2208.05736v1 [csLG] 11 Aug 2022

arxXiv

Learning Point Processes using Recurrent Graph
Network

Saurabh Dash
saurabhdash@gatech.edu

Abstract—We present a novel Recurrent Graph Net-
work (RGN) approach for predicting discrete marked
event sequences by learning the underlying complex
stochastic process. Using the framework of Point Pro-
cesses, we interpret a marked discrete event sequence
as the superposition of different sequences each of
a unique type. The nodes of the Graph Network
use LSTM to incorporate past information whereas
a Graph Attention Network (GAT Network) intro-
duces strong inductive biases to capture the interaction
between these different types of events. By changing
the self-attention mechanism from attending over past
events to attending over event types, we obtain a
reduction in time and space complexity from O(N?)
(total number of events) to O(|)|*) (number of event
types). Experiments show that the proposed approach
improves performance in log-likelihood, prediction and
goodness-of-fit tasks with lower time and space com-
plexity compared to state-of-the art Transformer based
architectures.

I. INTRODUCTION

Discrete event sequences are ubiquitous around us - hos-
pital visits, tweets, financial transactions, earthquakes, hu-
man activity. These sequences are primarily characterized
by the event timestamps however, they can also contain
markers and other additional information like type and
location. Often these sparse observations have complex
hidden dynamics responsible for them and when observed
thorough the lens of Point Processes, these sequences can
be interpreted as realization of an underlying stochastic
process [I]. This underlying point process can be a simple
stochastic process like a Poisson process or could be doubly
stochastic and have dependencies on both time and history
like the Hawkes process [2].

Traditionally these processes have been described using
simplified historical dependencies. The Hawkes process as-
sumes additive mutual excitation however, these underly-
ing assumptions are not valid for practical real world data.
Recent works seek to leverage the advances in deep learn-
ing to relax these restrictions by defining a rich, flexible
family of models to incorporate historical information [3],
[, [B], [6], [7]. Recurrent Neural Network (RNN) [3], [4],
[7] and Transformer based [5], [6] architectures have been
explored to capture historical dependencies to better pre-
dict the time and type of future events compared to a pre-
specified Hawkes Process. However, shallow RNNs only
capture simple state transitions and multi-layer RNNs
are difficult to train. On the other hand, Transformer

Xueyuan She
xshe6@gatech.edu

Saibal Mukhopadhyay
saibal@ece.gatech.edu

based approaches are highly expressive and interpretatable
but the multi-headed self-attention mechanism consumes
exorbitant amounts of memory for large sequences.

Our novel approach simultaneously solves the problems
faced by the above approaches. An entire discrete event
sequence with marks can be interpreted as a superposition
of multiple sequences each only containing events of a
single unique marker. We process the evolution of each
of these unique event type sequences with an LSTM [§].
These different LSTM hidden states are then used to
generate a dynamic relational graph and model complex
dependencies between event types using a Graph Atten-
tion Network [9] as shown in figure I} A key innovation
of our architecture lies in attending over event types
instead of all past events. This leads to reduction in space
(memory) and time (number of computations) complexity
as instead of calculating attention over all past inputs -
which can get prohibitively expensive as the sequences
get longer O(N?), we attend over event types to obtain
a time-varying attention matrix with constant time and
space complexity in the order of O(|YV|?), independent
of the sequence length. Additionally, this time-varying
event attention matrix helps with interpretability as it
encodes the evolution of the underlying relational graph
between event types as new events are observed in the
data stream. To the best of our knowledge, this is the
first time a Recurrent Graph Network using expressive
attention mechanism to encode a dynamic relational graph
is used for learning Point Processes. The advantages of the
proposed method over previous approaches is summarized
in table[ll

The major contributions of this paper are summarised
as follows:

o We present a Recurrent Graph Network (RGN) ap-
proach to learn point processes that uses strong in-
ductive biases to better encode historical information
to model the conditional intensity function.

e We show that the proposed model performs better
in log-likelihood and predictive tasks for multiple
datasets.

e We show that this formulation allows for inter-
pretability of the underlying temporally evolving Re-
lational Graph between event types.

e We show that RGN has lower computational com-
plexity and activation footprint than state-of-the art
Transformer based approaches leading to computa-

mailto:saurabhdash@gatech.edu
mailto:xshe6@gatech.edu
mailto:saibal@ece.gatech.edu

Table I: Comparison with previous approaches

Stack Small

. S Model
Model e ooy Tnterpretability
RMTPP [3] X X
NHP [4] X X
THP [5] X
This work

tion and memory savings.

We perform experiments on standard point process
datasets like - Retweets [I0], Financial Transactions [3],
StackOverflow [II] and MIMIC-II [I2]. In addition to
these, we also introduce a new dataset for benchmarking
point process models extracted from StarCraft II game
replays. The underlying complex stochastic process that
generates this data is the high level strategy that the
players adopt over the course of the game. The Starcraft
II dataset can be found hereE| and the supplementary
materials can be found herd?

Our experiments show that RGN improves over state-
of-the art Transformer Hawkes Process (THP) on log-
likelihood by upto 8%, event type prediction accuracy by
upto 4% and event time error by upto 13%.

II. RELATED WORK

Du et al. [3] propose using an RNN (RMTPP) to encode
the history to a hidden state h; that is used to define the
conditional intensity A*(t) = exp(vTh; + w(t — t;) + b).
Mei & Eisner [4] proposed a novel RNN architecture
- Continuous-time LSTM (CLSTM) which modifies the
LSTM cell to incorporate a decay d when an event is
not observed to a steady state €. Since CLSTM work
in continuous time, there is no need to explicitly feed
the timestamps of the events like RMTPP. However both
models only contain shallow RNNs which only capture
simple state transitions [I3] as multi-layer RNNs are dif-
ficult to train [I4] due to vanishing / exploding gradients.
To alleviate these concerns Zuo et al. [5] and Zhang et
al. [6] make use of multi-headed self attention [I5] based
Transformer architectures to better distill out histori-
cal influence. This allows using multi-layer architectures
to model complex interactions compared to RNN based
architectures, however the O(N?) cost of self attention
computation leads to prohibitively large memory footprint
for longer sequences. Even if a single sequence in a mini-
batch is long, the other sequences have to be zero padded
to match the longest length for batch processing, leading
to a lot of wasted memory and redundant computation.
In contrast, Schur et al. [7] draw upon advances in Nor-
malizing Flows [I16] and propose a mixture distribution
to define a model using the conditional density function
instead of the conditional intensity function. This allows
for the conditional density function to be multi-modal

Thttps://figshare.com/s/c028296e953788b25599
2https://figshare.com/s/7al0a6aa2c0752f2ccal

allowing for much more complex distributions; however,
the historical influence is again encoded with a simple
RNN which leads to degraded performance due to lack
to rich historical information.

Chang et al. [I7] propose a dynamic message passing
neural network named TDIG-MPNN which aims to learn
continuous-time dynamic embeddings from sequences of
interaction data. Although our proposed network also
benefits from learning dynamic graph embeddings, the end
goal of this work is to learn the underlying conditional
intensity function that is responsible for observed data and
not the time-varying interaction graph between different
entities. Moreover, the datasets under consideration here
do not contain any interaction data. The work closest
to the proposed approach is ARNPP-GAT [18]. ARNPP-
GAT divides the representations of users (marks) into
two categories: long-term representation which is modelled
using Graph Attention Layer (GAT Layer) and short-term
representation which is modelled using a Gated Recur-
rent Unit (GRU). Although we use similar blocks, the
architecture of the model is drastically different. ARNPP-
GAT leverages GAT layer to model a time-independent
interaction between users (marks) while the historical
context is modelled by a GRU. These embeddings are
then combined for predicting the time and location of next
event. On the other hand, RGN uses GAT layers at every
time-step to model a dynamic relational graph between
different event types. Moreover, we also use an additional
log-likelihood loss term which encourages the model to
learn the underlying stochastic process better.

III. BACKGROUND
A. Point Processes

A temporal point process is a stochastic process com-
posed of a time series of events that occur instantaneously
in continuous time [I], [I9]. The realization of this point
process is a set of strictly increasing arrival times 7 =
{t1,...,tn}. We are interested in a Marked Point Process
where each event also has an associated marker y €).
In real world data, event probabilities can be affected by
past events, thus the probability of an event occurring in
an infinitesimally small window [¢,¢ + dt) is called the
conditional intensity *(t) = X (t|H:). H; denotes the
history {(¢',y’) € 7|t' < t}. The * symbol represents
the dependence on history. Given the conditional intensity
function, the conditional density function can be obtained
as shown in Eq. [I| below [20].

PO =30 oo (- [t N (5) 1)

n

B. Recurrent Networks

Recurrent Networks are autoregressive models that can
incorporate past information along with the present input
for prediction. RNNs and its modern variants LSTM [§]
and GRU [21I] have shown remarkable success in sequence

modelling tasks like - language modelling [22], [23], video
processing [24] and dynamical systems [25]. At each time
step, an input %; is fed into the model with the past
internal state information h;. The internal state is updated
and used to predict the output o;.

C. Graph Networks

Graph Networks (GN) [26] describe a class of functions
for relational reasoning over graph structured data. These
take in a graph structured data denoted by the 3-tuple
(u,V, E). u denotes the global attributes, V := {v;}}\ de-
notes the set of node attributes and F = {(e;, 1, sx) ¥,
denotes the set of edges of a graph where ey is the edge
attribute, r; is the receiver node and s, is the sender node.

A full GN block enables flexible representations in terms
of representation of attributes and in terms of structure of
the graph and can be used to describe a wide variety of
architectures [9], [I5]. The main unit of computation is the
GN block which performs graph-to-graph operations. The
GN block takes a graph structure as an input, performs
operations over the graph and outputs a graph.

A full GN block contains three update functions ¢ and
three aggregate functions p [26]:

e;c = ¢°(ex, Urps Usys u) (2)
v; = ¢" (€}, vi,u) (3)
u = ¢" (e, v, u) (4)
e; = p" " (E;) ()
& =) ©)
o = (V) Y

where, E] = {(e%,rk,sk)}fqie:i’k:l is the set of all up-
dated edge attributes that have node ¢ as the receiver,
V' = {v;} is the set of updated node attributes and
E' =, B! = {(ex, 7k, sk) } 5, is the set of updated edge
attributes. The update functions ¢ are shared across the
nodes and edges allowing for a reduction in parameter
count and encouraging a form of combinatorial gener-
alization [26]. These can be any arbitrary functions or
more generally parameterized using a Neural Network
architecture like - Multi Layer Perceptron (MLP) or incor-
porate past information using a Recurrent Neural Network
(RNN). On the other hand, p are permutation invariant
aggregation functions which take a set of inputs and reduce
them to a single aggregate element, for example max or
mean.

IV. PROPOSED ARCHITECTURE
A. Recurrent Graph Network for Learning Point Processes

An entire discrete event sequence with marks can be
interpreted as a superposition of multiple sequences each
only containing events of a single unique marker. Using the
input sequence, we build a fully connected graph with |Y|
nodes, each containing a latent embedding for a specific
type marker which allows us to understand how different

event types influence future events. As we are building a
relational graph from non-graph structured inputs, the re-
lational information in the graph is not explicit and needs
to be inferred. This relational graph has node attributes
and edge weights evolving with time as new events are
observed. Thus in a sequence S;, with Nt events, we can
interpret the relational graph undergoing Np transitions
which can be processed naturally using a Recurrent Graph
Network. We are interested in predicting the conditional
intensity A*(¢) which is a global property, which makes the
Recurrent Graph Network a graph focused Graph Network
[26].

At each event (t;,y;) in an event sequence S, the inputs
to the model are the previous node attributes {v} | }‘;;'17
v € R% and the input embedding @;,. Once a new
event is observed, there are three types of updates that
take place:

1) Input-to-Graph Update: Each unique-marked se-
quence is assigned a designated graph node for processing.
When an event of a particular type is observed, we want
to first update the node attribute corresponding to this
marker. This is performed using an LSTM [8]. The LSTM
corresponding to node y; updates its node attribute vy’
using the previous node attribute v | and =, using the
following equations, while the rest of the node attributes
remain unchanged in this update.

t, =o(Wiz, + Ufvyl | +bY%) (8)
off = o(Wixy, + Ulvll | +b) (9)
o)l =o(Wlx,, +Ulv]' +bl) (10)
g{i = tanh(Wlx;, + UYv]' +b)) (11)
o = fioch +uliogh (12)
v{’ = o’ o tanh(c{’) (13)

2) Graph-to-Graph Update: Once the node attribute vy’
corresponding of the observed event type y; node has been
updated, information needs to be propagated to other
nodes to update the node attributes. For this purpose,
we propose using Graph Attention Network (GAT) [9]
as the attention mechanism can be used to assign edge
weights not explicitly present in the relational graph using
the node attributes. In this section, we express the Graph
Attention Layer [9] in terms of Graph Network [26] op-
erations. For notational simplicity, we drop the temporal
dependence of node attributes v} at current time ¢; and
represent them with v,.

Edge Update: The edge update function ¢¢ only uses
the node attributes of the sender node s and receiver node
7, and outputs a scalar a, € RT, vector b), € R tuple.
NN represents a multi-layer perceptron (MLP).

e;c = (a;e’ b;c) = ¢e(ekv vrvak’u) = fe(kavak) (14)
aj, = exp(NNy ([NNg (v,), NN (vs,)])) (15)
b, = NNg(vs,) (16)

| .

Figure 1: Updates in Recurrent Graph Network: (a) Input-to-Graph: The model observes an input event, using the
past node attributes, updates event node.(b) Edge Update: Based on the updated node, edge updates are calculated
using attention mechanism.(c)Node Update: Nodes are updated using edge aggregation.(d)Global update: Updated
node attributes are passed through an MLP to predict the conditional intensity, type of next event, and time of next
event.(e) Propagation: Current node attributes are again fed back to the model as past history when a new event is
observed. The red and green lines are the observed events sequentially appearing in time.

Edge Aggregation: a), and b are then used by the
aggregation function p¢~? to aggregate the edges which
have node i as the receiver into &, € R%. The scalar terms
aj, are normalized to obtain the attention scores, which are
used as the weights for weighted element-wise summation
of bj,.

1
e =B s > ab (17)
k:T‘}C 1

=i kirp=1

Multi-headed Attention: The edge update and
aggregation steps can be performed independently Np,
times simultaneously on the same input. We observed this
improves the performance of the model similar to the
results observed by Velickovié et al. [9] as it allows the
network to jointly attend to input projections in various
representation subspaces [I5]. All the Nj different edge
updates é;h corresponding to different attention heads
are concatenated into one single vector &, € RNwxde,
~/ _ 1=11 —/Np,
e, =le;,...,e "]

Node Update: Node attributes v; € R% are updated
by passing the multi-headed edge aggregation €, through
an MLP NN,,.

) = ¢' (e, vi,u) = f({e})

3) Global Update: Once the node attributes are up-
dated, we concatenate all the node attributes and pass
it through an MLP NN, to obtain a global attribute

=NN, (&) (18)

u' € R% which is used to ?redict - conditional intensity
for all event types A; € R‘ type of next event ¢;,.1 € Y
and time of the next event f;41 € (t;,00). This global
attribute represents the history H; upto time ¢;. We add
t; in subscript to convey the temporal dependence of this
global attribute.

uy, = u' = ¢"(e,v,u) = NN, ([v}, .., v]y]) (19)
§i4+1 = arg max Softmax (NN, (uy,)) (20)

y
fiv1 = NNy(uy,) (21)

We define our model in terms of conditional intensity
due to its simplicity. As it is not a probability density, the
only restriction is that it has to be non-negative. Moreover,
it need not sum up to 1 unlike the conditional density.
The conditional intensity of a Hawkes process is defined at
every point t € R, however, equationonly outputs the
hidden representations at the timestamps in the observed
sequence. To interpolate the conditional intensity A* to the
time when an event does not occur, we use the expression
proposed by Zuo et al. [5].

|V
~ Y X0 (22)
A, (t) = Softplus(a, (u,)y + By) (23)

The softplus function guarantees that the A} are non-
negative. The first term of equation [23] represents the

contribution of the current event time towards the future
and ay, is a hyperparameter. The second term is the history
term that encodes how the history #; of observed events
influence the conditional intensity of a certain event type.
The last term J3, incorporates the base intensity of the
point process in the absence of events

Updated node attributes {v] } ~, now become the

previous node attributes {vf }l ‘1 when the next event
(tit1,Yiv1) is processed by the model. The entire infor-
mation flow is illustrated in Fig.

B. Input Embedding

Although RNN allows for a natural ordering in the
processing of inputs, as the arrival of the events is not
uniform, temporal information needs to be explicitly fed
to the model. Directly feeding the time ¢; causes issues as
The input value increases unbounded or the model may
not see any sequence with one specific length which would
hurt generalization. To overcome this issue, we follow the
positional embedding proposed by Vaswani et al. [I5]. The
trigonometric functions ensure that the input embedding
x;. € R% ig bounded and deterministic which enable

i

generalization to longer sequences of unseen lengths.

C. Learning Objectives

Log-Likelihood: We use maximum likelihood estima-
tion (MLE) to learn the parameters of the model. For a
sequence S; = {(t;,y;) | t; < T, j € {1,...,L;}}, the
log-likelihood of observing the sequence is given by:

Zlog)\ / N (

The first term in the log-likelihood expression Eq.
is the log-likelihood of an event occurring at times t;, we
would like this term to be as large as possible. Whereas,
the second term signifies the log-likelihood of no events
occurring in the times ¢ other than ¢;. We would like this
term to be as small as possible.

As the sequences S; in the dataset are assumed to be
i.i.d, the loss function to be minimized is the negative
of the sum of the log-likelihood over all sequences L) =

- 25 US)

The integral A = fOT A*(t) dt in Eq. ﬁ does not
have a closed form solution and needs to be numerically
approximated. We use the Monte Carlo estimate [27] given
in the supplementary material.

Event Prediction: We are also interested in predicting
the type of the next event, we additionally impose a
cross-entropy loss term that penalizes when the model
mispredicts the type of the next event. For an event
(tj,y5), let y; € Rl be the one-hot encoding of the event
type Y- Hence the next event prediction loss is given by:

e S 4T log (NN, (u,)).

Tlme PI’edlCthIl Apart from event prediction, we

also want the predicted time of the next event to be

(24)

close to the ground truth. Time of the next event is a
continuous value that needs to be estimated thus we use an
L2 penalty to reduce the Mean Squared Error (MSE). The

time prediction loss is given by: £; = Zf\g f;2 It;—1;]2.
V. EXPERIMENTS

A. Datasets

Retweets(RT) [10]: This dataset contains sequences
of tweets where each sample has a sequence of tweets of
different users.

StackOverflow(SO) [11]: The StackOverflow dataset
contains sequences of awards that users were awarded for
answering questions on the StackOverflow website. The
markers for the events are the various different awards.

MIMIC-II [12]: MIMIC-II dataset contains the vis-
itation of various patients to a Hospital’s ICU. Each
sample represents a patient and the events markers are
the diagnosis.

Financial Transactions [3]: This dataset contains
the transaction records for multiple stocks on a single day.
The different events are buy and sell orders at various
timestamps.

StarCraft II(SC-II): We introduce a new dataset
for benchmarking various discrete event models. Each
sequence is a “build-order” which represents a temporally
ordered list of various buildings built by the players over
the course of a game. The strategy of the players is the
underlying complex stochastic process that generates this
data. Each sequence in the dataset is an entire Protoss
vs Protoss game. Additional details are presented in the
supplementary material.

B. Setup

Here we describe the architectural choices we make for
various update function. In aj, NN, = NNg is simply
a linear projection W € R%*de NN, is a single fully
connected (FC) layer with leakyReLU [9] non-linearity.
NN, is a linear projection from RN»*de to R4 . NN,
uses a single FC layer with ReLLU non-linearity whereas
NNy, NN; and NN are simple linear projections of size
R&xIVI Rdux1 and R%&*IYl respectively.

We are interested in the thee evaluation metrics - Log-
likelihood, event class prediction accuracy and event time
prediction error. We also evaluate these metrics for -
Transformer Hawkes Process (THP) [5], Recurrent Marked
Temporal Point Process (RMTPP) [3] and Neural Hawkes
Process (NHP)[4] for comparison. For a fair comparison,
we optimize these models using the same objective as
ours and for each evaluation metric we pick the model
parameters which lead to the best performance on the
validation set. Additional training details are included in
the supplementary material.

C. Likelihood

In this section, we use log-likelihood as an evaluation
metric as done in previous works [7], [6], [5], [E], [3]. A

PNV S WNREO
N USWNKHO

01234567 8 9101112131415

PNV A WNKEO
N UAWNKEO

©
©

10
11
12
13
14
15

B e e e
2 WN O

-
[

012345678 9101112131415

012345678 9101112131415

01234567 8 9101112131415

0.070

0
1
2
3
4
5
6
7
8

0.068

012345678 9101112131415

- 0.066

0.064

ONOUAWNKEO

9
10
11
12 4
134 [0.062
14 4
15 1

Figure 2: Visualization of various attention heads (row) for different timestamps (column)

Table II: Log-Likelihood Comparison.

Model RT SO MIMIC-II Financial SC-IT
RMTPP | -8.8 -0.73 -0.39 -1.71 1.09
NHP -8.24 -2.41 -1.38 -2.60 -0.81
THP -7.80 -0.73 0.86 -1.53 1.04
This work |[-6.76 -0.56 1.00 -1.26 1.50

Table III: Event Prediction Accuracy Comparison.

Model RT SO Financial MIMIC-IT SC-II
RMTPP |49.89 43.49 60.29 59.91 44.25
NHP 48.82 42.81 61.20 76.21 41.14
THP 50.43 43.23 61.67 80.14 43.33
This work |54.42 45.46 61.69 77.34 47.31

higher log-likelihood score would imply that the model can
approximate the conditional intensity function *(¢t) well.
Table [[I] shows the log-likelihood results. We can see that
RGN beats THP in log-likelihood across all the datasets.

D. Event Type Prediction

We are also interested in the predictive performance of
the model to predict the type of next event. To improve
the performance of the model on this evaluation metric, we
added an extra event type prediction loss £, in addition
to the standard log-likelihood objective. The results are
presented in table [[TI} Unlike the log-likelihood results, we
see that although RGN has better predictive performance
than THP on most of the datasets, it performs worse on
the MIMIC-II dataset.

E. Event Time Prediction

To improve the performance of the model on this eval-
uation metric, we added an extra event time prediction

Table IV: Time Prediction L2 Error Comparison.

Model RT SO MIMIC-II Financial SC-II
RMTPP | 16899.72 144.34 3.42 26.95 1.48
NHP 17672.54 144.72 3.17 27.88 1.51
THP 16616.13 140.20 0.87 25.75 1.39
This work |15999.68 121.50 1.026 25.37 1.25

loss £; in addition to the standard log-likelihood objective.
Table shows the Root Mean-Squared Error (RMSE)
of the proposed approach compared to the baselines. The
lower the RMSE, the better the performance of the model.
We observe that RGN outperforms THP in four of the
five datasets however THP again performs better on the
MIMIC-IT dataset.

F. Goodness of Fit

We would like to verify that the model describes the
structure present in the data accurately however it is
difficult to work with non-stationary and history depen-
dent distributions present in real world data. The Time-
Rescaling Theorem [28] states that any point process
with a conditional intensity function can be mapped to
a Poisson Process with unit parameter. Alongside the
Time-Rescaling theorem, we can use the learnt conditional
intensity function to obtain transformed variables z; which
are independent and should be exponentially distributed
with rate 1. Since the cumulative distribution function
(CDF) of the target distribution is known, we can use P-P
plots to measure the deviation from this ideal behaviour.
P-P plots plot the empirical CDF with the actual CDF
which should be a straight line equally inclined to both the
axes. Fig. [3] shows the P-P plots for our Recurrent Graph

Network (RGN) (above) and Transformer Hawkes Process
(THP) (below) for three different datasets. It can be seen
that for all the three cases, the P-P plot for THP has
substantially larger deviations from the expected straight
line whereas Recurrent Graph Network (RGN) is remains
close to the straight line. This shows that RGN better
learns the structure in the data compared to state-of-the-
art THP.

G. Model Interpretability

The ability to incorporate structure using Recurrent
Graph Network helps in making the deep learning model
more interpretable. The formulation of our model allows
us to see the event-class dependency i.e how a certain class
i depends on a certain class j whenever an event occurs
allowing us to study the dynamics of inter-class influence
as the event stream is observed. Moreover, incorporating
multi-headed mechanism allows the model to attend to dif-
ferent information in different subspaces. Fig [2| shows the
visualization of two attention heads in the model at three
different event timestamps for the StarCraft II dataset.
A lighter intensity corresponds to lower attention while
a more pronounced color corresponds to higher attention
score to a node. Other transformer based models [5], [6]
have to average out the attention scores over all events to
find attention over event classes thus losing out on crucial
temporal information. Although the model allows us to
study inter-class dependency at event timestamps, we can
easily extend it to continuous time by using spline-based
interpolation [29] or other interpolation techniques.

H. Ablation Studies

We conduct ablation experiments to understand the
impact of number of attention heads in the multi-headed
attention mechanism of Graph Attention Network. We
keep the sizes of all the parameters of the model fixed,
and only vary the number of attention heads. The eval-
uation metrics of interest are Log-likelihood, Event type
prediction accuracy and Event time prediction error. In
addition, we also study the case where the GAT module
is completely removed to study the improvement that
inclusion of the GAT module brings over a fully LSTM
based model.

The result for the experiment on the StarCraft II
dataset is shown in table [V} As shown in figure [2] various
attention heads in the model attend to different features
and table [V] confirms our hypothesis that doing so im-
proves the performance of the model especially on the
log-likelihood metric. We also notice a stark drop in model
performance when the graph attention module is removed.

1. Reduction in Computational Complexity

One of the major drawbacks of Transformer based
approaches is the quadratic order complexity in space
and time. For a sequence with length N, the number of
activations required to store the self-attention matrix is in
the order of O(N?). This problem is further exacerbated

when Transformer layers are stacked or multiple heads
are used. Another issue that arises during implementation
is due to sequence padding of the mini-batch. All the
sequences in the mini-batch are padded with zeros to
ensure they have the same length as the longest sequence
in the mini-batch. All the sequence attention matrices
scale as the square of the longest sequence length in the
mini-batch O(max(N)?) leading to a lot of wasted memory
and redundant computation. In contrast, the attention
mechanism in RGN attends over event types rather than
individual events. This makes the attention matrix scale in
the order of O(]Y|?) instead of O(max(N)?) which leads to
dramatic savings in memory consumed as usually || <<
max (). This also makes the memory consumed by model
independent of the sequence length. Table [VI] shows the
number of activations in the attention mechanism (in Mil-
lions) and total number of operations (MFLOP) for both
the aforementioned models. We report the total number of
operations performed by both models to find the historical
embedding for all events when a sequence with average
length is given from all the datasets. The model hyper-
parameters are described in the supplementary material.
We can see that RGN has lower attention activations and
computations compared to THP for all datasets except for
MIMIC-IT where the trend is reversed. This is due to the
fact that the assumption of |Y| < N fails to hold for small
sequences of average length 4 and a large number of event
classes 75 present in the dataset.

Table [VII] shows the amount of GPU memory used by
the models. We can see that for the Financial Transactions
dataset, only a mini-batch of size 1 can be fit into an
Nvidia RTX2080Ti GPU with 11 Gigabytes of memory.
No such issues were faces for RGN which has a very small
footprint due to the small number of event types - 2 in
the dataset. The trend reverses for the MIMIC-II dataset
where the large number of classes cause RGN to consume
more memory than THP.

VI. CONCLUSION

In this paper, we present a Recurrent Graph Network
to learn the underlying Marked Temporal Point Process
from event streams. Our key innovation was incorporating
structural information using a dynamic attention mech-
anism over event types rather than all past events in
the sequence. This leads to improved performance on log-
likelihood and event prediction metrics. Moreover, it also
leads to reduction in time and space complexity across
almost all datasets. The model improves interpretability
by allowing us to understand the influence of one event

Table V: Sensitivity to number of Attention Heads

Attention Heads| LL |Type Accuracy|Time Error
0 1.03 43.95 1.269
1 1.38 47.00 1.261
2 1.44 47.15 1.259
4 1.49 47.18 1.260
8 1.50 47.31 1.254

Actual COF
Actual CDF

Actual CDF
°
>

°
=

Emperical CDF

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2 0.4

0.6

Emperical CDF

0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Emperical CDF

E / 08

Actual CDF
Actual CDF

Actual CDF

0.0 0.2 0.4 0.6 08 1.0 0.0 0.2
Emperical CDF

(a) MIMIC-TI

0.6

Emperical CDF

(b) StarCraft II

08 10 0.0 0.2 04 06 08 10
Emperical CDF

(¢) StackOverflow

Figure 3: P-P plots for various datasets for this work (above) and THP (below).

Table VI: Complexity Analysis

Dataset Model # C(K/Iml__&u(gé}?)lons # AC&I\){I?UOHS
RT THP 89.88 0.41
This Work 84.10 0.17
30 THP 3209.67 3.03
This Work 409.23 1.83
Financial THP 103294.46 174.58
This Work 1343.42 32.62
THP 2.00 0.017
MIMIC IT by Work 23.21 0.081
SC I THP 1621.84 1.49
This Work 318.58 1.17

Table VII: Peak GPU Memory Usage (GB).

Dataset Batch Size | THP This Work
Retweets 64 2.08 1.03
StackOverflow 16 9.75 3.65
MIMIC-II 64 1.63 5.07
Financial 1 7.15 1.02
StarCraft 11 16 10.29 3.63

type over the others as more events are observed by the
model. We also present a new interesting benchmarking
dataset for point process evaluation.

(1]
2]

3]

(4]

REFERENCES

D. Cox and V. Isham, Point Processes. Routledge, Dec. 2018.
A. G. Hawkes, “Spectra of some self-exciting and mutually
exciting point processes,” Biometrika, 1971.

N. Du et al., “Recurrent marked temporal point processes:
Embedding event history to vector,” pp. 1555-1564, 08 2016.
H. Mei and J. M. Eisner, “The neural hawkes process: A neurally
self-modulating multivariate point process,” in NeurIPS 2017.
S. Zuo et al., “Transformer Hawkes process,” in ICML 2020.
Q. Zhang et al., “Self-attentive Hawkes process,” in ICML 2020.
O. Shchur et al., “Intensity-free learning of temporal point
processes,” in ICLR 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, 1997.

[9]
[10]
(11]
(12]

(13]

14]

[15]
[16]

(17]

(18]

[19]
[20]
[21]
[22]

23]

(24]

[25]

[26]
27]

(28]

29]

P. Velickovi¢ et al., “Graph attention networks,” in ICLR, 2018.
Q. Zhao et al., “Seismic,” SIGKDD 2015.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large net-
work dataset collection.” http://snap.stanford.edu/data, 2014.
A. E. Johnson et al., “Mimic-iii, a freely accessible critical care
database,” Scientific Data, 2016.

Y. Bengio et al., “Learning long-term dependencies with gradi-
ent descent is difficult,” IEEE Transactions on Neural Networks,
1994.

R. Pascanu et al., “On the difficulty of training recurrent neural
networks,” in ICML 2013.

A. Vaswani et al., “Attention is all you need,” in NeurIPS 2017.
D. Rezende and S. Mohamed, “Variational inference with nor-
malizing flows,” in ICML 2015.

X. Chang et al., Continuous-Time Dynamic Graph Learning via
Neural Interaction Processes. 2020.

W. Liang and W. Zhang, “Learning social relations and spa-
tiotemporal trajectories for next check-in inference,” IEEE
TNNLS, 2020.

D. Daley and D. Vere-Jones, An Introduction to the Theory of
Point Processes. Springer-Verlag, 2003.

J. G. Rasmussen, “Lecture notes: Temporal point processes and
the conditional intensity function,” 2018.

J. Chung et al., “Empirical evaluation of gated recurrent neural
networks on sequence modeling,” 2014.

I. Sutskever et al., “Sequence to sequence learning with neural
networks,” in NeurIPS 2014.

K. Cho et al.,, “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” CoRR,
2014.

N. Srivastava et al., “Unsupervised learning of video represen-
tations using lstms,” in ICML 2015.

P. Saha et al., “Physics-incorporated convolutional recurrent
neural networks for source identification and forecasting of
dynamical systems.”

P. W. Battaglia et al., “Relational inductive biases, deep learn-
ing, and graph networks,” 2018.

C. P. Robert and G. Casella, Monte Carlo Statistical Methods
(Springer Texts in Statistics). Springer-Verlag, 2005.

F. Papangelou, “The conditional intensity of general point
processes and an application to line processes,” Zeitschrift fir
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1974.
Hsieh Hou and H. Andrews IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 26, no. 6, pp. 508-517, 1978.

http://snap.stanford.edu/data

	I Introduction
	II Related Work
	III Background
	III-A Point Processes
	III-B Recurrent Networks
	III-C Graph Networks

	IV Proposed Architecture
	IV-A Recurrent Graph Network for Learning Point Processes
	IV-A1 Input-to-Graph Update
	IV-A2 Graph-to-Graph Update
	IV-A3 Global Update

	IV-B Input Embedding
	IV-C Learning Objectives

	V Experiments
	V-A Datasets
	V-B Setup
	V-C Likelihood
	V-D Event Type Prediction
	V-E Event Time Prediction
	V-F Goodness of Fit
	V-G Model Interpretability
	V-H Ablation Studies
	V-I Reduction in Computational Complexity

	VI Conclusion
	References

