over the last five decades, there has been sig-
nificant research on automatically finding or correcting software
bugs. However, there has been little research on automatically
explaining the bugs to the developers, which is essential but a
highly challenging task. In this paper, we propose Bugsplainer,
a transformer-based generative model, that generates natural
language explanations for software bugs by learning from a large
corpus of bug-fix commits. Bugsplainer can leverage structural
information and buggy patterns from the source code to generate
an explanation for a bug. Our evaluation using three performance
metrics shows that Bugsplainer can generate understandable
and good explanations according to Google’s standard, and
can outperform multiple baselines from the literature. We also
conduct a developer study involving 20 participants where the
explanations from Bugsplainer were found to be more accurate,
more precise, more concise and more useful than the baselines.

Index Terms—software bug, bug explanation, software engi-
neering, software maintenance, natural language processing, deep
learning, transformers

I. INTRODUCTION

A software bug is an incorrect step, process, or data
definition in a computer program that prevents the program
from producing the correct result [1]. Bug resolution is one
of the major tasks of software development and maintenance.
According to several studies, it consumes up to 40% of the
total budget [2] and costs the global economy billions of
dollars each year [3], [4].

When an end-user reports a software bug, the assigned
developer attempts to identify and understand the source code
responsible for the bug and then corrects the code. Over the
last five decades, there have been numerous approaches to
automatically find the location of a bug [4], [5]. However,
they often identify certain parts of the code as buggy with-
out offering any meaningful explanation [6]. Developers are
thus generally responsible for understanding a bug from the
identified code before making any changes. Understanding
bugs by looking at the code claims a significant chunk of
debugging time. In fact, developers spend ≈ 50% of their time
comprehending the code during software maintenance [7].
However, neither many studies attempt to explain the bugs

in the source code to the developers, nor are they practical
and scalable enough for industry-wide use [4], [6].

Explaining a bug in the software code is essential to fix
the bug, but a highly challenging task. Many static analysis
tools such as FindBugs [8], PMD, SonarLint, PyLint, and
pyflakes [9] employ complex hand-crafted rules to detect the
bugs and vulnerabilities in software code. Upon detection, they
use pre-defined message templates to explain the bugs and
vulnerabilities. Unfortunately, their utility could be limited due
to their high false-positive results and the lack of actionable
insights in their explanations [10]–[12]. In particular, their
explanations are often too generic and unaware of the context
due to their pre-defined, templated nature [13]. Thung et
al. [14] also suggest that static analysis tools suffer from a
large number of false negative results, which could leave the
software systems vulnerable to bugs.

Unlike traditional, rule-based approaches (e.g., static anal-
ysis tools), explaining software bugs can be viewed as a
translation task, where the buggy code is the source language
and the corresponding explanation is the target language. In
recent years, machine translation, especially neural machine
translation (NMT) [15], has found numerous applications in
several domains [16], [17]. NMT has also been used in
different software engineering tasks including, but not limited
to, code summarization [18], [19], code comment genera-
tion [20], [21], and commit message generation [22]–[25].
Traditional NMT models often consist of two items: encoder
and decoder. The encoder first converts the words of the
source language into an intermediate numeric representation.
Then the decoder generates the target words one by one
using the intermediate representation and previous words from
the generated sequence [15]. However, explanation generation
from the buggy source code using neural machine translation
poses two major challenges as follows.

Understanding the structures of source code: Natural
language is loosely structured, which exhibits phenomena like
ambiguity and word movement [15]. Word movement is the
appearance of words in a sentence in different orders but still
being grammatically correct. On the contrary, programming
languages are more structured, syntactically restricted, and
less ambiguous [27]. From the two programs having the
same vocabulary, one could be buggy and the other could be

ar
X

iv
:2

21
2.

04
58

4v
5

 [
cs

.S
E

]
 2

8
Ja

n
20

25

Fig. 1: An example of buggy source code

TABLE I: Generated explanations for buggy code

Technique Generated Explanation

Ground Truth Fix a bug where the lyricswiki fetcher
would try to unescape an empty (None)
response and crash

CommitGen [22] Small bug fix for error handling
NNGen [25] fix UnicodeDecodeError with non-

ASCII text
Fine-tuned
CodeT5 [26]

Don’t try to get lyrics if we are licensed

pyflakes [9] no error found

Bugsplainer fix crash when lyrics not found

correct due to their structural differences (e.g., 4b, 4c). Thus,
capturing and understanding the structures of code is essential
to explaining the buggy code. Unfortunately, traditional NMT-
based techniques often treat source code as a sequence of
tokens and thus might fail to capture the structures of source
code properly [28].

Understanding and detecting buggy code patterns: From
a high-level perspective, NMT models translate words from
the source language into words from the target language.
However, to generate explanations from the buggy code, the
model must be able to accurately reason about the bug from
the buggy code and its structures. Such reasoning is non-trivial
and warrants the model to be aware of buggy code patterns.
Traditional NMT models might not be sufficient to tackle all
these challenges due to their simplified assumptions about
sequential inputs and outputs. According to Ray et al. [29]
buggy code is less repetitive (a.k.a., unnatural) than regular
code, which could exacerbate the above challenges.

In this paper, we propose Bugsplainer, a novel transformer-
based generative model, that generates natural language expla-
nations for software bugs by learning from a large corpus of
bug-fix commits (i.e., commits that correct bugs). Our solution
is able to address the above challenges, which makes our work
novel. First, Bugsplainer can leverage code structures in ex-
planation generation by applying structure-based traversal [19]
to the buggy code. Second, we train Bugsplainer using both
buggy source code and its corrected version, which helps the
model to understand and detect buggy code patterns during its
explanations generation for the buggy code.

We train and evaluate Bugsplainer with ≈ 150K bug-fix
commits collected from GitHub using three different metrics
– BLEU [30], Semantic Similarity [31] and Exact Match. We
find that the explanations from Bugsplainer are understandable
to good. We compare our technique with four appropriate base-
lines – pyflakes [9], CommitGen [22], NNGen [25], and Fine-
tuned CodeT5 [26]. Bugsplainer outperforms all four baselines
in all metrics by a statistically significant margin. One major
strength of Bugsplainer is understanding the structure of the
code and buggy code patterns, where the baselines might be
falling short. To further evaluate our work, we conduct a
developer study involving 20 developers from six countries,

where the identities of both our tool and the baselines were
kept hidden. The study result shows that explanations from
Bugsplainer are more accurate, more precise, more concise,
and more useful compared to that of the baselines.

We thus make the following contributions in this paper:
(a) A novel transformer-based technique, Bugsplainer, that

can explain software bugs by leveraging the structural
information and buggy code patterns from source code.

(b) A novel pre-training technique, namely – Discriminatory
Pre-training, that is shown to be effective in generating
better explanations.

(c) A benchmark dataset containing ≈ 150K instances of
buggy code, corrected code, and corresponding explana-
tions written by human developers. To the best of our
knowledge, this is the first benchmark of its kind.

(d) A comprehensive evaluation and validation of the
Bugsplainer technique using both popular performance
metrics (e.g., BLEU score) and a developer study.

(e) A replication package that includes our working proto-
type, experimental dataset, and other configuration details
for the replication or third-party reuse1.

II. MOTIVATING EXAMPLE

To demonstrate the capability of our technique –
Bugsplainer, let us consider the example in Fig. 1. The
code snippet is taken from beetbox/beets repository at
GitHub2. The buggy code attempts to scrape the lyrics of
a song from an HTML fragment. However, if the HTML
fragment is empty, then the program crashes. Table I shows
both developer’s explanation for the buggy code (a.k.a., refer-
ence) and the explanations generated by different techniques
including Bugsplainer. We see that the explanations gener-
ated by CommitGen [22] (i.e., RNN-based technique) and
NNGen [25] (i.e., Information Retrieval-based technique) are
not helpful. On the other hand, the explanation from Fine-
tuned CodeT5 [26] is not accurate as the bug has nothing to
do with licensing. Pyflakes, a static analysis-based technique,
does not provide any explanation since it was not able to
detect the bug using its pre-defined rules. On the other hand,

1https://bit.ly/3H7R1aI
2https://bit.ly/3PGnkzK

Fig. 2: Structure-based traversal (SBT) – (a) an example tree,
and (b) corresponding SBT sequence

the explanation generated by our technique, Bugsplainer, is
accurate as it expresses the same information as the ground
truth and precise as it expresses no unnecessary information.
Moreover, we see that in the fixed version of the code (Fig. 1),
an if condition was used to check whether the HTML
fragment exists (i.e., lyrics were found) or not, which reflects
the solution implied by our explanation.

III. BACKGROUND

A. Neural Machine Translation

Neural machine translation (NMT) is a deep neural network-
based approach for automated translation [32]. In recent years,
NMT has achieved rapid progress and has drawn the attention
of both the research community and the practitioners. Gener-
ally, an NMT model is composed of two different blocks: en-
coder and decoder. The encoder accepts an input sequence and
produces a numerical, intermediate representation of the input.
Then, this intermediate representation is passed to the decoder.
Based on this intermediate representation, the decoder starts
to generate the target sequence, one token at a time. While
generating each token, all the previously generated tokens are
also passed to the decoder. This is known as autoregressive
process where the current output is based on all previously
generated outputs [33]. Bahdanau et al. [34] demonstrate how
certain locations of the input sequence can be emphasized
over others for an effective translation, which is known as
the attention mechanism. The attention mechanism makes the
training process faster and helps the NMT models translate
long sequences [33]. In our research, we use Transformer [17],
[33], the state-of-the-art NMT model along with the attention
mechanism, as a part of Bugsplainer, to generate explanations
for the buggy source code.

B. Structure-Based Traversal

Traditional NMT models treat their input as sequential data
(e.g., English language texts). However, source code is rich
in structures (e.g., syntactic or data dependencies), which are
essential to convey the semantics of the code. One way to
represent the syntactic structure of a source code document
is an abstract syntax tree (AST). To leverage this structural
information, several studies represent the tree structure into a
sequence of code tokens and use it as the input to sequence-to-
sequence models [19], [24]. Hu et al. [19] propose structure-
based traversal (hereby SBT) to convert an AST node into a
token sequence that can preserve the structural information.
Fig. 2 shows an example tree and its corresponding SBT

sequence. We use the SBT algorithm of Hu et al. to generate
the sequence (see Algorithm 1 for details).

To generate the SBT sequence of a tree, we first use a
pair of brackets to represent the tree structure and put the
root node (i.e., A) behind the right bracket, i.e., (A)A. Next,
we traverse the sub-trees of the root node and put all root
nodes of sub-trees into the brackets, i.e., (A(B)B(C)C)A.
Recursively, we traverse each sub-tree until all nodes of a
tree are traversed. For example, we get the following SBT
sequence –(A(B)B(C(D)D(E)E)C)A – for the example
tree in Fig. 2a.

IV. BUGSPLAINER

Fig. 3 shows the schematic diagram of our proposed tech-
nique – Bugsplainer – for explaining software bugs. We
discuss different steps of our technique in detail as follows.

A. Extract Buggy and Bug-free AST Nodes from Commit

First, we construct abstract syntax trees (AST) of both
buggy and bug-free code using the information from a bug-fix
commit. A bug-fix commit contains the bug-free version of the
code while being connected to its parent commit containing
the buggy version. From these two versions of the source
code, we construct two different ASTs – the buggy AST
(Step 1a, Fig. 3a) and the bug-free AST (Step 1b, Fig. 3a).
A commit also contains references to both removed lines
(i.e., buggy lines) and added lines (i.e., bug-fix lines). Using
these line numbers, we extract the buggy nodes from the
buggy AST (Step 2a, Fig. 3a) and bug-free nodes from the
bug-free AST (Step 2b, Fig. 3a). If a multi-line expression
touches these line numbers, we extract the whole expression
node (Line 11, Algorithm 1). Besides the affected lines, the
contextual information (e.g., surrounding lines) often provides
useful clues about why the code was changed. Asaduzzaman
et al. [35] suggest that three lines of code around a target
line might be sufficient to capture the contextual information.
While extracting the buggy and bug-free nodes, we thus also
extract the nodes representing three lines above and below the
changed lines in the code.

B. Generate diffSBT Sequence

In this step, we convert the buggy and bug-free AST nodes
into diffSBT sequences (i.e., preserve structural information)
using the diffSBT algorithm (Step 3, Fig. 3a). Algorithm 1
shows our algorithm – diffSBT – for structure-preserving
sequence generation from commit diff, which is an adaptation
of SBT algorithm by Hu et al. [19]. We create two versions
of the diffSBT sequence. One of them contains both buggy
and bug-free nodes to aid the discriminatory pre-training (see
Section IV-C1). The other contains only buggy nodes to aid
the fine-tuning.

To illustrate the generation of diffSBT sequences from a
commit diff, let us consider Fig. 4. Fig. 4a contains a bug-
fix commit. The source code before submitting this commit
was buggy (Fig. 4b), and the source code after the commit is
bug-free (Fig. 4c). The bug is that the sanitize() function

(a) Training of Bugsplainer

(b) Explanation generation for buggy code

Fig. 3: Schematic diagram of Bugsplainer

Algorithm 1 Generate diffSBT sequence from commit diff
1: function DIFFSBT(c) ▷ Generate diffSBT sequence for commit
2: buggyAST ← BUILDAST(c.buggyCode)
3: bugfreeAST ← BUILDAST(c.bugFreeCode)
4: buggyNodes ← INTERSECTIONS(buggyAST, c.removed)
5: bugfreeNodes ← INTERSECTIONS(bugfreeAST, c.added)
6: return SBT(buggyNodes) + ⟨/s⟩ + SBT(bugfreeNodes)
7: end function

8: function INTERSECTIONS(r, ln)
9: nodes ← ϕ ▷ Initialize nodes with an empty list

10: for all n in r do ▷ Get intersections for all nodes in r
11: if ISINSIDE(n, ln) or ISEXPRESSION(n) then
12: APPEND(nodes, n)
13: else if STARTSINSIDE(r, ln) then ▷ Keep node r but

prune the children outside ln
14: r.children ← INTERSECTIONS(r.children)
15: APPEND(nodes, n)
16: else if ENDSINSIDE(r, ln) then ▷ Node r starts before

the ln. Return only the children of r that intersect with ln.
17: children ← INTERSECTIONS(r.children)
18: APPEND(nodes, children)
19: end if
20: end for
21: return nodes
22: end function

was called inside the for loop rather than outside the for
loop. The buggy code resembles the fixed version of the
code as both code segments also have the same vocabulary.
However, they differ by white spaces, as shown in the commit
diff (Fig. 4a), which is a scope-related problem according to
Python programming language. Thus, if the source code is
simply considered as a sequence of tokens without the struc-
tural information (as many studies [22], [25] do), the bug is
really hard to understand. Fig. 4d shows the diffSBT sequence
for this bug-fix change. We see that, in the buggy version, the
For block closes at the end of the diffSBT sequence. On
the contrary, the For block closes before the Expr block
in the bug-free version. Such a placement ensures that the

Expr block (i.e., sanitize(name_str)) is outside the
For block. Thus, with the help of diffSBT, Bugsplainer can
identify the difference in the structure of code, which could
be useful to explain the bug.

C. Train Bugsplainer

In Fig. 3a, Steps 4-5 explain the training of Bugsplainer.
Our training phase is divided into two steps – discrimina-
tory pre-training and fine-tuning. In both steps, we use a
RoBERTa tokenizer [36], pre-trained on GitHub CodeSearch-
Net dataset [37]. Due to its pre-train dataset (CodeSearchNet),
this RoBERTa tokenizer has common code elements in its
vocabulary, which can reduce the length of tokenized code
sequence by 30%-45% [26]. We use this tokenizer to tokenize
and encode the inputs (e.g., diffSBT sequence) and decode the
outputs (e.g., commit message). In the following sections, we
describe the training phase in detail.

1) Discriminatory Pre-training: Pre-trained language mod-
els have been found to be effective in improving many natural
language understanding tasks (e.g., news title generation,
question-answering) [16], [17]. During pre-training, a model
acquires a general knowledge about a domain which allows
it to understand the input (e.g., text, image) [17]. In natural
language processing, pre-training is often performed in an un-
supervised fashion (e.g., Word2Vec [38], missing token predic-
tion [16]). However, many domains use supervised pre-training
as well (e.g., Multi-Task Learning [17], [26]). Bugsplainer uses
both unsupervised and supervised pre-training to equip the
model with a comprehensive understanding of the program-
ming language and its bugs.

We use a pre-trained model – CodeT5 [26] – to perform
our discriminatory pre-training with buggy and bug-free code.
CodeT5 is a transformer model based on the Text to Text
Transfer Transformer (T5) architecture [17], [33]. It has two
versions – 60M parameters and 220M parameters. We use the
60M parameter version for Bugsplainer, which is pre-trained

(a) Bug-fix commit diff

(b) Buggy code

(c) Bug-free code (d) diffSBT sequence for the buggy and bug-free code

Fig. 4: An example of diffSBT sequence generation from buggy code and commit diff

on GitHub CodeSearchNet data [37] for three unsupervised
tasks. CodeSearchNet contains ≈ 6M methods written in pop-
ular programming languages accompanied by natural language
documentation. Thus, the CodeT5 model has a significant
understanding of both programming and natural languages,
which makes it an ideal choice for our pre-training task.

The pre-training with the CodeSearchNet dataset provides
the model with general knowledge about programming and
language syntax. However, to reason about a bug in the
source code, the model should be able to differentiate between
buggy and bug-free code. To equip the model with such
a reasoning capability, we use diffSBT sequences of both
buggy and bug-free AST nodes (Step 4, Fig. 3a). We pre-train
the Bugsplainer model to predict commit messages from the
diffSBT sequences of the buggy and bug-free code. We refer
to this pre-training step as discriminatory pre-training since
Bugsplainer learns to discriminate between buggy and bug-
free code. The diffSBT sequences for the buggy and bug-free
code are separated by a special token (</s>). We hypothesize
that the model can differentiate and attend to (i.e., selectively
focus on) the changes in both sides of the separator token
and generate the commit message (a.k.a., bug explanation)
accordingly. Our experimental result reports the effectiveness
of discriminatory pre-training in explaining software bugs (see
RQ2 in Section V-C).

2) Fine-tuning: Once the discriminatory pre-training is
complete, we also train Bugsplainer to generate explanations
from only buggy code. We take diffSBT sequences of only
buggy code as the input and corresponding explanation (i.e.,
commit message) as the output. We pass both input and output
to the RoBERTa tokenizer. Then, we fine-tune our pre-trained
model from the previous phase to generate explanations from
the diffSBT sequence of buggy code (Step 5, Fig. 3a). The
output of the fine-tuning step is the Bugsplainer model for
bug explanation generation.

D. Generate Explanation

Once the training phase is complete, we test our model using
the testing instances. Fig. 3b shows how Bugsplainer generates
an explanation from buggy code. During the generation phase,
Bugsplainer takes two inputs – the buggy code and the line
numbers within the code that need an explanation. From the

buggy code, Bugsplainer constructs the AST (Step 1, Fig. 3b)
and extracts the AST nodes that intersect with the given
line numbers (Step 2, Fig. 3b). Subsequently, Bugsplainer
converts the intersecting nodes into a diffSBT sequence (Step
3, Fig. 3b). Then, it tokenizes the diffSBT sequence using the
same RoBERTa tokenizer and passes the tokens to the fine-
tuned model (Step 4, Fig. 3b). Finally, the fine-tuned model
generates an explanation for the buggy code.

V. EXPERIMENT

We curate a large dataset of ≈ 150K bug-fix commits
and evaluate Bugsplainer using three appropriate metrics from
the relevant literature – BLEU score [30], Semantic Sim-
ilarity [31], and Exact Match. To place our work in the
literature, we compare our solution – Bugsplainer – with four
relevant baselines. We also conduct a developer study to assess
the quality of our automatically generated explanations (e.g.,
accuracy, usefulness) for software bugs. In our experiments,
we thus answer four research questions as follows.

• RQ1: How does Bugsplainer perform in explaining soft-
ware bugs in terms of automatic evaluation metrics?

• RQ2: How do (a) structural information and (b) dis-
criminatory pre-training influence the performance of
Bugsplainer in generating explanations for software bugs?

• RQ3: Can Bugsplainer outperform the existing baseline
techniques in terms of automatic evaluation metrics?

• RQ4: How accurate, precise, concise, and useful are the
explanations of Bugsplainer compared to baselines?

A. Dataset Construction

To conduct our experiments, we curate a dataset of ≈ 150K
bug-fix commits from GitHub3 using its REST API4. We
discuss different steps of dataset construction as follows.

1) Repository Selection: First, to ensure high-quality com-
mits, we aim to find ≈ 10K Python repositories with high
star counts. We choose Python since it is the second most
popular programming language according to StackOverflow
survey 20215. As GitHub’s search API does not return more
than 1K results from a single query, we use small buckets of

3Accessed: April 18, 2022
4https://docs.github.com/en/rest
5https://bit.ly/3cmooLv

star counts to renew our query contents. We found the 10,000th

repository falls in the bucket of 300-399 stars. Thus, we collect
all the repositories that have a star count of ≥ 300, which led
us to a total of 10,154 repositories.

2) Collection of Bug-fix Commits: We collect all the com-
mits from the above repositories, which led to a total of
≈ 11.8M commits. Then, we attempt to find the bug-fix
commits from them. Similar to previous studies [39], [40],
we consider a commit as a bug-fix commit if it contains either
‘fix’ or ‘solve’ in its commit message. This filtration step led
us to a total of ≈ 1.4M bug-fix commits.

3) Filtration of Noisy Commits: To ensure commit quality,
we perform a manual analysis of 500 commits that were ran-
domly sampled from the above commit collection. We found
seven machine-generated templates in the commit messages
(e.g., “Merge branch X to master”) that can be easily detected
using appropriate regular expressions (see replication package
for details). We remove these machine-generated templates
from commit messages. If a commit message contains only
machine-generated texts, then the whole commit is discarded
from the dataset. We also note that Python repositories contain
non-Python files (e.g., configuration files) and test scripts in
their commits, which are out of the scope of this work. We
thus keep the commits that have at least one modified Python
file (excluding test scripts) in them.

Vaswani et al. [33] report that the complexity of transformer
models increases quadratically with the length of input and
output sequences. Therefore, we set a limit to the maximum
length of both commit diff and commit message. In particular,
we retain such commits that have ≤30 tokens in their commit
message and ≤170 tokens in their commit diff. These limits
cover >85% of both commit messages and commit diffs from
the ≈ 1.4M bug-fix commits. Then, we remove commits
with less than five tokens in their messages to discard trivial
commits. We also keep only the commits that have one diff
hunk (i.e. change location) to avoid tangled commits (i.e.
commits doing more than one task). After performing all these
noise filtration steps, we end up with ≈ 180K bug-fix commits.

To determine the reliability of our constructed dataset, we
perform a manual analysis using 385 commits. We randomly
sample these commits from ≈ 180K commits above with
a 95% confidence level and 5% error margin. We find that
92.1% of these commits are bug-fix and 5.2% are style-fix,
which indicates a negligible amount of noise in our con-
structed dataset. Previous studies [39], [40] also use datasets
with similar amount of noise. Furthermore, manually filtering
≈ 180K commits was prohibitively costly or impractical,
which possibly justifies our choice of using the current version
of the dataset.

4) Embedding Structural Information: We generate
diffSBT sequence for each commit as described in
Section IV-B. We first generate AST for both the buggy
and bug-free code from the commit using the ast parser of
Python 36. After discarding syntactically incorrect programs,

6https://docs.python.org/3/library/ast.html

we find a total of ≈ 150K diffSBT sequences.
5) Construction of Training and Testing Data: First, we

randomly select 110K entries as the training dataset for both
pre-training and fine-tuning steps. Second, we randomly split
the remaining 40K entries into four sets that are allocated
for validation and testing in both pre-training and fine-tuning
steps. Thus, the training data are shared by both pre-training
and fine-tuning steps whereas the validation and testing data
are not shared. Finally, we remove the part of the diffSBT
sequence that corresponds to the fixed version of the source
code from the three fine-tuning splits (training, validation and
testing) since Bugsplainer aims to generate an explanation
from the buggy code only.

B. Evaluation Metrics

To evaluate the explanations generated by Bugsplainer, we
use three different metrics – BLEU score [30], Semantic
Similarity [31], and Exact Match. Relevant studies [17], [26],
[32], [33] frequently used these metrics, which justifies our
choice. They are defined as follows.

1) BLEU: Bi-Lingual Evaluation of Understanding: BLEU
score [30] is a widely used performance measure for NMT.
It has been used in software engineering context as well [19],
[22]–[25], [28]. It calculates the similarity between auto-
generated and reference sequences in terms of their n-grams
precision as follows.

BLEU = BP · exp

(
N∑

n=1

wnlog(pn)

)
(1)

Here, pn is the ratio between overlapping n-grams (from both
generated and reference sequences) and the total number of
n-grams in the generated sequence, and wn is the weight of
the n-gram length. Following the existing studies [19], [23],
we use N = 4 and wn = 0.25 for all n ∈ [1, N]. That is, we
compute the mean BLEU score for all n-gram lengths. The
brevity penalty, BP , lowers the BLEU score if the generated
sequence is too small.

There exist several variations of the BLEU score. In our
study, we use case-insensitive BLEU score with add one
smoothing [41] which aligns the most with human judge-
ment [23].

2) Semantic Similarity: Although the BLEU score is widely
adopted for evaluating machine translation, it does not take the
meaning of the text into account. Haque et al. [31] conduct
a human study to determine which metric better represents
the perception of human evaluators. They find that Sentence-
BERT encoder [42] with cosine similarity has the highest
correlation with the human evaluated similarity. Sentence-
BERT provides a fixed-length numeric representation for any
given text. As suggested by Haque et al. [31], we use
stsb-roberta-large7 pre-trained model to generate the
embedding for the input text. We compute the Semantic
Similarity as follows.

SemSim(ref, gen) = cos(sbert(ref), sbert(gen)) (2)

7https://bit.ly/3dR9mxD

TABLE II: Performance of Bugsplainer

Model Dataset BLEU Semantic
Similarity

Exact
Match

Bugsplainer

Random split 33.15 55.76 22.37
No CodeSearchNet
Repository

34.53 56.67 19.55

Cross-project 17.16 44.98 7.15

Bugsplainer
220M

Random split 33.87 56.35 23.50
No CodeSearchNet
Repository

35.59 57.29 20.74

Cross-project 23.83 49.00 15.47

where sbert(x) is the numerical representation from Sentence-
BERT for any input text x, ref is the reference explanation,
and gen is the generated explanation.

3) Exact Match: We also use the Exact Match metric to
evaluate our explanation. As the name suggests, Exact Match
checks whether a generated explanation exactly matches the
corresponding reference explanation. It is analogous to string
equality check in many programming languages, which is
case-sensitive and space-sensitive.

C. Evaluating Bugsplainer

Answering RQ1 – Performance of Bugsplainer: Table II
shows the performance of Bugsplainer in terms of BLEU
score, Semantic Similarity, and Exact Match.

When the dataset is split randomly into training, validation
and testing sets, Bugsplainer achieves a BLEU score of 33.15,
which is considered as understandable to good translation ac-
cording to Google’s AutoML Translation documentation8. Ex-
planations from Bugsplainer also have an average of 55.76%
Semantic Similarity, which indicates a major semantic overlap
with the explanations from developers. Finally, 22.37% of
the explanations exactly match the reference explanations.
To achieve an Exact Match with the reference, an NMT
model warrants a substantial knowledge of the domain. All
these statistics are highly promising and demonstrate the high
potential of our technique in explaining software bugs.

Allamanis [43] report that an overlap between training and
testing datasets might lead to an overestimation in performance
measurement. In our experiment design, we ensure that there is
no overlap between our training and testing datasets (see Sec-
tion V-A5). However, we also use a pre-trained CodeT5 [26]
model which is pre-trained on millions of code snippets from
thousands of repositories in CodeSearchNet dataset [37]. As a
result, there might be an unavoidable overlap between pre-
training and testing datasets. To ensure a fair evaluation,
we thus discard the testing instances from CodeSearchNet
repositories (≈ 14% instances) to avoid any possibility of
overlap and re-evaluate Bugsplainer. Table II shows that after
discarding the overlapping repositories, Bugsplainer demon-
strates a marginal improvement both in BLEU score and
Semantic Similarity.

In the real world, when adopting Bugsplainer for a new
project, data from the new project might not always be

8https://bit.ly/3wGpCIx

TABLE III: Performance of Bugsplainer by Input Length

#Words BLEU Semantic Similarity Exact Match
< 50 32.05 54.90 17.84

50 ≤ # < 100 34.22 56.25 18.65
100 ≤ # < 150 34.72 56.99 21.10
150 ≤ # < 200 32.92 56.50 23.91

available to re-train Bugsplainer. Therefore, we investigate
how the performance of Bugsplainer varies in a cross-project
setting. That is, each of the training, validation, and testing
datasets contain commits from mutually exclusive projects.
From Table II, we see that even though the performance of
Bugsplainer decreases in a cross-project setting, it is still
promising, especially in terms of the Semantic Similarity
metric. We see that the BLEU score decreases by 48% whereas
the Semantic Similarity decreases by only 19%. That is, in the
cross-project setting, the generated explanations might express
similar information but with different words. To verify the
case, we manually compare a sample of 385 explanations
from Bugsplainer (95% confidence level and 5% error margin)
with the reference explanations. We find that a substantial
amount of generated explanations express information either
more precisely or with different phrases, which might cause
the BLEU score to be low. For instance, for a particular
bug9, Bugsplainer generates “Improve the message in Incom-
pleteRead. init ”, whereas the reference is “fixing incorrect
message for IncompleteRead.” Even though the generated
explanation is accurate and more precise, it returns a BLEU
score of only 11. Such a phenomenon also explains the low
BLEU score and comparatively high Semantic Similarity score
for the cross-project setting of Bugsplainer.

Recent studies suggest that increasing the model size can
significantly improve the performance of deep learning mod-
els [17], [26], [36]. We thus were interested to see how
the performance of Bugsplainer changes with an increased
number of parameters. For this experiment, we train a 220M
parameter variant of Bugsplainer and call it Bugsplainer 220M.
Both variants share the same architecture (i.e., T5) but they
have different hyperparameters. The detailed hyperparameter
values can be found in the replication package. Table II also
shows the performance of Bugsplainer 220M in the random
split and cross-project settings. We see improved performance
in both cases, which aligns with the existing findings [17],
[26]. Interestingly, in cross-project settings, Bugsplainer 220M
achieves a big bump of ≈ 39% in BLEU score and ≈ 117% in
Exact Match. Such a finding suggests that Bugsplainer 220M
can generalize the acquired knowledge better across multiple
projects than Bugsplainer.

Finally, we investigate how the performance of Bugsplainer
is affected by the input and output length. Table III shows the
metric scores categorized by the number of words in the input
buggy code segments. The table shows no clear correlation
between the input length and the performance. With increasing
input length, the performance both increases and decreases.

9https://bit.ly/3RoSpsT

TABLE IV: Performance of Bugsplainer by The Length of
Ground Truth

#Words BLEU Semantic Similarity Exact Match
< 10 35.75 56.32 22.72

10 ≤ # < 20 27.70 53.16 8.93
20 ≤ # < 30 21.62 52.03 1.26

On the contrary, Table IV shows that the performance of
Bugsplainer tends to decrease with increasing ground truth
lengths. Interestingly, the drop in Semantic Similarity is not
as strong as the BLEU score or Exact Match score. This
suggests that even with increasing output length, Bugsplainer
can provide explanations that are semantically coherent with
the ground truth.

Summary of RQ1: Bugsplainer can generate bug expla-
nations that are understandable and good according to
Google’s standard. It shows promising results not only
in random split settings but also in cross-project settings.
With a higher number of parameters, Bugsplainer can better
generalize the acquired knowledge across multiple projects.

Answering RQ2 – Role of structural information and
discriminatory pre-training in Bugsplainer: In this exper-
iment, we analyze the impact of structural information and
discriminatory pre-training on bug explanation generation. We
remove one of these two components from Bugsplainer and
keep the rest as is. Such an experiment helps us understand
the contribution of individual components toward Bugsplainer.

To analyze the impact of structural information, we use raw
commit diff as input rather than diffSBT sequences. In the pre-
train dataset, we keep the commit diff as is, while in the fine-
tuning dataset, we remove the added lines (i.e., bug-free lines)
from the commit diff. From Table V, we see that the BLEU
score of Bugsplainer reduces by 7.15% due to the absence
of structural information. Interestingly, the Exact Match score
also drops by 31.07%, which is significant.

To analyze the impact of discriminatory pre-training, we
use only fine-tuning dataset and avoid the pre-training step. In
this experiment, we use the diffSBT sequences as input during
the fine-tuning step. From Table V, we see that the BLEU
score of Bugsplainer reduces by 8.54% due to the absence
of discriminatory pre-training. Interestingly, the Exact Match
score also drops by 25.70%, which is significant.

The significant performance drops due to the absence of
structural information and discriminatory pre-training indicate
their important roles in Bugsplainer. Our technique also per-
forms the best when both items are incorporated.

Summary of RQ2: Both structural information and dis-
criminatory pre-training have a major contribution to the
performance of Bugsplainer. Furthermore, they are the most
effective when they are used together.

Answering RQ3 – Comparison with existing baseline
techniques: In this research question, we compare Bugsplainer
with existing techniques from the literature and investigate
whether Bugsplainer can outperform them in terms of various

TABLE V: Role of structural information and discriminatory
pre-training

Model BLEU Semantic
Similarity

Exact Match

Bugsplainer 33.15 55.76 22.37
Bugsplainer without
structural information

30.78 53.74 15.42

Bugsplainer without
discriminatory pre-training

30.32 53.51 16.62

evaluation metrics. To the best of our knowledge, there exists
no work that explains software bugs in natural language texts.
Since commit message generation is quite similar to explana-
tion generation, we use state-of-the-art commit message gener-
ation techniques as our baseline. The main difference between
commit message generation and explanation generation is the
former takes both buggy and bug-free lines as input whereas
the latter takes only buggy lines as input. In particular, we
compare Bugsplainer with three commit message generation
techniques namely – CommitGen [22], NNGen [25], and Fine-
tuned CodeT5 [26] and a static analysis tool pyflakes [9]. None
of these existing approaches for commit message generation
learns to differentiate between buggy and bug-free code. Thus,
our approach has a better chance of generating meaningful
explanations for the buggy code.

To generate error messages from pyflakes, a static analysis
tool, we run pyflakes on the whole buggy source code. Once
we have the error messages, we keep only the messages
generated for the buggy lines. If we get multiple errors for
the same data point, we keep them all and report the one with
the highest automatic metric score (e.g., BLEU score).

CommitGen uses an NMT framework namely nematus [44],
which we use for our replication of the technique. The authors
also provide the values of all the important parameters in their
paper, which were carefully adopted in our replication.

According to a recent study [23], NNGen [25] is the
state-of-the-art tool for generating commit messages. Being
an Information Retrieval-based technique, NNGen does not
require any training phase. It solely depends on the K-Nearest
Neighbours algorithm. NNGen first finds k most similar
commit diffs from the training set using bag-of-words model
(i.e., term frequency) and cosine similarity measure. Since
the authors do not provide any details of their bag-of-words
implementation, we use the CountVectorizer API of the
scikit-learn library in our replication. As suggested in the
paper, we set the value of k to 5. From the top-k commits,
NNGen selects the message from the most similar commit
(using the BLEU score) as the final translation.

The fine-tuned CodeT5 model has the same architecture and
the same hyperparameters as those of Bugsplainer. However,
unlike Bugsplainer, it neither uses the structural information
from the source code nor performs any discriminatory pre-
training.

Table VI shows the comparison between Bugsplainer and
four baselines in terms of BLEU score, Semantic Similarity,
and Exact Match. The results shown in the table are the
mean of five runs with different random initialization of the

TABLE VI: Comparison of Bugsplainer with existing baseline
techniques (Using five random runs)

Technique BLEU Semantic Similarity Exact Match

pyflakes 0.49 5.68 0.00
CommitGen 9.94 35.39 1.04
NNGen 24.16 47.33 14.17
Fine-tuned CodeT5 26.19 54.52 8.85
Bugsplainer∗ 32.90 55.22 18.14

∗The scores differ from the earlier tables due to five random runs

parameters. We see that Bugsplainer outperforms all the base-
lines in terms of all three metrics. Only Fine-tuned CodeT5
is comparable with Bugsplainer. Therefore, we perform the
Mann-Whitney U rank test [45] to see whether their perfor-
mances over the five runs are significantly different. We found
that Bugsplainer performs significantly higher than Fine-tuned
CodeT5 i.e., p-value = 0.008 < 0.05, Cliff’s d = 1.0 (large)
for all three metrics.

CommitGen relies on certain patterns in commit messages
that might be generated by machines [25]. However, we re-
moved auto-generated messages to ensure high-quality dataset
(Section V-A3). CommitGen is also based on the LSTM
architecture that does not perform well with long inputs [33].
Thus, the low scores of CommitGen are explainable.

According to Google’s AutoML Translation documentation,
a BLEU score between 20 and 29 indicates that the gist of a
generated message is clear, but has significant errors. NNGen
reuses existing commit messages from the training set and thus
cannot analyze the dynamic behaviour of software programs.
Thus, such errors in the translation are also explainable.

Thung et al. [14] report that static analysis tools produce
a lot of false negatives. This means they do not produce
any output for potentially buggy code in many cases. Our
experiment with pyflakes, shows a similar result, generating
error messages for only 7.70% cases. Therefore, its poor
metric scores are also understandable.

Summary of RQ3: Bugsplainer outperforms all four base-
lines in terms of three performance metrics. According to
our statistical tests, our technique outperforms the closest
competitor – Fine-tuned CodeT5 – by a statistically signif-
icant margin.

Answering RQ4 – Evaluation of Bugsplainer using a
developer study: The metric-based evaluation demonstrates
the benefit of our technique in bug explanation generation.
We also conduct a developer study to further demonstrate
the benefit of Bugsplainer in a practical setting. Given the
reference explanations of a software bug (e.g., the message of a
bug-fix commit), we ask the developers to assess how accurate,
precise, concise, and useful the explanations are. During the
study, we anonymize the model names to avoid any bias.

Study participants: The target population of our study
is English-speaking software engineers with experience in
Python programming language. We invite our participants
in two ways. First, we contact software companies with a
history of participation in academic studies to contribute to

TABLE VII: Quality aspects of generated explanations

Quality Overview

Accurate It provides the same factual information as the reference.
Precise It can pinpoint the issue in the code.
Concise It is short and still conveys the whole message.
Useful The provided information has the potential to fix the bug.

this research. Second, we advertise the study on the authors’
social networks to reach potential participants and increase
the diversity of samples. As of August 31, 2022, we receive a
total of 20 responses to our developer study. The participants
have professional software development experience of 1 to 10
years and bug-fixing experience of 1 to 7 years. All of them
are familiar with Python programming language as well. Such
experience makes them suitable candidates for our study.

Study setup: In the developer study, each participant
worked with 15 bug-fix commits and spent 30 minutes on
average. To select these examples for our developer study,
we apply random sampling without replacement to the testing
set. To avoid information overload, we take the examples that
(1) do not have more than five changed lines or more than 15
word-tokens in a single line within the commit diff, and (2) do
not require any project-specific knowledge to understand the
bug. We take the first 15 randomly sampled examples matching
these two criteria.

We ask the participants to assess the accuracy, preci-
sion, conciseness, and usefulness of the explanations from
Bugsplainer and baselines with respect to the reference ex-
planations. Table VII provides our definitions for these as-
pects. The participants assess these four aspects using a five-
point Likert scale, where 1 indicates strongly disagree and
5 indicates strongly agree. Please note that we anonymize
the model names and do not show the participants which
explanation comes from which model to avoid any potential
bias. We collect a total of 300 data points (15 questions × 5
explanations × 4 aspects) from each participant.

Study result and discussion: Table VIII summarizes our
findings from the developer study. We note that the partici-
pants find the explanations from Bugsplainer to be the most
accurate, most precise, most concise and most useful. Based
on the median and mode values, we see that the participants
agree the most with explanations from Bugsplainer. Similar to
our findings in RQ3, according to the developers, the closest
competitor of Bugspaliner is Fine-tuned CodeT5. According to
the mode values, the developers agree with Fine-tuned CodeT5
in many cases. However, looking at the 2nd mode values,
we see that the developers strongly disagree with Fine-tuned
CodeT5 in a noticeable manner, making the mean agreement
poor. We also perform the Wilcoxon Signed Rank test to
check whether the developers’ agreement with Bugsplainer is
significantly higher than that of Fine-tuned CodeT5. For ac-
curacy, conciseness, precision and usefulness, the p-values are
5.16e−23, 2.74e−17, 7.45e−18 and 2.63e−23 respectively,
all are below the threshold of 0.05, which makes the difference
significant.

Fig. 5 shows the distribution of participants’ agreement

Fig. 5: Comparison of Bugsplainer with the baselines using Likert scores

levels in different aspects. We see that the participants disagree
with Bugsplainer very few times (highest 14% times in pre-
cision) with a substantial amount of agreement (highest 76%
in accuracy). Nearly half of the time the developers strongly
disagree with pyflakes and CommitGen. Such disagreement
with pyflakes is explicable since it does not generate any error
message for 13 out of 15 cases. However, CommitGen, even
after explaining all cases, receives a high disagreement due to
its generic and less informative explanations.

Summary of RQ4: Professional developers with bug-fixing
experience find the bug explanations from Bugsplainer to
be accurate, precise, concise, and useful. Their preference
levels for Bugsplainer over other baseline techniques are
also significantly higher.

VI. RELATED WORK

A. Explanation of Software Bugs

Software bugs are errors, flaws, or defects in a program that
prevent the program from working correctly [1]. They claim
50% of development time and cost the global economy billions
of dollars every year [46]. While there have been numerous
approaches to find or repair software bugs, neither many
approaches attempt to explain the bugs in the source code to
the developers, nor are they practical and scalable enough for
industry-wide use [4], [6]. Several tools (e.g. FindBugs [8],
PMD, SonarLint, PyLint, and pyflakes [9]) attempt to explain
bugs using static analysis. Unfortunately, their utility could
be limited due to their high false-positive results and lack of
meaningful, actionable explanations [10]–[12]. Furthermore,
their explanations can be too generic and limited by their
templated natures [13]. Recent studies suggest complementing
these messages with rule graphs [47], assertive error explana-
tion [10], and interactive feedback from developers [48].

Besides the static analysis, there have been several attempts
to explain a program’s behaviours, failed tests, bug-fixing
patches, undocumented code, and intelligent behaviours. Ko
and Myers [48] design an interrogative debugging system
for the Alice programming environment [49] where a novice
learner can inquire why a program behaves unexpectedly or
why it does not show an expected behaviour. Lim et al.
[50] later suggest that these why and why not questions

TABLE VIII: Comparison of Bugsplainer with baselines using
developer study

Quality Model Mean Median Mode 2nd

Mode

Accurate

pyflakes 1.841 1 1 3
CommitGen 2.176 2 1 2
NNGen 2.653 3 1 4
Fine-tuned CodeT5 2.842 3 4 3
Bugsplainer 4.074 4 5 4

Precise

pyflakes 1.768 1 1 3
CommitGen 1.884 2 1 2
NNGen 2.529 2 1 2
Fine-tuned CodeT5 2.772 3 4 2
Bugsplainer 3.891 4 4 5

Concise

pyflakes 2.182 2 1 4
CommitGen 2.350 2 1 2
NNGen 2.881 3 4 1
Fine-tuned CodeT5 3.044 3 4 3
Bugsplainer 3.974 4 4 5

Useful

pyflakes 1.724 1 1 3
CommitGen 1.960 2 1 2
NNGen 2.576 2 1 4
Fine-tuned CodeT5 2.728 3 4 1
Bugsplainer 3.923 4 4 5

are essential to improve a user’s understanding or perception
of an intelligent system. Zhang et al. [51] explain a failed
test case by automatically performing failure-correcting edits
(e.g., replacement of identifiers’ values) and synthesizing a
code comment from them. Befrouei et al. [52] use program
execution traces to explain concurrency bugs. Later Bragaglio
et al. [53] remove irrelevant information from the execution
traces to understand the cause of the unexpected behaviour.
Liang et al. [54] investigate what should be included in a patch
explanation, such as expected program behaviours or a high-
level summary of code changes. Recently, Pornprasit et al.
[55] also explain why the changed code can be defect-prone by
visualizing how specific local rules are satisfied by a change.
Although all these studies and approaches are relevant and are
a source of our inspiration, they might be restricted to only
specific problem contexts (e.g., Alice [49], failed tests [51])
or certain types of bugs (e.g., concurrency bugs [52]).

Unlike these traditional approaches, Bugsplainer is not

restricted to any specific context or bugs. Besides, it can
generate explanations that resemble that of humans, and are
accurate, precise, concise, and useful (check RQ4 for details).

B. Translation of Source Code into Texts

Our work is also related to code translation into natural lan-
guage texts. Existing approaches translate code into the natural
language to generate code comments, review comments, and
commit messages.

Earlier works on code comment generation utilize hand-
crafted templates [56], [57] and information retrieval [58],
[59], while recent works more depend on learning-based
approaches [19], [28], [60]. Wei et al. [61] combine both
IR and NMT in comment generation. Recently, Mastropaolo
et al. [62] use the Text-To-Text Transfer Transformer (T5)
to perform several tasks including code comment generation.
Their comments explain what is happening in the code rather
than what makes the code buggy. On the contrary, Bugsplainer
not only explains the buggy code but also suggests useful
information to correct the bug in the code (e.g., Table I).

To generate code review comments, Tufano et al. [20]
make use of the CodeT5 [26] model with Stack Overflow
data and fine-tune their model with pairs of function and
review comment pairs from GitHub. Later, Hong et al. [21]
use Gestalt Pattern Matching (GPM) to mine candidate review
comments of similar methods from a large corpus of source
code repositories. However, both approaches treat source code
as regular texts (e.g., a sequence of tokens) overlooking
the structures. On the other hand, Bugsplainer leverages the
structures of code through diffSBT sequences and learns to
differentiate between buggy and bug-free code as a part of
explanation generation.

To generate commit messages, several studies adopt an
attention mechanism with RNN [18], [22], [24], [63] and
leverage structural information [24], [63]. Xu et al. [63] jointly
model the semantic representation and structural representa-
tion of code changes where they substitute identifier names
with placeholders in the code. Liu et al. [24] capture both
ASTs of code changes where they convert each AST into
path sequence. However, the conversion of each change from
the AST into its own path might lead to long, redundant
sequences, which could hurt the translation performance. Liu
et al. [25] show that a simple information retrieval-based ap-
proach, NNGen, has promising capability in commit message
generation due to its repetitive nature. Both techniques above
are closely related to ours due to their nature of translation.
We thus compare Bugsplainer with them using experiments
and the details can be found in Section V-C.

VII. THREATS TO VALIDITY

Threats of internal validity relate to experimental errors
and biases. Re-implementation of the existing baseline tech-
niques could pose a threat. However, our implementation of
NNGen [25] is based on the well-known k-nearest neighbour
algorithm. CommitGen [22] uses a framework and reports all
important hyperparameters. We use the same framework and

the reported parameters for our implementation. For pyflakes,
we use the officially provided package and follow the official
documentation. Fine-tuned CodeT5 adopts the same model
architecture as that of Bugsplainer. Thus, threats related to
replication might be mitigated. We also repeat our experiments
five times and compare the performance with that of baselines
to mitigate any bias due to random trials.

Threats to external validity relate to the generalizability of
our work. Even though Bugsplainer is evaluated using only
Python code, the underlying algorithm is language-agnostic
and can be easily adapted to any traditional programming
language. The use of metric-based evaluation might also pose
threat to the real-world usability of our approach [23], [31].
To mitigate this threat, we also conduct a developer study
involving 20 participants from six different countries. As the
developer study suggests, our bug explanations were also
found to be accurate and useful in real-world scenarios.

Finally, the performance of Bugsplainer might depend on
the precision of bug localization tools. To minimize this
dependency, Bugsplainer accepts a range of lines containing
both buggy lines and their surrounding lines as input during
explanation generation. However, we do not indicate which
lines among them contain a bug. Thus, precise localization of
the bug either by developers or by existing tools might not be
necessary to generate explanations using our tool.

VIII. CONCLUSION AND FUTURE WORKS

Software bugs not only claim precious development time but
also cost billions every year. Although there have been many
approaches for finding or repairing software bugs, there exists
little research on automatically explaining the bugs. In this
paper, we propose Bugsplainer, a novel technique that gener-
ates explanations for buggy code segments. Our technique can
leverage both structural information and buggy code patterns
from source code and employs neural machine translation
with an attention mechanism to generate bug explanations. We
evaluate Bugsplainer using three metrics (i.e., BLEU score,
Semantic Similarity and Exact Match) where our technique
outperforms the baselines. We also conduct a developer study
involving 20 participants and our explanations were found to
be more accurate and more useful compared to the baselines.

In future, we will investigate how to encode the structural
information from source code in a more compact and efficient
format and how to better leverage the structural differences
between buggy and bug-free code. This might help us better
understand the underlying semantics of software bugs.

ACKNOWLEDGEMENT

This work was supported by Dalhousie University and
Mitacs Accelerate International Program. We would like to
thank Avinash Gopal, Ben Reaves, and Massimiliano Genta
from our industry partner – Metabob Inc. We would also like
to thank all the anonymous participants in our developer study.

REFERENCES

[1] “IEEE Standard Glossary of Software Engineering Ter-
minology,” IEEE Std 610.12-1990, pp. 1–84, 1990.

[2] R. Glass, “Frequently forgotten fundamental facts about
software engineering,” IEEE Software, vol. 18, no. 3,
pp. 112–111, 2001.

[3] T. Britton, L. Jeng, G. Carver, P. Cheak, and
T. Katzenellenbogen, Reversible Debugging Software:
Quantify the time and cost saved using reversible de-
buggers, 2013.

[4] W. Zou, D. Lo, Z. Chen, X. Xia, Y. Feng, and B. Xu,
“How practitioners perceive automated bug report man-
agement techniques,” TSE, vol. 46, no. 8, pp. 836–862,
2018.

[5] M. M. Rahman, F. Khomh, S. Yeasmin, and C. K. Roy,
“The forgotten role of search queries in ir-based bug
localization: An empirical study,” EMSE, vol. 26, no. 6,
pp. 1–56, 2021.

[6] P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’
expectations on automated fault localization,” in Proc.
25th, ISSTA, 2016, pp. 165–176.

[7] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How
do professional developers comprehend software?” In
2012 34th International Conference on Software Engi-
neering (ICSE), IEEE, 2012, pp. 255–265.

[8] B. Pugh and A. Loskutov, FindBugs™ - Find Bugs
in Java Programs, 2021. [Online]. Available: http : / /
findbugs.sourceforge.net/ (visited on 01/18/2022).

[9] A. Sottile, pyflakes: A simple program which checks
Python source files for errors, 2022. [Online]. Available:
https : / / github . com / PyCQA / pyflakes (visited on
01/18/2022).

[10] T. Barik, “How should static analysis tools explain
anomalies to developers?” In Proc. 24th ACM SIG-
SOFT, 2016, pp. 1118–1120.

[11] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge,
“Why don’t software developers use static analysis tools
to find bugs?” In Proc. 35th ICSE, IEEE, 2013, pp. 672–
681.

[12] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou, “Evaluating static analysis defect warnings
on production software,” in Proc.7th ACM SIGPLAN,
2007, pp. 1–8.

[13] M. Nachtigall, M. Schlichtig, and E. Bodden, “A large-
scale study of usability criteria addressed by static
analysis tools,” in Proc.31st ISSTA, 2022, pp. 532–543.

[14] F. Thung, D. Lo, L. Jiang, F. Rahman, and P. T.
Devanbu, “To what extent could we detect field defects?
an extended empirical study of false negatives in static
bug-finding tools,” ASE, vol. 22, no. 4, pp. 561–602,
2015.

[15] D. Jurafsky and J. H. Martin, Speech and language
processing, 3rd ed. Hoboken, New Jersey: Prentice-
Hall, Inc., 2014.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transform-
ers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[17] C. Raffel et al., “Exploring the limits of transfer
learning with a unified text-to-text transformer,” JMLR,
vol. 21, pp. 1–67, 2020.

[18] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neu-
ral architecture for generating natural language de-
scriptions from source code changes,” arXiv preprint
arXiv:1704.04856, 2017.

[19] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code
comment generation,” in Proc.26th ICPC, IEEE, 2018,
pp. 200–20 010.

[20] R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk,
and G. Bavota, “Towards automating code review ac-
tivities,” in Proc.43rd ICSE, IEEE, 2021, pp. 163–174.

[21] Y. Hong, C. Tantithamthavorn, P. Thongtanunam, and
A. Alenti, “Commentfinder: A simpler, faster, more
accurate code review comments recommendation,” in
2022 ESEC/FSE, ACM, 2022.

[22] S. Jiang, A. Armaly, and C. McMillan, “Automatically
generating commit messages from diffs using neural
machine translation,” in 2017 32nd ASE, IEEE, 2017,
pp. 135–146.

[23] W. Tao et al., “On the evaluation of commit message
generation models: An experimental study,” in 2021
ICSME, IEEE, 2021, pp. 126–136.

[24] S. Liu, C. Gao, S. Chen, N. L. Yiu, and Y. Liu, “Atom:
Commit message generation based on abstract syntax
tree and hybrid ranking,” TSE, 2020.

[25] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and
X. Wang, “Neural-machine-translation-based commit
message generation: How far are we?” In Proc.33rd
ASE, 2018, pp. 373–384.

[26] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5:
Identifier-aware unified pre-trained encoder-decoder
models for code understanding and generation,” in
Proc.2021 EMNLP, 2021, pp. 8696–8708.

[27] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton,
“A survey of machine learning for big code and natural-
ness,” ACM Computing Surveys (CSUR), vol. 51, no. 4,
pp. 1–37, 2018.

[28] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer,
“Summarizing source code using a neural attention
model,” in Proc.54th ACL, 2016, pp. 2073–2083.

[29] B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bac-
chelli, and P. Devanbu, “On the” naturalness” of buggy
code,” in 2016 IEEE/ACM 38th ICSE, IEEE, 2016,
pp. 428–439.

[30] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu:
A method for automatic evaluation of machine transla-
tion,” in Proc.40th ACL, 2002, pp. 311–318.

[31] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan,
“Semantic similarity metrics for evaluating source code
summarization,” 2022 IEEE/ACM 26th ICPC, 2022.

http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://github.com/PyCQA/pyflakes

[32] Y. Wu et al., “Google’s neural machine translation
system: Bridging the gap between human and machine
translation,” arXiv preprint arXiv:1609.08144, 2016.

[33] A. Vaswani et al., “Attention is all you need,” NeurIPS,
vol. 30, 2017.

[34] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[35] M. Asaduzzaman, C. K. Roy, K. A. Schneider, and
D. Hou, “Cscc: Simple, efficient, context sensitive code
completion,” in 2014 ICSME, IEEE, 2014, pp. 71–80.

[36] Y. Liu et al., “Roberta: A robustly optimized bert pre-
training approach,” arXiv preprint arXiv:1907.11692,
2019.

[37] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and
M. Brockschmidt, “Codesearchnet challenge: Evaluat-
ing the state of semantic code search,” arXiv preprint
arXiv:1909.09436, 2019.

[38] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Ef-
ficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

[39] M. Fischer, M. Pinzger, and H. Gall, “Populating a
release history database from version control and bug
tracking systems,” in Proc.2003 ICSM, IEEE, 2003,
pp. 23–32.

[40] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M.
White, and D. Poshyvanyk, “An empirical study on
learning bug-fixing patches in the wild via neural
machine translation,” ACM-TOSEM, vol. 28, no. 4,
pp. 1–29, 2019.

[41] C.-Y. Lin and F. J. Och, “Automatic evaluation of ma-
chine translation quality using longest common subse-
quence and skip-bigram statistics,” in Proc.42nd Annual
(ACL-04), 2004, pp. 605–612.

[42] N. Reimers et al., “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Proc.2019 EMNLP,
ACL, 2019, pp. 671–688.

[43] M. Allamanis, “The adverse effects of code duplication
in machine learning models of code,” in Proceedings
of the 2019 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on
Programming and Software, 2019, pp. 143–153.

[44] R. Sennrich et al., “Nematus: A toolkit for neural
machine translation,” in Proc.Software Demonstrations
of the 15th ACL, 2017, pp. 65–68.

[45] H. B. Mann and D. R. Whitney, “On a test of whether
one of two random variables is stochastically larger than
the other,” TAMS, pp. 50–60, 1947.

[46] M. M. Rahman, F. Khomh, and M. Castelluccio, “Why
are some bugs non-reproducible?:–an empirical investi-
gation using data fusion–,” in 2020 ICSME, IEEE, 2020,
pp. 605–616.

[47] L. N. Q. Do and E. Bodden, “Explaining static analysis
with rule graphs,” TSE, 2020.

[48] A. J. Ko and B. A. Myers, “Designing the whyline: A
debugging interface for asking questions about program
behavior,” in Proc.ACM-SIGCHI, 2004, pp. 151–158.

[49] C. M. University. “Alice – Tell Stories. Build Games.
Learn to Program.” (2021), [Online]. Available: https:
//www.alice.org/ (visited on 01/18/2022).

[50] B. Y. Lim, A. K. Dey, and D. Avrahami, “Why and why
not explanations improve the intelligibility of context-
aware intelligent systems,” in Proc.ACM-SIGCHI, 2009,
pp. 2119–2128.

[51] S. Zhang, C. Zhang, and M. D. Ernst, “Automated
documentation inference to explain failed tests,” in 2011
26th ASE 2011, IEEE, 2011, pp. 63–72.

[52] M. T. Befrouei, C. Wang, and G. Weissenbacher, “Ab-
straction and mining of traces to explain concurrency
bugs,” FMSD, vol. 49, no. 1, pp. 1–32, 2016.

[53] M. Bragaglio, N. Donatelli, S. Germiniani, and G.
Pravadelli, “System-level bug explanation through pro-
gram slicing and instruction clusterization,” in 2021
IFIP/IEEE 29th VLSI-SoC, IEEE, 2021, pp. 1–6.

[54] J. Liang, Y. Hou, S. Zhou, J. Chen, Y. Xiong, and G.
Huang, “How to explain a patch: An empirical study
of patch explanations in open source projects,” in 2019
IEEE 30th ISSRE, IEEE, 2019, pp. 58–69.

[55] C. Pornprasit, C. Tantithamthavorn, J. Jiarpakdee, M.
Fu, and P. Thongtanunam, “Pyexplainer: Explaining the
predictions of just-in-time defect models,” in 2021 36th
ASE, 2021, pp. 407–418. DOI: 10 . 1109 / ASE51524 .
2021.9678763.

[56] P. W. McBurney and C. McMillan, “Automatic docu-
mentation generation via source code summarization of
method context,” in Proc.22nd ICPC, 2014, pp. 279–
290.

[57] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Au-
tomatically detecting and describing high level actions
within methods,” in 2011 33rd ICSE, IEEE, 2011,
pp. 101–110.

[58] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On
the use of automated text summarization techniques for
summarizing source code,” in 2010 17th WCRE, IEEE,
2010, pp. 35–44.

[59] E. Wong, J. Yang, and L. Tan, “Autocomment: Mining
question and answer sites for automatic comment gen-
eration,” in 2013 28th ASE, IEEE, 2013, pp. 562–567.

[60] M. Allamanis, H. Peng, and C. Sutton, “A convolutional
attention network for extreme summarization of source
code,” in ICML, PMLR, 2016, pp. 2091–2100.

[61] B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and
refine: Exemplar-based neural comment generation,” in
2020 35th ASE, IEEE, 2020, pp. 349–360.

[62] A. Mastropaolo et al., “Studying the usage of text-to-
text transfer transformer to support code-related tasks,”
in Proc.Proc. ICSE, IEEE, 2021, pp. 336–347.

[63] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu,
“Commit message generation for source code changes,”
in 28th IJCAI 2019, IJCAI, 2019, pp. 3975–3981.

https://www.alice.org/
https://www.alice.org/
https://doi.org/10.1109/ASE51524.2021.9678763
https://doi.org/10.1109/ASE51524.2021.9678763

	Introduction
	Motivating Example
	Background
	Neural Machine Translation
	Structure-Based Traversal

	Bugsplainer
	Extract Buggy and Bug-free AST Nodes from Commit
	Generate diffSBT Sequence
	Train Bugsplainer
	Discriminatory Pre-training
	Fine-tuning

	Generate Explanation

	Experiment
	Dataset Construction
	Repository Selection
	Collection of Bug-fix Commits
	Filtration of Noisy Commits
	Embedding Structural Information
	Construction of Training and Testing Data

	Evaluation Metrics
	BLEU: Bi-Lingual Evaluation of Understanding
	Semantic Similarity
	Exact Match

	Evaluating Bugsplainer

	Related Work
	Explanation of Software Bugs
	Translation of Source Code into Texts

	Threats To Validity
	Conclusion and Future Works

