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Abstract—Predictive analytics in Mobile Edge Computing
(MEC) based Internet of Things (IoT) is becoming a high demand
in many real-world applications. A prediction problem in an
MEC-based IoT environment typically corresponds to a collection
of tasks with each task solved in a specific MEC environment
based on the data accumulated locally, which can be regarded
as a Multi-task Learning (MTL) problem. However, the hetero-
geneity of the data (non-IIDness) accumulated across different
MEC environments challenges the application of general MTL
techniques in such a setting. Federated MTL (FMTL) has recently
emerged as an attempt to address this issue. Besides FMTL,
there exists another powerful but under-exploited distributed
machine learning technique, called Network Lasso (NL), which
is inherently related to FMTL but has its own unique features.
In this paper, we made an in-depth evaluation and comparison of
these two techniques on three distinct IoT datasets representing
real-world application scenarios. Experimental results revealed
that NL outperformed FMTL in MEC-based IoT environments
in terms of both accuracy and computational efficiency.

Index Terms—Federated Multi-task Learning, Network Lasso,
Mobile Edge Computing, Internet of Things

I. INTRODUCTION

Mobile Edge Computing (MEC) based Internet of Things
(IoT) is a rapidly developing paradigm to providing geograph-
ically distributed computing and storage resources to smart
devices and applications at the edge of the network [1]. By
allowing high-volume data generated by a massive amount
of networked smart devices (e.g., mobile devices, self-driving
cars and fitness trackers) in modern IoT systems to be pro-
cessed at the edge, it promises to greatly reduce the network
stress on the core networks of mobile service providers. Acting
as the first line of defense for high-volume IoT data, MEC in-
frastructures allow performing computationally intensive data
processing tasks such as data filtering, as well as persistence of
raw data at the edge and, at times, transmit significantly lesser
amounts of data at lower frequencies to the cloud environments
for further analytics. This data accumulated at the edge of the
network inherently creates a distributed topology of data silos
across different MEC environments (see Fig. 1).

Fig. 1: The typical structure of a MEC topology.

In modern IoT systems, machine learning based predictive
analytics becomes popular to solve challenging problems
and uncover new patterns for people and enterprises alike.
However, as to the use of MEC in modern IoT systems, the
distributedness of data sources it introduces and complex com-
munication topologies with which these MEC environments
are linked to each other make existing predictive analytics
strategies obsolete in such a context [2]. For example, most
traditional machine learning strategies designed for existing
cloud-based IoT systems demand the data to be accumulated
centrally. This undisputedly defies the goals of MEC as it
causes significant stress on the core mobile networks due to
the data generated in large volumes by the IoT devices. This
calls for efficient and scalable machine learning strategies that
not only fit into a distributed setting, but also can perform atop
high-volume data.

In addition, most machine learning strategies proposed for
IoT systems assume that the data generated by sensor service
providers and consumers across the entire network can be
represented by a single distribution. As a result, they often
hypothesize that a single global prediction model can represent
the characteristics of the underlying application domain (eg.
a global trust prediction model used by self-driving cars to
predict trustworthiness of all IoT services). This one-size-
always-fits-all approach based on independent and identically
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distributed (IID) assumptions of the data is often restrictive in
MEC-based IoT systems [3]. For instance, the heterogeneity
of sensor service providers and consumers taking part in
transactions can potentially result in datasets with distinct
characteristics (i.e. non-IID) in different MEC-environments.
Hence, there is an apparent need for strategies that allow
training high-quality decentralized local models that fit into the
nature and structure of each distributed datasets accumulated
across different MEC environments.

Furthermore, some MEC environments can accumulate data
from sensor service providers and consumers with similar con-
figurations and characteristics, thereby producing similarly-
poised prediction models. In such a context, letting similar
models exchange strength with each other has the potential
of improving the generalization performance of them. In our
work, we formally define the notion of exchanging strength
as the act of sharing models trained by individual MEC envi-
ronments directly with peers (eg. neighboring MEC environ-
ments) or an intermediary (eg. centralized cloud) over complex
communication topologies. We postulate that the exchanged
strength (i.e. knowledge) can be suitably aggregated or adapted
as is by the receivers to train prediction models with better
accuracy for each individual MEC environment. This demands
for machine learning strategies that encourage knowledge shar-
ing among distributed prediction models trained across such
networked systems with complex communication topologies.

Lies in the intersection of achieving a good balance between
the aforementioned verticals is Federated Multi-task Learning
(FMTL). Combining the power of Federated and Multi-task
Learning paradigms, FMTL attempts to collaboratively learn
high-quality distributed prediction models that best represent
the data that they are trained upon [3]. FMTL is built on the
principle idea of decomposing a finite-sum problem defined
over a set of distributed agents, and letting each one of
those agents independently solve a smaller sub-problem over
the data accumulated within its own context. The hope is
such a mechanism would allow these distributed agents (i.e.
workers) to process its own data closer to where it originated
and share only a fraction of data with a centralized (i.e.
master) server for further processing in a communication-
efficient manner. In addition, FMTL also allows either fixing or
learning relationships among these distributed agents thereby
allowing them to share knowledge with similar others and
being able to produce prediction models with better quality.
As a result, FMTL can be deemed a befitting paradigm to
address the challenges posed by MEC systems.

Besides FMTL, there exists another less popular but pow-
erful distributed machine learning technique, called Network
Lasso (NL), which is inherently related to FMTL but has its
own unique features. Originally proposed to achieve simulta-
neous clustering and optimization in large-scale networks of
distributed agents, in combination of the well-known Alter-
nating Method of Multipliers (ADMM), it provides a solid
algorithmic framework to collaboratively derive a family of
machine learning models over a distributed set of agents, in
parallel [4]. In addition, it also boasts global convergence of

any arbitrary problem that can be represented in its algorithmic
framework. Therefore, it can be introduced as a seemingly
elegant framework that can address the challenges in using
machine learning in MEC-based IoT environments, which
has not been studied before in the aforementioned context.
Therefore, in this work, we
• analysed and compared these two techniques from a

methdological and algorithmic perspective, and
• performed an in-depth empirical study on IoT datasets

representing three distinct real-world application scenar-
ios to reveal the performance difference between these
two techniques.

The analysis and comparison results demonstrate that, al-
though, Mocha FMTL framework promises enticing features
that can greatly enhance its suitability to an MEC-based IoT
environment, the higher accuracy and ability to achieve a better
prediction performance in comparatively fewer communication
iterations make NL a more suitable choice for the aforemen-
tioned setting.

The remainder of this paper is organized as follows. Section
II provides a brief technical summary of the two approaches,
before discussing the same extensively at a system- and al-
gorithmic framework-level in Section III and IV, respectively.
Section V introduces the framework used for the empirical
evaluation of the two approaches and Section VI discusses
the results gathered. Section VII concludes our work.

II. TECHNICAL PRELIMINARIES

Before we delve further into the comparison between FMTL
and NL, we provide a brief systematic exposition below on
them and the fundamental principles atop which they are built,
for completeness.

A. Multi-task Learning

Multi-task learning (MTL) paradigm is built on the prin-
ciple of allowing multiple different tasks to collaborate with
themselves to improve the generalization performance of their
respective models [5]. Such a collaboration allows these tasks
to train a single shared prediction model, or multiple related
models in the context of clustered multi-task learning, together
[6]. In other words, it is expected that some relationships exists
among all or some of these tasks, which can be exploited in
a favorable way that each participating task benefits from it.
For instance, the data generation mechanism of the tasks can
be approximately similar, which, in the context of machine
learning, is usually considered a fair metric to assume that
the phenomenon each task is representing is similar, as well
and vice versa. Therefore, similarly-poised tasks can let each
other exchange strength to train prediction models with better
performance. On the other hand, dissimilar tasks can also repel
each other and attempt to be clustered with those that are
similar to them.

Given many variants proposed in the current literature to
achieve Multi-task Learning, a unified formulation for regu-
larized Multi-task Learning can be defined, as below [3], [5].



min
W,Ω

{ m∑
t=1

`t(wtxt, yt) +R(W,Ω)

}
. (1)

where, t ∈ {1, . . . ,m} denotes the tasks taking part in predic-
tion model training, {xit, yit}

nt
i=1 denotes the training dataset of

tth task in that xt ∈ Rd and y ∈ R, `t is a convex loss function
minimized by the tth task such as, hinge-loss in Support Vector
Machines (SVM), wt represents the parameters of the model
trained by the tth task, W ∈ Rd×m := [w1, w2, . . . , wm] is a
matrix representing the model parameters of all the tasks in
which its tth column carries the model parameters of the tth

task. Ω ∈ Rm×m denotes the pairwise relationships among
the tasks in the form of a covariance matrix, which is either
known before hand, or learnt during the learning process.

B. Federated Multi-task Learning

Algorithm 1: Mocha - FMTL Framework

for k = 1,. . . ,K do
for t = 1,. . . ,m do

∆αt = solved used in each distributed node
returns Θk

t -approximate solution ∆αt
αt = αt + ∆αt
return ∆vt = Xt∆αt

end
vt = vt + ∆vt
Update Ω centrally based on w(α) for latest α

end
Update w = w(α) based on latest α
Return W = {w1, w2, . . . , wm}

Built on the same unified Multi-task Learning formulation
in (1), FMTL could be looked at as an approach to address
key 1) statistical challenges such as non-IID (non Identically
and Independently Distributed) and unbalanced data as well as
2) systems challenges such as unreliable network connectivity
and resource constraints of multiple agents (i.e. networked
IoT devices, mobile phones, etc) in a federated setting to
enable Multi-task Learning more efficiently [3]. The first work
that formally introduced the FMTL paradigm proposed the
algorithmic framework named Mocha (see Algorithm 1) [3]
to address the proclaimed statistical and systems challenges
in a federated setting.

The primary focus of Mocha FMTL framework is to address
Multi-task Learning problems in which the task relationships
denoted by Ω in (1) are learnt dynamically. However, it can
also be applied to problems where the relationships are static
and pre-configured, as well. In such a context, the problem
formulation (1) could be deduced to,

min
W

{ m∑
t=1

`t(wtx
i
t, y

i
t) +R(W,Ω)

}
. (2)

where, Ω is no longer learnt simultaneously with the model
parameters wt of the tasks, and therefore, is static.

C. Network Lasso

Network lasso is a framework to solve large-scale op-
timization problems formulated as a graph structure, al-
lowing simultaneous clustering and optimization [4]. Given
an un-directed networked graph, i.e. G = (V,E) in which
nodes are denoted by i.e. V = {1, . . . , N} , and their con-
nectivity with each other is denoted by the edges i.e.
E = {(v1, v2) : v1, v2 ∈ V, v1 6= v2} , the NL problem is
mathematically expressed, as below.

minimize
∑
t∈V

`t(wt) + λ
∑

(j,k)∈E

ajk||wj − wk||2. (3)

In this optimization problem, wt ∈ Rn and represents
model parameters of a convex loss function `t. Each
loss function `t defined over the input-output space
`t : Rn → R ∪ {∞} is local to a node vt ∈ V in the graph
G . These loss functions are used to estimate model parameters
of each node in the graph vt ∈ V by formulating an optimiza-
tion problem. Meanwhile, λ is a regularization parameter that
scales the edge objectives relative to the node objectives, ajk
represents an impact factor of a particular edge i.e. (vj , vk)
on the finite-sum problem computed over the loss functions
of all nodes participating in the optimization problem. It is
also noteworthy that wj , wk correspond to the parameters of
the models associated with two adjacent nodes vj , vk in the
graph, respectively. Furthermore, the regularization parameter
λ , impact factor ajk alongside the `2 -norm computed over
the difference of model parameters between the two nodes
connected by the edge (vj , vk) form a penalty factor. This
compels the contrast between two connected nodes to be zero
strengthening the cohesion among those that carry similar
model parameters (i.e. wj = wk ).

Algorithm 2: Network Lasso parallelized by ADMM

while ‖rkp‖2 < εp and ‖rks‖2 < εd do
wk+1
t = argmin

wt

{
`t(wt) +

∑
i∈N(t)

ρ

2
‖wt − zkti + ukti‖

2
2

}
zk+1
ti = θ(wt + uti) + (1− θ)(wi + uti)

zk+1
it = (1− θ)(wt + uti) + θ(wi + uti)

uk+1
ti = ukti + (wk+1

t − zk+1
ti )

end

By default, NL uses ADMM [7] to decompose problem
(1) into smaller sub-problems in which each task solves its
own data-local sub-problem in parallel, passes the solution
to its neighbors, and repeats the process until the entire
network converges. This gives rise to the parallel algorithm
expressed in Algorithm 2 [4], in which rkp and rks correspond
to the primal and dual residuals, which are typically used
to determine the stopping criteria of the algorithm [7]. A
suitable stopping criteria allows achieving a favorable trade-
off between accuracy and number of iterations, which directly
contributes to communication cost in networked systems.



The network lasso penalty (i.e. ||wj − wk||2) defined over
edges representing neighboring nodes in problem (3) makes
it all the more interesting, as it encourages them to be
similar [4]. This allows a node to exchange strength with
a suitable neighbor, in the form of consensus. Eventually,
the neighboring nodes that are in consensus with each other
(i.e. nodes with similar data distributions) will form clusters
together while those that aren’t (i.e. nodes with different data
distributions) will form different clusters.

III. METHODOLOGY COMPARISON

In this section, we intend to compare Mocha FMTL frame-
work and NL framework against their suitability to the key
characteristics of MEC-based IoT environments announced in
Section I at a solution level.
Knowledge sharing under non-IID data: Both Mocha and
NL, by default, allow knowledge sharing among tasks, even
though the semantics of which are somewhat different. For
instance, Mocha attempts to perform knowledge sharing via
aggregating the models of similarly-poised tasks, which are
either configured statically or learnt dynamically. In contrast,
NL uses Simultaneous Clustering and Optimization (SCO) for
the same purpose [4]. In other words, each task in a given
statically formed task topology attempts to adapt a suitable
model (determined through comparing the geometric similarity
of its own model against that of its neighbours’ models) of
a neighbouring task, and use that as its own model. As a
result, similarly-poised tasks (i.e. tasks that adapted the same
model from a neighbor) will form clusters while those that are
different will form suitable other clusters. Therefore, it could
be deduced that both approaches are capable of handling non-
IID data available in MEC-based IoT environments, suitably.
However, the fact that Mocha can also learn the structures of
similarly-poised tasks and enable knowledge sharing dynami-
cally, as opposed to the static approach followed by NL gives
it the edge.

Fig. 2: The information flow in Mocha FMTL and NL frameworks
over a hierarchical network topology

Support for hierarchical network topologies: Mocha FMTL
framework, by design, is built on top of a client-server
architecture. In that, the primary responsibility of the tasks (i.e.
clients) are to iteratively train a suitable prediction model atop
the locally accumulated data and share the model parameters

with a central server for knowledge sharing. Then, the central
server facilitates knowledge sharing among similarly-poised
tasks (the topology of which is either statically linked or learnt
dynamically) as well as learning relationships among different
tasks. Therefore, Mocha can be deemed adequately suitable
to the network hierarchy typically used by MEC-based IoT
environments, which is depicted in Fig-1.

In contrast, NL framework, by default, encourages direct
communication among the neighbouring tasks (i.e. clients) for
knowledge sharing, with minimal assistance from a centralized
server only to coordinate the iterations of the algorithmic
framework shown in Algorithm 2 [4]. Due to the challenges
described in Section I, allowing direct communication among
different MEC environments in an MEC-based IoT system can
be tedious. However, [2] proposes a hierarchical architecture
for NL framework involving MEC environments and a central-
ized cloud layer in which, w-update of the Algorithm-2 is run
in a distributed manner while z- and u-updates are run in the
centralized cloud layer (see 2. This way, NL framework too
can be transformed into a client-server like model described in
Section I. Therefore, it could be deduced that both frameworks
possess the potential of being used in the concerned problem
context.
Fault tolerance and straggler avoidance: MEC systems
often involve complex networking infrastructure that are prone
to failures (i.e. base stations being offline, etc.) [8]. In ad-
dition, due to the heterogeneous resources and networking
infrastructure used by different MEC environments, the quality
of services (QoS) levels associated with the services exposed
by them can vary considerably [9]. Such factors can either
lead to abrupt failures in synchronous algorithms or introduce
stragglers thereby making it challenging to run distributed
machine learning frameworks in MEC-based IoT systems
efficiently. In this particular context, Mocha FMTL framework
offers built-in support for straggler avoidance, which is a
favorable factor for a typical MEC-based IoT environment.

In contrast, NL parallelized by ADMM, in its default form,
is a synchronous algorithm, which is prone to catastrophic
failures in case of a task failure. Therefore, Mocha seems
a better choice for the concerned setting than the default
NL framework. However, there is an opportunity to use
asynchronous variants of ADMM to parallelize NL framework
[10], which would improve the adaptability of it in the context
of MEC-based IoT systems.

IV. ALGORITHM COMPARISON

This section reviews some prominent features in the al-
gorithmic frameworks used by Mocha FMTL and NL. For
simplicity, we refer to any arbitrary Multi-task Learning for-
mulation parallelized by Mocha FMTL framework as Mocha,
and Network Lasso Parallelized by ADMM as NL.
Use of duality: Both Mocha and NL are designed based
on the principle of duality. However, there exists a key
difference between the two approaches in the way the duality is
utilized within their respective algorithmic frameworks. Mocha
primarily employs the dual form of a given optimization



problem (eg. regularized hinge-loss) and solves the resulting
dual problem to arrive at an optimal solution using a variant
of dual coordinate ascent optimization method. In contrast,
NL parallelized by ADMM inherits the properties of the dual-
subgradient based dual ascent method and can be viewed as a
primal-dual optimization method. Therefore, it can be useful
even when the dual of a given primal problem in closed form
cannot be derived, and also in some cases where the dual
problem is not differentiable [7].
Problem decomposition strategy: In a typical MEC-based
IoT environment, every MEC environment accumulates data
from IoT devices and stores them within MEC-local data
centers. As a result, one key systems challenge that distributed
machine learning algorithms for MEC-based IoT systems (or
any other distributed system) need to cope with is efficiently
training prediction models atop datasets accumulated in a
decentralized manner. Therefore, it is essential to analyze how
Mocha and NL achieve the aforementioned goal.

NL inherits its decomposability properties from dual de-
composition, a vital precursor upon which ADMM is built
[7]. Together with variable splitting, ADMM derives a sound
mathematical framework to decompose the NL problem into
three key sub-problems denoted as w-, z- and u-updates in
Algorithm 2 [4]. In a typical MEC topology, w-update can
be carried out within each distributed MEC environment in
parallel, while z- and u-updates can be run in the centralized
cloud layer. Mocha, on the other hand, uses a quadratic
approximation of the dual of the general Multi-task Learning
framework denoted by problem (1), as below. Let the dual of
problem (1) be

D(α) = min
α

{ m∑
t=1

nt∑
i=1

`∗t (−αit) +R∗(Xα)

}
. (4)

where `∗t and R∗ are (Fenchel) conjugate dual functions
of `t and R, respectively. αi corresponds to the dual variable
associated with the training sample (xi, yi). X ∈ Rmdxn is
defined as X := diag(X1, X2, .., Xm). The number of training
samples available in tth task is defined as nt. To come up with
distributed task-local sub-problems, a quadratic approximation
of (4) is then derived as below [11].

∆αt = argmin
∆αt

{ nt∑
i=1

`∗t (−αit −∆αit) +
〈
wt(α), Xt∆αt

〉
+σ

′

2 ||Xt∆αt||2Mt
+ 1

mR
∗(Xα)

}
.

(5)
In (5), each and every component can be solved using

the task-local information. Even though solving 1
mR

∗(Xα)
involves access to the Xα which is defined over all the training
examples across the tasks, the value of it computed in the
previous step and shared by the centralized layer is used.
Alternating minimization of sub-problems: Both Mocha
and NL follow an alternating minimization approach to solve
problem (1). However, there is a subtle difference between
the exact method in which this happens in each of the afore-

mentioned frameworks. For instance, NL framework solves
three sub-problems w-, z- and u-updates derived by ADMM
via proximal steps, in an alternating manner iteratively [4].
While doing so, the solution of the preceding step is fixed and
passed onto the next step until the next iteration kicks in. In
this procedure, the task of knowledge sharing is baked into the
optimization routines executed as part of the aforementioned
sub-problems. In contrast to NL, Mocha uses only one sub-
problem derived via proximal splitting. In addition, Mocha
also decouples the task of solving the distributed sub-problem
from the process of knowledge sharing. In that, it first solves
the distributed sub-problems denoted by (5) and shares the
solution with the centralized model aggregation layer similar
to that of NL. Then, in contrast to NL, it fixes the shared model
updates and attempts to learn the relationships among the tasks
as a non-optimization step to enforce knowledge sharing.
Exact vs approximate derivation of sub-problems: The sub-
problems associated with NL have been formally derived by
alternatingly minimizing the associated augmented Lagrangian
of the NL problem [4] atop a sound mathematical framework.
This guarantees the exactness of the sub-problem optimization
as well as the ability of the algorithm to eventually arrive
at a provably optimal stationary solution. However, it may
come at a cost as the exact algorithms can at times suffer
from comparatively slower convergence speeds against their
inexact variants. On the other hand, the only sub-problem
used by Mocha is derived by a suitable quadratic distributed
approximation of (4). Consequently, the hope is that the
optimization of the approximated sub-problem may eventually
arrive at a stationary solution with reasonable guarantees on
the accuracy and convergence speed. Therefore, from a MEC
perspective, the empirical performance of the two approaches
can be used as a metric to decide the best suited framework
for the above outlined setting.
Solvers for data-local sub-problems: Mocha, in its default
implementation, relies on Stochastic Distributed Coordinate
Ascent (SDCA) [12] as the optimization method used to solve
the task-local sub-problems. In contrast, NL parallelized by
ADMM uses standard Gradient Descent (GD), and therefore,
it primarily can be labelled as a batch method. At each
iteration of the algorithm, it computes a distributed batch
gradient, which can be computationally expensive. This can
be significantly restrictive in the context of large-scale settings
such as MEC-based IoT systems where data is accumulated in
higher volumes at rapid velocities. However, many stochastic
variants of ADMM had been introduced in the prior literature
in order to reduce the computational complexity of ADMM
[13], [14]. However, their ability to ensure communication
efficiency in environments such as MEC-based IoT systems
needs to be further investigated.

V. EVALUATION

We conducted a series of experiments to evaluate the
suitability of Mocha FMTL and NL frameworks for MEC-
based IoT environments. The primary objective of these ex-
periments was comparing the performance of each framework



Fig. 3: A hypothetical deployment of MEC environment, which shows how the neighbouring MEC environments are linked based on
proximity forming a partial-mesh network.

against two key systems and statistical challenges of using
distributed machine learning in MEC-based IoT environments.
We primarily evaluated the following key requirements of such
systems identified in Section I.
• Support for distributed and Non-IID data, which is

a reflection of the different data generation mechanisms
in distributed MEC-based IoT environments caused by
the heterogeneity of IoT sensor service providers and
consumers connecting to them.

• Communication efficiency, which looks at the number
of communication iterations corresponding to the com-
munication between the centralized cloud and distributed
MEC layers till convergence, and therefore, is an indi-
cator of network stress on the core mobile networks of
mobile network providers.

A. Experiments

We designed the following experiments to reflect the key
characteristics highlighted before. Each experiment measures
and compares the performance of Mocha FMTL and NL in a
simulated MEC-based IoT environment.
• To test the performance in the presence of Non-IID data,

100 distributed binary SVMs representing a distributed
prediction models, were trained using both Mocha FMTL
and NL frameworks atop the same splits. Prediction accu-
racy was used as the Key Performance Indicator (KPI) to
compare the performance of each binary SVM classifier
trained. It is important to note that both Mocha FMTL
and NL frameworks were run with the recommended
default hyper-parameter values outlined in their respective
original works [3], [4] where relevant.

• To test the communication efficiency, we kept track of
the number of iterations needed by each framework
until convergence, which is the primary KPI for the
communication efficiency comparison between the two
approaches.

Apart from the two main frameworks being compared, we
also evaluated the two following baselines.
• 100 distributed binary SVM classifier trained atop the

same splits of dataset upon which Mocha FMTL and NL
models were trained, representing a distributed yet non-
communicative and isolated set of prediction models,

• a global binary SVM classifier atop the same aggregate
datasets to represent a centralized prediction model.

Prediction accuracy was again used as the primary KPI to
compare the performance of each scenario above.

The simulation, meanwhile, took into account a hypothetical
MEC topology deployed across 100 suburbs in the Melbourne
City Council area (see Fig-3(a)). In this MEC topology, we hy-
pothesized that every suburb has one MEC environment each
deployed in them. We then connected each MEC environment
to their most nearest 5 neighbours based on proximity (see
Fig-3(b)). The resulting MEC topology then forms a complex
graph resembling a partial mesh network in which every node
is connected to 5 other nodes based on proximity (see Fig-
3(c)). It is worth noting that, a more pragmatic deployment
of a connected MEC-network depends heavily on a multitude
of factors such physical deployment constraints and other Key
Performance Indicators (i.e. latency, etc.) [15]. However, we
omitted such details for brevity and clarity as those deployment
characteristics do not have any direct impact on information
processing related tasks.

We used an experimental set-up that trained a binary SVM
classifier at every MEC environment in the above MEC
topology. The set-up primarily consisted of an application
implemented in Python using CVXPY, a well-known Python-
based modelling language and framework for solving convex
optimization problems [11]. This application was used to
orchestrate and train a distributed prediction models using the
proposed machine learning architecture.

B. Datasets

For the experiments described above, we used the multiple
public IoT datasets in our simulations. A comprehensive
overview of the structure of these datasets is given below.
UNSW-NB151: This dataset consists of transaction data (each
containing 49 numerical and categorical features, i.e. ∈ R49)
traced from a simulated intrusion detection system (IDS). The
aforementioned IDS captures intrusive actions by malicious
sensor providers similar to what was introduced in Section
I. Each record in the dataset corresponds to a transaction
indicating either a benign behaviour and or one of nine types
of attacks scenarios. We labelled each sample as benign or
harmful based on whether they correspond to a benign or
attack scenario. This dataset was first normalized and then
divided into 100 randomly-sized (n∈ [200, 2000]) smaller

1https://www.unsw.adfa.edu.au/unsw-canberra-cyber/cybersecurity/ADFA-
NB15-Datasets/



datasets forming an aggregate of 110892 examples. Random
noise was also added to each dataset via flipping the labels
of randomly picked samples to mimic a Non-IID dataset. The
resulting datasets (with a training-to-test split ratio of 70:30)
were used to train the distributed prediction models for each
simulated MEC-environment.
Gas Sensor Data2: This dataset contains 57982 training
samples (∈ R12) collected from eight gas sensors, a humidity
and a temperature sensor, which were part of a home activity
monitoring system. Each training example is labelled with
one of two classes based on the type of chemical signal
being monitored (i.e. banana or wine). To simulate an MEC-
based IoT environment as well as the non-IID behavior of
data accumulated in them, we formed 100 randomly-sized
(n∈ [100, 2000]) splits of the original dataset, and added
random noise. Each resulting dataset was then divided into
training and test sets with a training-to-test split ratio of 70:30.
Human Activity Recognition3: This dataset contains 20827
sensed human activity data samples gathered through an
activity recognition system designed for smart homes. The
training samples (∈ R6) are collected from multiple sensors,
and labelled under seven main activity categories (i.e. walking,
standing, sitting, cycling, two modes of bending and lying).
We re-labelled them to predict between walking and other
activities, and created 100 randomly-sized (n∈ [100, 300])
splits for the experiments with a training-to-test ratio of 70:30.

VI. RESULTS AND DISCUSSION

Results of our experiments showed that the binary SVM
classifiers trained by NL framework consistently outperformed
the Mocha FMTL framework solving the clustered-regularized
multi-task model used by [3] in terms of accuracy on all three
datasets (TABLE-I). The aforementioned observations align
quite well with multiple aspects we discussed in Section-IV.
For instance, it seems reasonable to assume that the exactness
of the optimization steps associated with NL mathematical
framework led to the higher accuracy over Mocha FMTL
framework. Furthermore, Within its optimization framework,
NL uses a full distributed batch gradient step at every iteration.
The stability of such a gradient update can also be a contribut-
ing factor behind NL framework’s higher performance over
Mocha FMTL framework in terms of prediction accuracy.

In addition to that, NL framework also performed signifi-
cantly well in comparison to the simulated MEC-local binary
SVM classifiers as well as the global SVM classifier. On the
other hand, Mocha FMTL framework too showed improve-
ments (albeit small) against the MEC-local SVM classifiers,
which can be attributed to its ability to allow knowledge
sharing among tasks. However, the performance of Mocha
FMTL framework was considerably lower than that of the
global SVM classifier. This observation contradicts with the
results reported in the first work that introduced Mocha FMTL
framework [3]. We believe, the low-skew in the datasets used

2https://dataverse.harvard.edu/
3https://archive.ics.uci.edu/ml/machine-learning-databases/00366/

in our experiments would have favoured the global SVM
classifier in this particular context.

Model UNSW-NB15 Gas Sensor Human Activity

Global 99.96 56.53 75.32

Local 82.17 50.23 73.69

Mocha 83 50.85 73.93

Network Lasso 100 61.89 76.7

TABLE I: Average prediction accuracy (%) of the evaluated models.

Meanwhile, the experiments we conducted on testing the
communication efficiency of the two approaches revealed that
the number of iterations needed by NL framework to reach
an arbitrary ε-accuracy is much less than that of Mocha
FMTL framework atop both UNSW-NB15 and Human Ac-
tivity Recognition datasets. The remaining dataset, however,
showed almost comparable characteristics for both NL and
Mocha FMTL approaches (Fig-4). As per the Fig-4, NL
exhibited better accuracy than its counterpart even within
on the intermediate iterations of the algorithm, well before
reaching its desired convergence criteria.

NL carries two key parameters in the form of λ, which
enforces clustering among the prediction models trained by
MEC environments, and ρ, which forces a significant impact
on the convergence of the underlying optimization framework
[4]. In our experiments, we inferred a suitable value λ that
reduced the cross-validation error and used ρ = 1.0 as a
suitable default value. However, these parameters being data-
dependent (and therefore, are application-specific), inferring
appropriate values for them through hyperparameter tuning
strategies such as cross validation is challenging due to the
distributed nature in which data is accumulated. Therefore, a
more pragmatic approach that fits into the characteristics of
MEC-based systems would be to run NL framework on its
regularization path as described in [4], which comes at a cost
of a lesser communication efficiency. In other words, starting
from λ=0 or other suitable initial value (as recommended in
[4]), we can run NL framework once per given value of λ
while monotonically increasing its value. Once Algorithm-2
converges for a given value of λ, it is then restarted with λ
suitably incremented. The hope is that, with such a strategy,
we attempt a warm-start (i.e. using the the optimal solution
achieved in the previous run of the algorithm as the initial
point for the next run.) towards an optimal solution at each
incremented value of λ, which can reduce the number of
iterations needed for the algorithm to converge. In contrast,
running Mocha FMTL in a distributed setting tends to be quite
straight-forward primarily due to the fact that it has fewer
hyper-parameters that need tuning.

Furthermore, an emerging class of machine learning appli-
cations in the context of MEC-based IoT systems is using
non-convex deep learning models to allow predictive analytics
on many real-world applications [16]–[18]. Even though both
Mocha FMTL and NL parallized by ADMM frameworks do
not support such non-convex deep learning models out-of-



Fig. 4: Rate of convergence against the number of communication iterations for all datasets evaluated.

the-box, there can be an opportunity to support convexified
variants of them, with suitable trivial extensions to the un-
derlying algorithmic framework [3]. However, in the context
of regularized loss minimization, the network lasso penalty
(‖wj − wk‖2 in problem (3)) is likely to generate better
results predominantly upon robust and stable updates to model
parameters (wj , wk) at each iteration of the Algorithm-2. In
the face of highly stochastic models trained in a distributed
manner where model parameters shared by each distributed
model at every iteration tend to be unstable, there can be
a possibility that such a regularizer might slow-down the
convergence of the underlying algorithmic framework.

In conclusion, it is evident from the empirical results above
that the better machine learning framework between Mocha
FMTL and NL frameworks in the context of MEC-based
IoT environments depends on multiple factors. However, the
obtained results suggest that NL outperforms Mocha FMTL
framework not only in terms of prediction performance, but
also the number of communication iterations needed in order
to reach a given accuracy bound. Mocha FMTL framework,
meanwhile, promises vital features such as fault tolerance,
straggler avoidance and minimal need of parameter tuning, in
the core of its algorithmic framework. This greatly enhances its
adaptability to dynamic environments such as MEC-based IoT
environments. Having considered the aforementioned aspects,
in a more general context, it can be concluded that the NL
framework is a better choice to tackle the challenges in MEC-
based IoT environments.

VII. CONCLUSIONS AND FUTURE WORK

We analysed the strengths and weaknesses of FMTL and NL
paradigms and comprehensively compared their performances
in MEC-based IoT environments. The results demonstrated
that, even though Mocha FMTL framework has a collection
of promising features, NL is a better fit in the MEC-based
IoT environment due to its higher prediction performance
and comparatively lower number of communication iterations
needed to achieve the expected accuracy. In the future, we plan
to improve NL in terms of the used machine learning model
and task grouping based on our previous works [19] [20].
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