
Fault Tolerant Distributed Coloring Algorithms That Stabilize in Linear Time

Stephen T. Hedetniemi
Department of Computer Science

Clemson University
Clemson, SC 29634–0974, USA

David P. Jacobs
Department of Computer Science

Clemson University
Clemson, SC 29634–0974, USA

Pradip K. Srimani
Department of Computer Science

Clemson University
Clemson, SC 29634–0974, USA

Abstract

We propose two new self-stabilizing distributed algo-
rithms for proper�+1 (� is the maximum degree of a node
in the graph) coloring of arbitrary system graphs. Both
algorithms are capable of working with multiple types of
demons (schedulers) as is the most recent algorithm in [1].
The first algorithm converges in O(m) moves while the sec-
ond converges in at most n moves (n is the number of nodes
and m is the number of edges in the graph) as opposed to
the O(� � n) moves required by the algorithm [1]. The
second improvement is that neither of the proposed algo-
rithms requires each node to have knowledge of �, as is
required in [1]. Further, the coloring produced by our first
algorithm provides an interesting special case of coloring,
e.g., Grundy Coloring [2].

1 Introduction

Robustness is one of the most important requirements
of modern distributed systems. Different types of faults are
likely to occur at various parts of the system. These systems
go through the transient states because they are exposed to
constant change of their environment. In a distributed sys-
tem the computing elements or nodes exchange information
only by message passing. One of the goals of a distributed
system is that the system should function correctly in spite
of intermittent faults. In other words, the global state of the
system should ideally remain in the legitimate state. Of-
ten, malfunctions or perturbations bring the system to some
illegitimate state, and it is desirable that the system be au-
tomatically brought back to the legitimate state without the
interference of an external agent. Systems that reach the le-
gitimate state starting from any illegitimate state in a finite

number of steps are calledself-stabilizing systems [3, 4].
This kind of property is highly desirable for any distributed
system, since without having a global memory, global syn-
chronization is achieved in finite time and thus the system
can correct itself automatically from spurious perturbation
or failures.

2 Self-Stabilization – A Paradigm for Dis-
tributed Fault Tolerance

There are different existing approaches towards design-
ing fault tolerant software like N-version programming, re-
covery blocks, consensus recovery blocks, etc. But design
of fault tolerant software or algorithms has been tradition-
ally investigated in the context of particular applications,
system architectures as well as specific technologies. As a
result we have different models and techniques for differ-
ent applications and there is no simple way to verify these
fault tolerant systems. Also, the basic approach in design-
ing fault tolerant software has traditionally been to mask or
tolerate design faults in the software itself.

The common approach to design the fault tolerant sys-
tems is to mask the effects of the fault; but, fault masking
is not free; it requires additional hardware or software and
it considerably increases the cost of the system. This addi-
tional cost may not be an economic option, especially when
most faults are transient in nature and a temporary unavail-
ability of a system service is acceptable.Self-stabilization is
a relatively new way of looking at system fault tolerance. It
provides a “built-in-safeguard” against “transient failures”
that might corrupt the data in a distributed system.

In this paper we propose two simple, yet very effi-
cient, self-stabilizing algorithms that find proper color-
ings in an arbitrary graph. Self-stabilizing algorithms for
proper coloring of graphs has been studied in the literature

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

psriman
Proceedings of the IEEE IPDPS-2002 Workshop on Advances in Parallel and Distributed Computational Models, Orlando, Florida, April 2002.

[8, 9, 10, 11, 1]. For example, [9] gives a self-stabilizing
algorithm to 2-color any bipartite graph. And in [8], the
authors describe a self-stabilizing algorithm to 6-color any
planar graph. Obviously the bipartite algorithm is optimal
and the planar algorithm is close to optimal, given that all
planar graphs are 4-colorable. But, the authors do not pro-
vide any complexity analysis. Only a recent paper of Grad-
inariu and Tixeuil [1] gives a self-stabilizing algorithm that
finds in any graph a(� + 1)-coloring, and which has a
worst-case analyses ofO(� � n) moves; one drawback of
this algorithm is that each node must know the value of�.
Our first (� + 1)-coloring algorithm, Algorithm 3.1, has
three advantages: (1) no node must know the value of�
(as opposed to the requirement in the algorithm of [1]); (2)
the algorithm converges inO(m) moves (m is the number
of edges in the graph) compared toO(� � n) moves of
[1]; (3) the coloring obtained by the algorithm is always a
Grundy Coloring [2] of the graph. We then propose another
(� + 1)-coloring algorithm, Algorithm 3.2; this algorithm
stabilizes in at mostn moves. Algorithm 3.2 appears to be
faster than other known self-stabilizing(� + 1)-coloring
algorithms.

The objective of self-stabilization is (as opposed to mask
faults) to recover from failure in a reasonable time and with-
out intervention by any external agency. Self-stabilization
is based on two basic ideas: first, the code executed by
a node is re-entrant and incorruptible (as if written in a
fault resilient memory) and transient faults affect only data
locations; second, a fault free system behavior is usually
checked by evaluating some predicate of the system state
variables. Every node has a set of local variables whose
contents specify the local state of the node. The state of
the entire system, called theglobal state, is the union of
the local states of all the nodes in the system. Each node
is allowed to have only a partial view of the global state,
and this depends on the connectivity of the system and the
propagation delay of different messages. Yet, the objective
in a distributed system is to arrive at a desirable global final
state (legitimate state).

The set of all possible global states is divided into two
disjoint sets: the error free or thelegitimate states, and
the erroneous states or theillegitimate states. The self-
stabilization paradigm assumes that each node computes a
predicate of its own local state and its neighbors’ states (a
predicate that would use other node states than the neigh-
bor node states requires an underlying routing protocol to
be implemented). When an inconsistent state is detected, a
common approach in centralized systems is to force the sys-
tem to a well defined state by a hardware reset or a power-
cycle. This is often not an option in distributed systems that
may cover a large geographical area. In a self-stabilizing
system, when a node detects a local inconsistency, it takes
a local action (a node can modify only its own states) in an

attempt to correct the error. This node becomes locally con-
sistent, but some of its neighbor nodes may become incon-
sistent (which were locally consistent before the action) and
this ripple effect may propagate the entire system. A system
state is globally legitimate when each node is locally legit-
imate or consistent. An algorithm is self-stabilizing if for
any initial illegitimate state it reaches a consistent state after
a finite number of node moves. A distributed system run-
ning a self-stabilizing algorithm is called aself-stabilizing
system.

In general, a node is triggered into action when a lo-
cal inconsistency is detected; hence, in a legitimate system
state no node may move. However, there are many services
(provided by distributed systems) that require the system to
change its state continually. A classical example is the to-
ken circulation for a distributed mutual exclusion algorithm.
In a legitimate state, a node with a token selects one of its
neighbors to pass on the token. If the system is in a ille-
gitimate state, at least one node detects the error and takes
corrective action. Thus, the error recovery procedure is in-
tegrated in the normal algorithm function. An algorithm
is then self-stabilizing if (i) for any initial illegitimate state
it reaches a legitimate state after a finite number of node
moves, and (ii) for any legitimate state and for any move
allowed by that state, the next state is a legitimate state.

A self-stabilizing system does not guarantee that the sys-
tem is able to operate properly when a node continuously
injects faults in the system (Byzantine fault) or when the
communication errors occur so frequently that the new le-
gitimate state cannot be reached until the new communica-
tion error. While the system services are unavailable when
the self-stabilizing system is in an illegitimate state, the re-
pair of a self stabilizing system is simple; once the offend-
ing equipment is removed or repaired the system provides
its service after a reasonable time.

In a self-stabilizing algorithm, a node may change its lo-
cal state by making amove (specification of an action). Al-
gorithms are given as a set of rules of the formp(i)) M ,
wherep(i) is a predicate andM is a move. A nodei be-
comesprivileged if p(i) is true. When a node becomes
privileged, it may execute the corresponding move. We as-
sume a serial model in which no two nodes move simul-
taneously. A central daemon selects, among all privileged
nodes, the next node to move. If two or more nodes are priv-
ileged, we cannot predict which node will move next. Mul-
tiple protocols exist [5, 6, 7] that provide such a scheduler;
hence our algorithms can be easily combined with any of
those protocols to work under different schedulers as well.
An execution will be represented as a sequence of moves
M1;M2; : : :, in whichMs denotes thes-th move. The sys-
tem’s initial state is denoted bys0, and fort > 0, the state
resulting fromMt is denoted byst.

2

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

3 Self-Stabilizing Coloring Algorithms

We model a distributed system with an undirected con-
nected graphG = (V;E), where the node setV repre-
sents the processors, and the edge setE represents the pro-
cessor interconnections. Throughout this paper we assume
j V j= n andjE j= m. If i is a node, thenN(i), its open
neighborhood, denotes the set of nodes to whichi is adja-
cent. Every nodej 2 N(i) is called aneighbor of nodei.
We letdi =jN(i) j, the number of neighbors of nodei, or
its degree, and we let� = maxfdi j i 2 V g.

Given a graphG = (V;E), a k-coloring is a function
c : V ! f1; 2; : : : ; kg, where the elements in the range
are calledcolors. A nodei is properly colored if for all j 2
N(i), c(i) 6= c(j), andc is aproper coloring if all nodes are
properly colored. A graphG can be properly colored with
k colors if and only if its node set can be partitioned intok
pairwise disjoint independent sets. The minimum number
of colors needed to properly color a graphG is called its
chromatic number, denoted�(G), and is, in general, NP-
hard to compute [12, 13].

3.1 Grundy Colorings

Given a coloringc : V ! f1; 2; : : : ; kg, a nodei is
called aGrundy node if

c(i) = minf` � 1 j (8j 2 N(i))(c(j) 6= `)g:

That is,i is colored with the smallest color not taken by any
neighbor. Note that a Grundy node is by definition properly
colored. If c(i) = 1, and if i is properly colored, then,
trivially, it must be a Grundy node. AGrundy coloring is
one in which every node is a Grundy node. While this idea
seems to have originated in [14], a more recent discussion
of Grundy colorings, with more references, can be found in
[2].

If a Grundy coloring usesk colors, then any nodei,
colored k, must have exactlyk � 1 neighbors colored
1; � � � ; k � 1 and hence the degree of the nodei is k � 1.
It follows that

�(G) � k � �+ 1:

However, it is known that the number of colors in a Grundy
coloring can be arbitrarily larger than�(G). For example,
all trees can be 2-colored, yet for any positive integerk,
there exists a tree (whose order is exponential ink) that can
be Grundy colored withk colors.

Despite this potential worst case behavior, there are good
reasons to seek Grundy colorings. First, any graphG has a
Grundy coloring which uses�(G) colors. And on average,
a Grundy coloring does fairly well. It is known that for
random graphs in which each node pair is assigned an edge

with probability 1

2
, a Grundy coloring will use about twice

as many colors as are necessary [15].
We propose a self-stabilizing algorithm to produce a

Grundy coloring for an arbitrary graph of ordern. In this
algorithm, each nodei maintains a single integer variable
c(i), its color, where1 � c(i) � di + 1. The algorithm,
given below, has a single rule, namely if a node’s color
is different than the first positive integer not taken by any
neighbor, then it chooses that color instead.

Note thatc(i) is changed whenever a nodei executes
ruleR, so we say a move isincreasing if c(i) increases, and
decreasing otherwise. The following lemma is clear.

Lemma 1 After any move made by node i, 1 � c(i) �
di + 1.

A main idea in our analysis is to bound the number of
decreasing moves that each node can make. In the next
lemma, we speak of a nodeimaking a sequence ofconsecu-
tive decreasing moves. We mean here simply that there is no
intermediate increasing move made byi, but there could be
intermediate moves (either increasing or decreasing) made
by other nodes.

Lemma 2 A node i can make at most di + 1 consecutive
decreasing moves.

Proof: This follows from Lemma 1. 2

Lemma 3 A node can make an increasing move M t only if
it is not properly colored in state st�1.

Proof: Nodei can execute an increasing move if and only if
for eachk 2 f1; 2; : : : ; c(i)g, there exists aj 2 N(i) with
c(j) = k. In particular,i has a neighbor coloredc(i). 2

Lemma 4 After node i executes rule R, it becomes properly
colored and remains so.

Proof: It is clear that by executingR, i becomes properly
colored. That it remains in this condition follows from the
fact that by executing ruleR, no node can ever destroy the
proper coloring of another node. 2

We mention that although the execution of ruleR by
nodei cannot destroy the proper coloring of another node,
it can destroy the Grundy coloring of another node.

Lemma 5 Each node i can make at most one increasing
move, and that can only occur on its first move.

Proof: This follows from Lemmas 3 and 4. 2

Lemma 6 Each node i can make at most di + 1 moves.

3

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

Algorithm 2.1: Grundy Coloring ()

R: If c(i) 6= minf` � 1 j (8j 2 N(i))(c(j) 6= `)g
then setc(i) = minf` � 1 j (8j 2 N(i))(c(j) 6= `)g

Proof: If node i never makes an increasing move, then it
can make at mostdi+1 moves by Lemma 2. If it does make
an increasing move, by Lemma 5 this occurs only once as
its first move. By Lemma 1, after this first move,1 � c(i) �
di + 1. Its remaining moves must be decreasing, and there
can be at mostdi of these.
2

Theorem 1 Given a graph with n nodes and m edges, Al-
gorithm 3.1 finds a Grundy coloring in at most n + 2m
moves.

Proof: Using Lemma 6 and summing over everyi, we
see that any sequence of moves can have length at mostP

n

i=1
(di + 1) = n+ 2m. 2

Corollary 1 For planar graphs, Algorithm 3.1 constructs a
Grundy coloring in at most 7n� 12 moves.

Proof: It is well-known that for planar graphs,m � 3n�6.
2

It should be noted that an algorithm, which at first glance
appears similar to Algorithm 3.1, is given in [1], and has
an accompanying worst case analysis ofO(�n). This al-
gorithm properly colors nodes with values in the range
f0; 1; : : : ;�g, always choosing thelargest possible color.
Our algorithm and analysis have two advantages. First, the
bound ofn+ 2m steps is an improvement. And second, in
Algorithm 3.1, nodes are not required to know�, as in [1],
nor any other global property.

3.2 (� + 1)-Coloring in n Moves

Algorithm 3.1 constructs a Grundy coloring with at most
�+ 1 colors in at mostn + 2m moves. In this section we
present a simple algorithm that also constructs a proper�+
1-coloring, but which stabilizes in at mostn moves. This
appears to be the firstO(n) self-stabilizing proper coloring
algorithm.

The following lemma is self-evident.

Lemma 7 After any move made by node i, 1 � c(i) �
di + 1.

Lemma 8 After node i executes rule R, it becomes properly
colored and remains so.

Proof: Clearly i becomes properly colored. It remains so
because a move by another node can not destroy this prop-
erty. 2

Lemma 9 Each node can move at most once.

Proof: A nodei is privileged if and only if it is not properly
colored orc(i) > di+1. By Lemma 7 and Lemmas 8, after
moving, it can not become privileged again. 2

Theorem 2 For any graph with n nodes, Algorithm 3.2
finds a �+ 1-coloring in at most n moves.

Proof: By Lemma 9, each node will move at most once, and
clearly this will stabilize in a proper coloring. This coloring
must use at most�+1 colors, or else some node would be
privileged. 2

A pathPn with n nodes, each of which is initially col-
ored1, is an example of a graph for which Algorithm 3.2
can maken� 1 moves, if the nodes move in order from left
to right.

4 Conclusion

It is interesting to note that the set of nodes colored1
by Algorithm 3.1 forms a maximal independent set. Al-
gorithm 3.2 is inspired by the well-know Brooks’ Theorem
[16] which asserts that the chromatic number of a graph is
at most�+ 1, and in fact is at mostk = �, unlessk = 2
andG has a component which an odd cycle, orn > 2 and
Kn+1 is a component ofG. It remains an interesting ques-
tion whether one can construct a self-stabilizing algorithm
for coloring a graph with at most� colors. Unlike Algo-
rithm 3.1, Algorithm 3.2 does not necessarily find a maxi-
mal independent set.

5 Acknowledgement

Finally, the authors wish to thank D. Rall and M. Gairing
for helpful comments during the preparation of this paper.
The last author, Srimani’s work was partially supported by
a NSF grant # ANI-0073409.

4

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

Algorithm 2.1: Fast Coloring()

R: if c(i) 2 fc(j) j j 2 N(i)g _ c(i) > di + 1

then

8>><
>>:

/* recolor nodei
if fc(j) j j 2 N(i)g = f1; 2; : : : ; dig

then c(i) = di + 1
else setc(i) 2 f1; 2; : : : ; dig � fc(j) j j 2 N(i)g

References

[1] M Gradinariu and S Tixeuil. Self-stabilizing ver-
tex coloration and arbritary graphs. In4th Interna-
tional Conference On Principles Of DIstributed Sys-
tems, OPODIS’2000, pages 55–70, 2000.

[2] T. R. Jensen and B. Toft.Graph coloring Problems.
John Wiley & Sons, New York, 1995.

[3] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Communications of the ACM,
17(11):643–644, November 1974.

[4] E. W. Dijkstra. A belated proof of self-stabilization.
Distributed Computing, 1(1):5–6, 1986.

[5] M Nesterenko and A Arora. Stabilization-preserving
atomicity refinement. InDISC99 Distributed Comput-
ing 13th International Symposium, Springer-Verlag
LNCS:1693, pages 254–268, 1999.

[6] G Antonoiu and PK Srimani. Mutual exclusion be-
tween neighboring nodes in an arbitrary system graph
tree that stabilizes using read/write atomicity. InEuro-
par’99 Parallel Processing, Proceedings LNCS:1685,
pages 823–830, 1999.

[7] J Beauquier, AK Datta, M Gradinariu, and F Mag-
niette. Self-stabilizing local mutual exclusion and
daemon refinement. InDISC00 Distributed Comput-
ing 14th International Symposium, Springer-Verlag
LNCS:1914, 2000.

[8] S Ghosh and MH Karaata. A self-stabilizing algorithm
for coloring planar graphs.Distributed Computing,
7:55–59, 1993.

[9] S Sur and PK Srimani. A self-stabilizing algorithm
for coloring bipartite graphs.Information Sciences,
69:219–227, 1993.

[10] SK Shukla, DJ Rosenkrantz, and SS Ravi. Ob-
servations on self-stabilizing graph algorithms for
anonymous networks. InProceedings of the Second
Workshop on Self-Stabilizing Systems, pages 7.1–7.15,
1995.

[11] F Petit and V Villain. A space-efficient and self-
stabilizing depth-first token circulation protocol for
asynchronous message-passing systems. InEuro-
par’97 Parallel Processing, Proceedings LNCS:1300,
pages 476–479. Springer-Verlag, 1997.

[12] M. R. Garey and M. R. Johnson.Computers and In-
tractability. Freeman, New York, 1979.

[13] R. Karp. Reducibility among combinatorial problems.
In R. E. Miller and J. W. Thatcher, editors,Complex-
ity of Computer Computations, pages 85–104. Plenum
Press, 1972.

[14] P. M. Grundy. Mathematics and games.Eureka, 2:6–
8, 1939.

[15] G. R. Grimmett and C. J. H. McDiarmid. On color-
ing random graphs.Mathematical Proceedings of the
Cambridge Philosophical Society, 77:313–324, 1975.

[16] R. L. Brooks. On coloring the nodes of a network.
Proceedings Cambridge Philos. Society, 37:197–227,
1941.

5

0-7695-1573-8/02/$17.00 (C) 2002 IEEE

	IPDPS 2002
	Return to Main Menu

