
Deep Recurrent Music Writer: Memory-enhanced
Variational Autoencoder-based Musical Score

Composition and an Objective Measure

Romain Sabathé∗§, Eduardo Coutinho†∗, and Björn Schuller∗‡
∗Department of Computing, Imperial College London, London, United Kingdom

†Department of Music, University of Liverpool, Liverpool, United Kingdom
‡Chair of Complex & Intelligent Systems, University of Passau, Passau, Germany

§Corresponding author. Email: e.coutinho@liverpool.ac.uk.

Abstract—In recent years, there has been an increasing interest
in music generation using machine learning techniques typically
used for classification or regression tasks. This is a field still
in its infancy, and most attempts are still characterized by the
imposition of many restrictions to the music composition process
in order to favor the creation of “interesting” outputs. Fur-
thermore, and most importantly, none of the past attempts has
focused on developing objective measures to evaluate the music
composed, which would allow to evaluate the pieces composed
against a predetermined standard as well as permitting to fine-
tune models for better “performance” and music composition
goals. In this work, we intend to advance state-of-the-art in
this area by introducing and evaluating a new metric for an
objective assessment of the quality of the generated pieces. We
will use this measure to evaluate the outputs of a truly generative
model based on Variational Autoencoders that we apply here to
automated music composition. Using our metric, we demonstrate
that our model can generate music pieces that follow general
stylistic characteristics of a given composer or musical genre.
Additionally, we use this measure to investigate the impact of
various parameters and model architectures on the compositional
process and output.

I. INTRODUCTION

Machine learning (ML) has endowed computers with the ca-

pacity to learn from data without being explicitly programmed

to do so (Arthur Samuel, 1959). Historically, this capacity

has been used mainly to deal with two kinds of tasks –

classification and regression problems. These two classes of

problems were, and still are, particularly useful in a myriad of

data science areas and applied in various contexts to answer

financial, industrial, marketing or strategical questions. The

recent competitions from the website Kaggle 1, which hosts

online data science challenges, confirm this trend – at the time

of writing, Bosch is trying to predict internal failures on its

production lines, the Chinese company TalkingData is looking

for predicting users’ demographic characteristics, where as

another competition aims at recognizing species of tree leaves

from pictures. All these problems involve a classification or

regression task. More recently however, new techniques, often

involving Deep Learning (DL), breached beyond the scope

of these two problems – nowadays ML is also interested in

1https://www.kaggle.com/

generating new data. Striking examples are the creation of fake

Wikipedia articles and hand-written sentences [1], upscaling

images to recover lost information [2], creating images based

on a sentence [3], voice synthesis [4] or even beating the

world-champion of Go [5].

In this paper, we follow this recent trend and will focus

on generating new music. In particular, we aim to infer the

underlying rules characterizing the composition process of

a set of musical pieces (sometimes referred to as musical

grammars, see for instance [6], [7]) that are fundamental

aspects of musical organization and appreciation, and generate

new music pieces on that style or compositional principles. To

this end, we will rely on a class of models called Variational

Autoencoders (VAEs) [8], [9], which has become popular

lately due to their generative capabilities (as well as their solid

theoretical foundations). VAEs aim to model the underlying

and complex joint distribution of a given data, to sample from

it, and to generate new examples that fit the same distribution.

An important advantage of VAEs is that the input data can be

of any kind (e.g., images, sound, video, text). For example,

a VAE could be used to learn the distribution of pictures

of sunflowers. Then, by sampling from this distribution, we

would obtain pictures whose content fundamentally follows

all the “rules” that make a sunflower what it is – its color,

its shape, etc. In our case, we want to learn the distribution

of musical pieces belonging to a given style by allowing the

VAE to capture the relevant musical rules that underlie the

composition process.

Given the largely subjective task that we address in this

paper, another core focus of the work presented here is the

development and application of an objective measure that can

allow to understand how different models, architecture and

parameters lead to different musical outcomes, and their mean-

ingfulness in a specific musical context. This is a fundamental

aspect of generating new data that has been largely ignored

in previous research, and constitutes a crucial step forward in

the direction of an objective evaluation of generative musical

models in machine learning.

The remaining of this paper is structured as follows. In Sec-

tion II, we review past works on automatic music generation

 3467

using ML. In section III, we introduce a new performance

measure developed to objectively compare the music generated

by different models, and we describe our experimental setup.

In Section IV we describe and analyze the results of our

experiments using VAEs, including the effects of various

parameters and architectures. Our conclusions, and thoughts

for further work are presented in Section V.

II. RELATED WORK

Only a few works have focused on music generation with

ML techniques. Nonetheless, all faced similar challenges: how

to represent the data (i.e., music), which examples to learn

from, which types of models to use, and how to assess the

quality of the generated music. In this section, we briefly

sketch the approaches that have been used to address each

of these problems.

In [10], the authors employed a Simple Recurrent Network

(SRN) [11]. The SRN was trained using genetic algorithms to,

as stated by the author, maximize the chances of generating

“good melodies” one measure at a time. The music data was

discretized in pitch – ranging from C2 to C5 – and time

– whole notes, half notes, quarter notes, eighth notes and

sixteenth notes were allowed within a measure. The results

were evaluated using musical rules considerations such as

pitch diversity, rhythmic diversity, measure diversity or the

capability of the network to stay coherent regarding one or

several pitch scales. This evaluation, however, is designed

specifically for melodies whereas we would like to assess the

quality of an automatic composer as a whole. Results were

promising but the authors admit the resulting pieces lack of

overall structure. Besides, the model is particularly constrained

in its generation capabilities, in terms of pitch and duration

ranges.

The popular Long-Short Term Memory (LSTM) RNNs were

used for the first time in music composition by Eck and

Schmidhuber [12]. A LSTM-RNN is similar to traditional

feed-forward neural networks except that the non-linear hidden

units are replaced by a special kind of units — the LSTM

memory blocks. These blocks consist of special memory cells

that permit the RNN to access a long-range temporal context

and predict the outputs based on such information, a charac-

teristic that is particularly interesting for music composition,

given the fact that music is at is mots basic level a set of

relationships between music elements at different temporal

scales (e.g., phrases, melody, sections, movements). In [12],

chords and melodies were theoretically split. While both were

generated using LSTM-RNNs, the learning process was not

identical for both. Chords were learned by the network by

seeing sequences of predefined chords in random order. On

the other hand, melodies were learned by seeing a random

sequence of notes sampled from a jazz scale, along with a

chord at each bar. The network was provided with 13 notes

it was allowed to play on in order to produce both chords

and melodies. The architecture was designed such that the

melody was conditioned by the chord progression rules, and

only contained one note at a time. No performance measure

was used. Nevertheless, subjectively speaking, it is hard not to

be impressed by the results achieved by this method. However,

the approach is limited in that it imposes very restrictive

pre-defined musical rules such as a reasonable scale to play

on. For instance, the chord progression was very similar at

each iteration, and no original chords were played apart from

those appearing in the training set. Ideally, one would like to

minimize preprocessing and restrictions imposed on the model

and still achieve satisfactory results.

In order to model the high variety of simultaneous note pat-

terns (harmonies) characteristic of polyphonic music, [13] used

a model called RNN - Restricted Boltzmann Machine (RRN-

RBM). Since RBM models are trained by fitting their (so-

called) hidden units to the underlying distribution of the input

data, they show some theoretical resemblance to VAEs. Whilst

some parameters were tuned using an RNN and gradient

descent, some others were tuned using Gibbs Sampling [14].

No priors were imposed on the range of playable notes, and

time was discretized to the quarter of a beat. The authors used

a database comprising three datasets of classical piano and

another dataset of folk music, amounting to a total of 67 hours

of music. The performance of the model was assessed on these

4 different datasets of varying complexity. In a preprocessing

stage, music pieces were transposed to a common tonality

(C major for major pieces and C minor for minor pieces.

This helped reducing the variance of the training set). Some

generated music pieces were provided as examples, but no

performance measures were used in order to assess their

quality.

Liu and colleagues [15] revisited and extended the LSTM-

RNN architecture introduced by [12]. They used a sequence of

two LSTM layers without preprocessing or specific encoding

(in that sense, the problem setting is similar to [13]). The

learning material consisted of a database of Bach’s chorales

(the same used in [13]). Their innovation consisted of using

resilient propagation as optimization algorithm and square

mean distance as error function instead of the log likelihood.

No clear results are presented regarding music generation, and

the paper emphasizes the lack of a proper evaluation metric.

Huang and colleagues [16] used a very similar approach

with a two-layer LSTM-RNN, a quarter-note discretization of

time, and a larger dataset of 2000 classical music pieces (417

of them being from Bach’s repertoire and the remaining being

from various artists and obtained via web crawling). In this

work an interesting comparison was conducted between the

music generated by this model, and those generated in [13].

Twenty-six volunteers were asked to rate the quality of pieces

generated by both of these works. Results were surprisingly

good with the majority of the subjects giving a mark of 7+

out of 10 (where 1 stands for “random” and 10 stands for

“composed by a novice composer”). The proposed LSTM-

RNN did obtain higher ratings than the RNN-RBM model,

but the sample size was not large enough to draw statistically

significant decisions. Also, the assessment method is dubious.

3468

III. METHODS

In the works presented in the previous section, only in [10]

the issue of evaluation of the generated pieces was addressed

by including rules of tonality and rhythm in the selection of

the best pieces. However, in order to assess the similarity of

the generated music to specific styles, knowledge related to a

wider range of structural and formal parameters should ideally

be included. In this section, we will address this issue and

propose a new, objective measure that enables to assess the

musical similarity between music pieces.

A. Performance measure: the Malahanobis distance

Since we usually train models on a corpus of music pieces

and we are interested in reproducing styles rather specific

pieces, we decided to use a metric that permits comparing a set

of pieces (e.g., the training corpus) against a single piece (e.g.,

a newly generated one). Therefore, the aim of this metric is to

quantify the musical similarity between a specific music piece

and a given distribution of pieces. The first step was to develop

a quantity that characterizes a given music piece. We did so

by using high-level, symbolic musical descriptors. Each of

these descriptors is gathered in a vector that we call the piece
signature vector. This signature vector must be descriptive

enough so that it becomes unlikely for two different music

pieces to have the same signature vector. Naturally, the most

accurate signature vector should use a detailed set of music

theoretical parameters, but previous works indicate that even

using very simple metrics it is possible to describe complex

musical characteristics, such as music styles [17]. We base our

signature vector on this work, which consists of 17 high-level

features:

Number of notes Number of notes in the piece divided by

the length of the piece. A note is counted when we observe

a succession of timesteps for which a specific pitch is always

played. The scaling is necessary given that, for instance, a 10-

second-long musical piece composed of only five notes will

sound normal, whereas a 1-hour-long piece composed of the

same number of notes will sound empty.

Occupation rate The ratio between the number of non-null

values in the piano roll representation and the length of the

piece. The piano roll representation is described in Figure 3.

Polyphonic rate The number of time steps where two or

more notes were played simultaneously, divided by the total

number of notes in the piece.

Pitch range descriptors The maximum, minimum, mean

and standard deviation of the non-null pitches in the piece.

As pitch values in MIDI format are encoded between 0

(minimum; C-2) and 127 (maximum; G8), all values were

divided by 127 in order to force these descriptors to be

bounded between 0 and 1 (for simplicity).

Pitch interval range An interval is a difference in pitch be-

tween two consecutive notes (with or without being separated

by a period of silence) . All intervals were scaled between

0 and 1 (i.e., divided by 127) and the maximum, minimum,

mean and standard deviation were computed.

Duration range The duration is the number of time steps

during which a note is held. As before, the maximum,

minimum, mean and standard deviation of all durations in the

piece were computed (no scaling was performed).

As described, some descriptors had to be scaled in order to

allow the creation of an adequate comparison between pieces.

In order to compute the similarity (or distance) between a

musical piece x and a given corpus D = {T1, T2, . . . , Tn}
characterized by their mean signature vector μ and covariance

matrix Σ (which would represent a particular musical gram-

mar), we use the Mahalanobis distance [18]. Formally,

D (x, D) =
√

(x− μ)
T
Σ−1(x− μ).

It should be noted that, in practice, the various features

are not scaled to the same range. This could have been

a problem if we have used the Euclidean distance and a

one-versus-one piece comparison, since we would have large

difference in amplitudes for some features and small difference

in amplitudes for some others (leading to an unbalanced

weighting between the different descriptors). Nonetheless, the

use of the covariance matrix and the Mahalanobis distance

alleviates this problem.

As a preliminary evaluation of the adequateness of our

measure, we chose a reference distribution D of Beethoven

pieces and compared it to a set of individual music pieces.

Note that the Beethoven distribution D is also the dataset we

used for training our models (more details in Section III-C).

A subset of pieces from the same Beethoven distribution was

used to build the reference distribution D. Then, we created

another distribution composed of 62 jazz pieces from different

artists (e.g., Nat King Cole, Bill Evans; we will later refer to

this distribution as the Jazz distribution. Finally, we obtained

samples from two random distributions. Both are constructed

to have a sensible number of notes in the musical piece (450

non-null values for a piece of 300 time steps long). However,

whilst the first one uses the full spectrum of pitch (ranging

from 1 to 128), the second one, that we called “sensible

random distribution” uses a spectrum of pitch ranging from 20

to 100, which is more common in modern music. This second

random distribution will therefore give us a better insight as

to what is a reasonable score, and what is just random.

The plot in Figure 1 follows our expectations. The

Beethoven samples are closer from D than pieces from the

Jazz distribution. Yet, if the difference is noticeable, the two

distributions are not separated by a wide gap. We can therefore

infer that a distance of 6 and lower indicates a coherent piece

of music. A distance of 3 to 4 could indicate something that

generally comprises musical material that generally resembles

the Beethoven corpus used. Our expectations are also met

regarding the random distributions. The fully random distri-

bution is farther from the Beethoven distribution, compared to

the sensible random distribution. We therefore conclude that a

distance of approximately 10 or higher approximated a random

piece and, as a result, should be discarded.

3469

Fig. 1. Distribution of distances using the Mahalanobis distance. The
distribution of reference (from which we obtained μ and Σ) was built using
100 samples from the Beethoven corpus. Each sample was 300 time steps
long. The shown distributions were obtained by sampling 1000 samples from,
in order, the Beethoven corpus, the Jazz corpus and a random corpus. Each
of these samples were also 300 time steps long. The random corpus was
created by using binomial sampling with p = 0.012. p was chosen to have
roughly 450 notes per sample. The sensible random distribution is created as
the random one, except that the possible active pitches range from 20 up to
100, which corresponds to the distribution of most real music pieces.

B. VAE – a generative model

As we have suggested in Section II, LSTM-RNN has offered

the best performance so far in terms of generation quality

from a subjective point of view. However, this model is not

generative by nature and still needs to be provided with a few

time steps of music to start improvising. On the contrary, we

would like to build upon a truly generative model, capable of

generating music without any priors. Besides, witnessing the

recent successes of VAEs [19], [20], we decided to evaluate

their music generation capabilities.

We first present a brief summary of the theory behind VAEs.

A VAE is a non-trivial model M (fθ, gλ, Qω) that takes an

input x and tries to output x with as little distortion and loss

as possible. fθ is a function whose parameters are θ, similarly

gλ is a function whose parameters are λ and Q is a probability

distribution over the latent space that we describe just below.

Q is parametrized by ω. The output of a VAE is computed as

follows:

1) Compute ω = gλ (x).
2) Sample z ∼ Qω . z is said to be a latent vector and has

been sampled from the latent space.

3) Compute x̃ = fθ (z). x̃ is supposed to be a close

approximation of x.

In order to train a VAE, one has to decide on the shape of

the probability distribution Q, the shape of the functions f and

g and tune the parameters θ and λ. In general, we want f and

g to be extremely flexible functions such as neural networks.

Besides, if we set Q to be a Gaussian distribution, then we

can use the reparameterization trick mentioned in [21] which

makes it possible to use gradient descent to tune the model in

an end-to-end fashion. In that case, ω becomes the traditional

parameters (μ, Σ) of a normal distribution.

To train the model, two loss functions are used:

1) During encoding, we want to ensure that the relevant

latent vectors are mostly located within a ball centered

at 0 and of radius 1, so we spatially concentrate all the

encoding information in the ball. We use the Kullback-

Leibler divergence for this purpose:

Lz =
∂KL [Q (z|gλ(X)) ||N (0, I)]

∂λ
,

where Lz is called the latent loss and X is the input

distribution.

2) During decoding, we want to ensure that the retrieved

vector x̃ is close to x. This loss is more intuitive since

we can take the log-likelihood between x and x̃. This is

particularly suitable since the values of x are constrained

between 0 and 1:

Lr = −
∑
i

xi log (x̃i),

where Lr is called the reconstruction loss.

The final loss is taken to be the sum of the latent loss and

of the reconstruction loss.

L = Lz + Lr.

Different varieties of VAEs can therefore be created by

appropriately choosing the functions f , g and the distribution

Q. In this paper, we use a specific kind of VAE called

Deep Recurrent Attentive Writer (DRAW) [20]. This model

demonstrated promising capabilities for image generation by

defining f and g functions to be single-layer LSTM-RNN

(traditional VAEs use standard feed-forward neural networks

instead). The use of an LSTM-RNN allows to introduce

temporal information in the VAE. As a result, the final output

of DRAW is computed sequentially, time step after time step,

by updating a so-called “canvas”. Figure 2 presents a graphical

view of this model. Theoretically, this endows the model the

ability to refine its output, by adding local details to it or

withdrawing some along the different time steps 2.

Once the model has been trained, we can use it for music

generation. To do so, we bypass the role of gλ and simply

sample a z from N (0, I) and decode it using fθ. This makes

sense since the training forced the relevant latent vectors to be

packed in the ball centered at 0 and of radius 1 in the latent

space. Since the output of the model is not computed exactly

the same way during training and generation, we will hereafter

distinguish between the “training phase” and the “generation

phase”. We refer the reader to [20] for more information

about the implementation of this model. Note that we did

not use the attention mechanism mentioned in this paper

since it surprisingly yielded very poor results in preliminary

experiments. More work should be done to investigate this.

2We could for instance imagine, that the first time steps would be dedicated
to creating a bass line while the remaining steps are dedicated to creating a
melody.

3470

Fig. 2. Graphical view of the DRAW model as presented in [20]. In our
explanations, the “encoding LSTM” is the fθ function, the “decoding LSTM”
is the gλ function and the distribution Q is parameterized by ω = (μ, Σ).
The red arrows represent the usual recurrent connection of LSTM-RNN whilst
the black arrows represent recurrent connections created by design.

C. Music corpus and representation

We used a corpus a 37 free-of-rights MIDI files of

Beethoven’s piano pieces obtained by crawling the web. As

a result, the corpus gathers a lot of various unrelated works.

Nevertheless, we chose the pieces that only contained one

playing piano. This is motivated so that our training set

includes all the variety of a full musical composition (bass

line, chords, melody, etc.) with a single instrument (to avoid

the complexities arising from multiple instruments playing

together at this stage).

We followed the raw encoding explored in previous works,

because it provides an intuitive and flexible music representa-

tion and it does not require preprocessing or normalization. In

order to represent the time dimension, we split time in eights

of a beat. Note that this quantization still allows the model

to represent virtually any musically-relevant duration patterns

since we can arbitrarily modulate the tempo. Also, it does not

interfere with the range of notes or chords which the model

can generate (unlike previous works; see Introduction). We

record what happens within each time step in a binary vector

of length 128. As we mentioned earlier, the reason behind

this length is related to the encoding of a MIDI file itself

where each “signal” is encoded using an 8-bit signed integer.

A MIDI signal can be as diverse as “beginning of piece”,

“end of piece”, “note C5 is played” etc. Besides, most pianos

only feature 88 keys, thus they all can be encoded using a

vector of length 128 (the full range of MIDI notes). A value

of 1 indicates that a note is played at this time step, and 0

indicates that the note is absent (consecutive cells with values

1 indicate a sustained note). A graphical representation of this

encoding (a.k.a. piano roll) is shown in Figure 3.

An important requirement of the DRAW model, along with

other known VAEs, is that they can only process fixed-size

inputs. We are therefore forced to use sections of music pieces

Fig. 3. The correspondence between a real sheet music and the encoding
used in this paper (”piano roll” representation). Note that a bar is filled with
8 binary vectors. In this figure, a blank square indicates a value 0 and a filled
square indicates a value 1.

TABLE I
SEARCH SPACE USED WHEN EXPLORING DRAW ARCHITECTURES. FOR

MORE INFORMATION ON THE PARAMETERS, REFER TO III-B AND [20].

Parameter Min. Max. Sampling
value value method

Chunk size (L) 64 160
uniform

(multiples of 8)
Dimensionality of the

5 1000 uniform
latent space (#z)

Number of sequential updates
3 75 uniform

before outputting (T)
Number of units in

128 1024 uniform
the LSTM layers

as inputs, and train the model to output similarly sized chunks.

Therefore, the pieces used for training had to be split. We did

this by creating non-overlapping chunks of 13 beats (i.e., 104

time steps). This number was determined experimentally since,

as we show later, it offers a good compromise between dura-

tion and perceived quality of the generated music. Naturally,

this imposes a limitation on the length of the generated tracks.

Nonetheless, this is an issue that could be solved and that we

intend to address in future work.

D. Optimization of the model parameters

In our work, we use a modified version of the DRAW

model [20] that is able to handle rectangular patches, instead

of square patches in the original work (this was necessary

so that pitch representation was independent of the music

segments size). Additionally, so as to work with a reasonably

good performing DRAW architecture, we performed several

experiments where we varied the parameters of the DRAW

model and assessed the performance on music generation of

each resulting architecture using our performance measure.

In total, 136 architectures were randomly generated using

uniform sampling from the search space described in Table I.

Out of these experiments, we selected the architecture for

detailed analysis that, according to our measure, yielded the

best and most stable results. Such model had a latent space

#z dimension of 22, 167 LSTM units in both the encoding

function gλ and decoding function fθ, and the number of steps

3471

T required to perform the sequential autoencoding (which

corresponds to the memory length of gλ and fθ) was 23. Note

that the memory of the LSTM units in gλ and fθ were reset

after each minibatch. This enforced the autoencoding of inde-

pendent chunks of music, yet each patch being well-sounding

by itself. We briefly discuss in Section V ideas to alleviate

this problem. We used batches of size 37, corresponding to

the number of music pieces in the data set. This choice was

motivated by the way TensorFlow handles LSTM units, even

though this is not strictly required since we reset the LSTM

units at each iteration.

The output of the model, during training phase or generation

phase, is a matrix of dimension 104×128 (104 time steps with

vectors of length 128 associated to each time step), whereby

each value is in [0, 1]. In other terms, these are probabilities

that the notes should be played. To properly generate a piece,

we first normalized the matrix so that the maximum equals 1

and the minimum equals 0, and then applied a binary threshold

α. The appropriate value of α is discussed in the next Section.

∀i ∈ �1, 104�, ∀j ∈ �1, 128�, xij ←
{
1 if xij > α

0 otherwise.

As for the optimizer algorithm, we used the Adam algorithm

with a learning rate l = 0.001, and parameters β1 = 0.9 and

β2 = 0.999, which are common parameters in the literature.

The training was stopped after running for 24 hours on a

low-end graphic card (NVIDIA GT750M). Note that when we

tested the 136 different architectures, the training was stopped

after only 30 minutes in order to perform many tests in a

restricted time span.

IV. RESULTS

The model with the parameters optimized as described in

the previous section leads to general musical pieces having

a mean Mahalanobis distance to the Beethoven distribution

of 3.47 ± 1.47, which is a very good score if we com-

pare to the graph presented in Figure 1. To complete this

comparison, we performed a t-test between the generated

distribution (corresponding to the blue curve in Figure 4)

and the Beethoven reference distribution (corresponding to the

blue curve in Figure 1). Results (t = 0.81, p = .42) show

that these two distributions are not significantly different. To

obtain these results, we generated 100 musical pieces from

our trained model and computed the Mahalanobis distance

for each of these to the Beethoven dataset. In addition to the

only DRAW architecture we presented, we show in Figure 4

additional results obtained during the optimization stage of the

DRAW architecture and parameters (as detailed in Table I).

We took the 3 architectures that performed the best out of

these experiments, and plotted the distribution of Mahalanobis

distances obtained by comparing 100 generated pieces from

each architecture to the Beethoven reference distribution.

In order to evaluate of the importance of each optimized

parameter for music generation, we gathered the results we

obtained when testing the 136 different architectures (see the

Fig. 4. Distribution of Mahalanobis distances between generated musical
pieces and the Beethoven dataset. For each of the 3 best architecture we
obtained when performing random search, we generated 100 pieces, computed
their Mahalanobis distance to the Beethoven dataset for each of them, and
reported the results in this plot. Note that the Mahalanobis distances are
centered around 3 which is a strong score. However, the mode of the
distribution does not correspond to its mean since a fat tail and a few failed
generations – of score 10 and higher – tend to increase the value of the mean.
This is the reason why the blue distribution is actually the best, it yields the
most stable results.

TABLE II
CATEGORIZATION USED TO RATE THE PERFORMANCE OF EACH

ARCHITECTURE. THE VALUES ARE TAKEN IN ACCORDANCE TO FIGURE 1.

Category Range of valid values
Like Beethoven metric-wise 0 ≤ x < 4.5

Coherent music 4.5 ≤ x < 7
Sensible random 7 ≤ x < 10

Random or worse 10 ≤ x < ∞

beginning of this section) and used a decision tree to visualize

the impact of each parameters on the distance measure. Instead

of using a regression tree to regress the Mahalanobis score

directly, we assigned a category to each score (and therefore

to each model) to shift to a classification problem. The cate-

gorization is described in Table II. We enforced a maximum

depth of 3 and 10 examples at least were required to perform

a split.

The analysis of the decision tree has provided some insights

regarding what makes a relevant DRAW architecture for

generating music. The number of LSTM units used to encode

and decode the data appears to be the most determining factor.

If it is too high (i.e. greater than 300), only a latent space with

lots of dimensions (i.e. greater than 550) can lead to coherent

pieces. However, as the tree shows, better results were obtained

using lower number of LSTM units. Therefore, it seems

pointless to use an architecture with that many LSTM units

and number of dimensions since the training becomes harder

and the training time is considerably increased. Interestingly

enough, the tree tells us that with less than 300 LSTM units,

it is better to have a latent space with few dimensions (i.e. less

than 65). We interpret this observation in terms of degrees

of liberties. Since the latent space contains all the encodings

of musical pieces, if we increase the dimension of the latent

3472

Fig. 5. Different Mahalanobis distances between generated musical pieces
and the Beethoven dataset. We generated 30 outputs from our baseline DRAW
architecture and varied the binary threshold α 200 times uniformly between
0 and 1, leading to 6, 000 measurements, i.e. 6, 000 points in this plot. The
solid line shows the median of the distances and the dotted line is 1.96 times
the standard deviation. Notice that, for low values of α, few notes are actually
played resulting in empty pieces and therefore a poor score (e.g. above 4).
On the contrary, at higher values of α, all notes with non-null probabilities
have been played, resulting in these characteristic horizontal lines.

space, we will dilute the relevant encodings (that decode into

coherent pieces) with non-relevant encodings (that decode into

random pieces). It is likely that, with more training data

and therefore more relevant encodings, a higher dimension

of the latent space becomes necessary. Further works should

investigate this. At last, the number T of steps required to

generate an output should be, according to the tree, limited to

at most 35. It is likely that, above this value, the model just

keeps adding notes leading to over-dense pieces, however this

should be confirmed experimentally.

We further investigated the ideal binary thresholding α. We

generated 30 outputs from our baseline architecture, from each

output, we used 200 different thresholds uniformly distributed

between 0 and 1, eventually creating 30×200 = 6, 000 music

pieces. We computed the Mahalanobis distance between each

one of them and the Beethoven distribution. The results are

presented in Figure 5. If we only look at the median results, a

value of α = 0.25 yields the best performance with a median

Mahalanobis distance of about 3. However, if we take into

account the variability of the results (via the dotted lines of

standard deviation), then a value of α = 0.45 provides the

most stable results with a slightly worse median Mahalanobis

distance of about 3.5.

We also evaluated the influence of the parameter T on the

quality of the generation. More specifically, we assessed the

quality of the pieces at each step of their generation (from the

first step, up to the last one, i.e., the 23rd). Following the same

methodology used to determine the ideal α, we gathered 50

outputs from the baseline architecture, and generated a piece at

each step of the generation, leading to 50×23 = 1, 150 music

pieces. We computed the evaluation score for each of them.

The resulting plot is shown in Figure 6. As we expected, the

higher the generation step, the lower the Mahalanobis distance.

Fig. 6. Different Mahalanobis distances between generated musical pieces
and the Beethoven dataset. We generated 50 outputs from our baseline DRAW
architecture and, instead of keeping on the very last iteration, we evaluated
every one of them, from the first to the last. The x−axis uses a normalized
scale between 0 and 1 but we remind that the baseline architecture uses T =
23. The solid line shows the mean of the distances and the dotted line is 1.96
times the standard deviation. We limited the range of the y−axis which hides
some points with distances higher than 10.

This shows the expected behavior of the DRAW model: as the

number t ∈ [1, T] of output iteration increases, the model adds

more and more relevant information to the output its currently

generating, leading to an overall decrease of the Mahalanobis

distance. However, we would expect this to be the case up

the last generation step, but it rather seems that the quality of

generated pieces becomes a bit more volatile for the very last

steps. Results were the best and more stable for a normalized

T value of around 0.75 which, in the case of our baseline,

corresponds to the 17th step. Additional research should be

done to determine whether the same architecture with T = 17
would yield similar results or if every DRAW architecture tend

to generate an optimal output at an intermediate stage of the

generation.

V. CONCLUSIONS AND OUTLOOK

In this work, we proposed a new measure for assess-

ing the quality of generated music pieces using Variational

Autoencoders. In relation to the metric, we exemplified its

usefulness in two scenarios. First, we used it to automatically

and systematically fine-tune the generative models’ parameters

and architectures for optimizing the musical outputs in terms

of proximity to a specific musical style/context (in this paper a

set of piece by Ludwig van Beethoven). Second, we used the

metric to select the most interesting output generated by the

model, i.e., those that resembled the most the original corpus

in terms of the musical characteristics measured. In both cases,

we have demonstrated its usefulness in identifying newly

generated new musical pieces that are objectively close in

musical terms to the original corpus, and fine-tuning generative

models (in our case Variational Autoencoders) to maximize

that same outcome.

In relation to generative power of Variational Autoencoders,

and considering the non-general and abstract rules used in

3473

these initial explorations, we were able to create a wide

variety of original music segments and listening sensations

(fast and slow, monophonic and polyphonic pieces, using high

and low registers, etc.). Although we would not argue that

the generated pieces are in the style of the original corpus

(some piece from Beethoven’s portfolio), we demonstrated that

our metric is good enough for distinguishing structured music

from noise and other styles3. In this respect, further work is

necessary to investigate the use of other music descriptors so

as to measure relevant properties of a given musical style in

order to drive the model training and piece selection processes.

This is a straightforward extension of this work given that our

metric is simple and quick to compute, and can be applied to

a variety of descriptors that can incorporate music and non-

musical knowledge. It would be interesting though, that future

work includes a perceptual evaluation of our metric, both in

terms of the quality of the outputs generated as well as the

similarity to a given style.

The major and most obvious drawback of our method is that

Variational Autoencoders cannot generate longer sequences

than what it has been trained for. One way of addressing

this problem in future work would be to train the model to

output short pieces, conditioned to the previous outputted short

pieces. More concretely, a second distribution over the latent

space could be used where the parameters of this distribution

would be determined by a recurrent model over the previous

generated short-pieces. By merging the distribution Q we

mentioned in this paper and this new distribution, the model

could be able to output pieces, that, when concatenated, form

a coherent musical piece.

Finally, on a more general note, automatic music composi-

tion is a field still in its infancy, and it faces many challenges.

Indeed, and unlike other perceptual domains (e.g., vision)

people are extremely sensitive to static and temporal sound

patterns, and possess complex innate and acquired mental

schemata that rule the perception and appreciation of music.

Future research needs to understand how such complex mu-

sical knowledge can be incorporated into generative models.

Possible ways are to explore recently developed methods for

automatic feature and knowledge extraction (e.g., [22]) and

the automatic analysis of the emotional impact of generated

musical pieces given that this is one of the main reason why

people choose to listen to music and closely tied to music

structure (e.g., [23]).

ACKNOWLEDGEMENT

This work was partially supported by the European Union’s

Horizon 2020 Programme under grant agreement No. 645378

(ARIA-VALUSPA).

REFERENCES

[1] A. Graves, “Generating sequences with recurrent neural networks,”
arXiv preprint arXiv:1308.0850, pp. 1–43, 2013. [Online]. Available:
http://arxiv.org/abs/1308.0850

3A set of examples generated by the best model reported in this paper,
and selected with our metric can be found at http://www.openaudio.eu/ and
http://www.eadward.org/.

[2] D. Garcia, “Image super-resolution through deep learning,” 2016.
[Online]. Available: https://github.com/david-gpu/srez

[3] E. Mansimov, E. Parisotto, J. L. Ba, and R. Salakhutdinov, “Generating
Images from Captions with Attention,” arXiv preprint, pp. 1–12, 2015.
[Online]. Available: http://arxiv.org/abs/1511.02793

[4] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A gener-
ative model for raw audio,” arXiv preprint arXiv:1609.03499, 2016.

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[6] W. D. Mario Baroni, Simon Maguire, “The concept of musical
grammar,” Music Analysis, vol. 2, no. 2, pp. 175–208, 1983. [Online].
Available: http://www.jstor.org/stable/854248

[7] F. Lerdahl and R. Jackendoff, A generative theory of tonal music. MIT
Press, 1983.

[8] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[9] C. Doersch, “Tutorial on variational autoencoders,” arXiv preprint
arXiv:1606.05908, 2016.

[10] C.-C. Chen and R. Miikkulainen, “Creating melodies with evolving
recurrent neural networks,” IJCNN’01. International Joint Conference
on Neural Networks. Proceedings (Cat. No.01CH37222), vol. 3, pp.
2241–2246, 2001. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=938515

[11] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[12] D. Eck and J. Schmidhuber, “Finding temporal structure in music: Blues
improvisation with LSTM recurrent networks,” Neural Networks for
Signal Processing - Proceedings of the IEEE Workshop, pp. 747–756,
2002.

[13] N. Boulanger-Lewandowski, P. Vincent, and Y. Bengio, “Modeling
Temporal Dependencies in High-Dimensional Sequences: Application
to Polyphonic Music Generation and Transcription,” Proceedings of the
29th International Conference on Machine Learning (ICML-12), no. Cd,
pp. 1159–1166, 2012. [Online]. Available: http://arxiv.org/abs/1206.6392

[14] G. Hinton, “A practical guide to training restricted boltzmann machines,”
Momentum, vol. 9, no. 1, p. 926, 2010.

[15] I.-T. Liu and B. Ramakrishnan, “Bach in 2014: Music Composition
with Recurrent Neural Network,” arXiv:1412.3191, vol. 5, pp. 1–9,
2014. [Online]. Available: http://arxiv.org/abs/1412.3191

[16] A. Huang and R. Wu, “Deep Learning for Music,” 2016. [Online].
Available: http://arxiv.org/abs/1606.04930

[17] D. Rizo, P. D. León, J. Pedro, C. Pérez-Sancho, A. Pertusa, and
J. Iñesta, “A pattern recognition approach for melody track selection
in MIDI files,” Distribution, pp. 61–66, 2006. [Online]. Available:
http://eprints.pascal-network.org/archive/00005787/

[18] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceed-
ings of the National Institute of Sciences (Calcutta), vol. 2, pp. 49–55,
1936.

[19] D. P. Kingma, T. Salimans, and M. Welling, “Variational Dropout and
the Local Reparameterization Trick,” arXiv, no. Mcmc, pp. 1–13, jun
2015. [Online]. Available: http://arxiv.org/abs/1506.02557

[20] K. Gregor, I. Danihelka, A. Graves, and D. Wierstra, “DRAW: A
Recurrent Neural Network For Image Generation,” Icml-2015, pp. 1–
16, 2014.

[21] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,”
in ICLR, no. Ml, 2013, pp. 1–14. [Online]. Available: http:
//arxiv.org/abs/1312.6114

[22] G. Trigeorgis, F. Ringeval, R. Brückner, E. Marchi, M. Nicolaou,
B. Schuller, and S. Zafeiriou, “Adieu Features? End-to-End Speech
Emotion Recognition using a Deep Convolutional Recurrent Network,”
in Proceedings 41st IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 2016, IEEE. Shanghai, P. R.
China: IEEE, March 2016, pp. 5200–5204.

[23] E. Coutinho, G. Trigeorgis, S. Zafeiriou, and B. Schuller, “Automatically
Estimating Emotion in Music with Deep Long-Short Term Memory
Recurrent Neural Networks,” in Proceedings of the MediaEval 2015
Multimedia Benchmark Workshop, satellite of Interspeech 2015, M. Lar-
son, B. Ionescu, M. Sjöberg, X. Anguera, J. Poignant, M. Riegler, M. Es-
kevich, C. Hauff, R. Sutcliffe, G. J. Jones, Y.-H. Yang, M. Soleymani,
and S. Papadopoulos, Eds., vol. 1436. Wurzen, Germany: CEUR,
September 2015, 3 pages.

3474

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

