
Absolute Slicing in Peer-to-peer Systems

Alberto Montresor
University of Trento, Italy

alberto.montresor@unitn.it

Roberto Zandonati
University of Trento, Italy

r.zandonati@studenti.unitn.it

Abstract

Peer-to-peer (P2P) systems are slowly moving from
application-specific architectures to a generic service-
oriented design framework. The idea is to allow a dynamic
collection of P2P applications to cohabit into a single sys-
tem, with applications starting and terminating at will, or
even changing their requirements at run-time. This raises
an interesting problem in connection with managing re-
source assignment in a large-scale, heterogeneous and un-
reliable environment. Recently, the distributed slicing ser-
vice has been proposed to allow for an automatic partition-
ing of P2P networks into groups (slices) that represent a
controllable amount of some resource. A particular instan-
tiation of such service has been described, called ordered
slicing, in which nodes are ranked based on some metrics
and then assigned to a slice based on their position in the
ranking. In this paper, we present an alternative version
of the problem called absolute slicing. Here, the goal is to
assign a specified number of nodes to a slice and maintain
such assignment in spite of churn. We propose a simple al-
gorithm that solves the problem by combining well-known
protocols such as peer sampling and aggregation, and we
experimentally evaluate its performance.

1 Introduction

Peer-to-peer (P2P) protocols have proven efficient to
provide scalable solutions for the implementation of large-
scale distributed applications, successfully coping with un-
reliability and dynamism. Yet, the current state of affairs
has failed to relax one important restriction: P2P protocols
are often very specific to a given application. As a result, a
file-sharing system is only adapted for file sharing, a desk-
top grid is able to execute only specially tailored and cen-
trally managed tasks, and so on. This situation is somewhat
comparable to having a powerful computer that can run only
one application, without the possibility of reprogramming
to exploit all its potentials.

To become a mature technology, the P2P community

must take one step further: move away from application-
specific architectures towards a generic, service-oriented
design paradigm. The idea is to integrate the P2P approach
into distributed platforms on top of which several applica-
tions may cohabit. Applications may change their require-
ments at runtime; new ones may be added and existing ones
may be removed. Furthermore, we should be able to merge
systems on which P2P applications are running, or split
existing ones. Such flexibility would allow us to deploy
P2P applications much easier and let several such applica-
tions to co-exist independently while making use efficiently
of shared underlying resources and protocols. Examples
of such platforms include testbeds such as PlanetLab [13],
desktop-grid-like applications [11,14], and potentially even
networks of set-top-boxes owned by a single ISP [2], but
physically located at clients’ houses.

A possible framework to implement such ideas has been
described in [2], together with a list of open research prob-
lems. Among the issues to be solved, an important one is
how to allocate a set of nodes for a given application.

The general problem has been recently named dis-
tributed slicing [5, 7] and may be described as follows:
given a distributed collection of nodes characterized by one
or more attributes, we want to allocate a subset (“slice”) of
them to a specific application, by selecting those that satisfy
a given condition over the attributes and maintaining such
allocation in spite of churn.

A specific instance of this problem, called ordered slic-
ing, has been recently introduced and solved [5]. In or-
dered slicing, nodes are ranked according to their capabili-
ties expressed by an attribute value, and a given percentage
of them is assigned to a specific application, based on this
ranking. For example, we could assign the best connected
nodes to a superpeer slice by selecting the top 10% nodes
ordered by their bandwidth.

In this paper, we propose another variant of the dis-
tributed slicing problem, called absolute slicing. Here, ap-
plications may require to be assigned a given quantity of
nodes from a larger collection whose elements satisfy a par-
ticular condition over attributes.

As an example of context and motivation for such prob-



lem, consider a desktop grid application where a customer
want to rent a specific amount of distributed storage. The
actual request could be: give me 1000 machines with at
least 1GB of available storage and connected through a T1
line or higher.

Due to the intrinsic dynamism of contemporary P2P sys-
tems, it is impossible to obtain accurate information about
the capabilities (or even the identity) of the system partici-
pants. Consequently, no node is able to maintain accurate
information about the entire system. This disqualifies cen-
tralized approaches. For this reason, we propose here a de-
centralized solution to the absolute slicing problem, based
on the gossip paradigm [4]. In recent years, the label “gos-
sip” has been applied to an increasingly larger class of algo-
rithms, going outside the original and limited field of infor-
mation dissemination [4]. Gossip-based approaches exist
now for information aggregation, overlay network manage-
ment and clock synchronization, just to cite a few [1, 6, 8].
Their distinctive features include relying only on local in-
formation and being extremely robust.

Our solution is based on two well-known components:
peer sampling [10] and decentralized aggregation [8]. Peer
sampling provides nodes with continuously up-to-date ran-
dom samples of a specific population of nodes; higher-level
gossip protocols use these samples to contact random peers.
Decentralized aggregation computes an aggregate function,
such as average, sum or counting, over the population of
nodes associated with the peer sampling layer. The idea is
to identify the group of nodes that satisfy a given condi-
tion (through peer sampling), and then probabilistically se-
lect nodes until the required quantity is reached (measured
through aggregation).

The rest of the paper is organized as follows. The sys-
tem model is described in Section 2. Section 3 provides
background information and discusses related work. The
specification of the problem is introduced in Section 4. The
architecture of our solution, including how existing tech-
niques are used and/or adapted, is described in Section 5.
Experimental results are shown in Section 6. Finally, Sec-
tion 7 draws the conclusions and discusses potential future
work.

2 System Model

We consider a collection of nodes that are connected
through an underlying routed network, such as the Internet,
where every node can potentially communicate with every
other node. To actually communicate, a node has to know
the address of another node. This is achieved by maintain-
ing a (partial) view at each node that contains a set of node
descriptors. Views can be interpreted as sets of edges be-
tween nodes, naturally defining a directed graph over the
nodes that determines the topology of an overlay network.

// Active Thread:
during every cycle do
q ← getPeer()
send (prepareMessage(sp), request , p) to q

// Passive thread:
do forever
(mq, type, q)← receive(*)
if type = request then

send (prepareMessage(sp, mq), reply , p) to q
sp ← update(sp, mq)

Figure 1. Generic gossip protocol executed
by node p. The local state of p is denoted as
sp. The message sent by q is denoted as mq.

The network is highly dynamic; new nodes may join at
any time, and existing nodes may leave, either voluntarily or
by crashing. Our approach does not require any mechanism
specific to leaves: spontaneous crashes and voluntary leaves
are treated uniformly. Thus, in the following, we limit our
discussion to node crashes. Byzantine failures, with nodes
behaving arbitrarily, are excluded from the present discus-
sion.

Communication incurs unpredictable delays and is sub-
ject to failures. Single messages may be lost, links between
pairs of nodes may break. Nodes have access to local clocks
that can measure the passage of real time with reasonable
accuracy, that is, with small short-term drift.

3 Background and Related Work

3.1 Gossip protocols

All the protocols implemented in this paper are based
on the gossip paradigm [4] and follow the generic algorith-
mic skeleton illustrated in Figure 1. Our gossip protocols
are composed by an active thread, that periodically sends
a message to a peer node selected through the getPeer()
function, and a passive thread, that receives such messages
and sends replies. We use the term cycle to denote the fixed
time interval that occurs between two consecutive messages
sent by the active thread. Messages contain a representation
of the locale state of the sender, obtained through a generic
prepareMessage() function; their content is used to update
the local state, which is done through the update() function.
These three functions are left unspecified here and will be
later customized based on the particular functionality to be
implemented.

2



3.2 Peer Sampling

A peer sampling service provides each node with con-
tinuously up-to-date random samples of a population of
nodes. Such samples fulfill two purposes: locally, they
provide each node with random peers that can be used to
implement higher-level gossip protocols; globally, they de-
fine an overlay topology, i.e. a directed graph superim-
posed over the network and representing the “social” re-
lationships among nodes. In the peer sampling case, the
graph is characterized by a random structure and the pres-
ence of a single strongly connected component. There are
already a large number of examples of exploitation of such
service for the implementation of higher-level services and
applications [6, 12, 15, 16].

In this paper we consider an instantiation of the peer
sampling service based on the NEWSCAST protocol [10],
chosen for its low cost, extreme robustness and minimal as-
sumptions. The basic idea of NEWSCAST is that each node
maintains a local set of random descriptors, called the (par-
tial) view. A descriptor is a pair (node address, timestamp).
Function getPeer() returns a random member of the view;
function prepareMessage() returns the view itself, plus a
fresh descriptor of itself. When receiving a message, func-
tion update() keeps a fixed number of freshest descriptors
(based on timestamps), selected from those locally available
in the view and those contained in the message. Nodes be-
longing to the network continuously inject their identifiers
in the network with the current timestamp, so old identifiers
are gradually removed from the system and are replaced by
newer information. This feature allows the protocol to “re-
pair” the overlay topology by forgetting information about
crashed neighbors, which by definition cannot inject their
identifiers.

Implementations exist in which these messages are small
UDP messages containing approximately 20-30 descriptors,
each composed of an IP address, a port and a timestamp.
The cycle length is typically long, in the range of 10 s. The
cost is therefore small, few tens of bytes per second, similar
to that of heartbeats in many distributed architectures. The
protocol provides high quality (i.e., sufficiently random)
samples not only during normal operation (with relatively
low churn), but also during massive churn and even after
catastrophic failures (up to 70% nodes may fail), quickly re-
moving failed nodes from the local views of correct nodes.

3.3 Decentralized Aggregation

Aggregation is a common name for a set of functions
that provide a summary of some global system property. In
other words, they allow local access to global information in
order to simplify the task of controlling, monitoring and op-
timizing distributed applications. Examples of aggregation

functions include network size, total free storage, maximum
load, average uptime, location and intensity of hotspots, etc.

In this paper, we adopt the gossip algorithm introduced
in [8] to compute aggregates in a robust and decentralized
manner. The algorithm assumes that each node maintains a
local approximation of the aggregate value, initially equal to
the value of the local property. Function getPeer() returns a
random node taken from the local view of an associated peer
sampling. Function prepareMessage() returns the current
local approximate value, while function update() modifies
the local approximate value based on some aggregation-
specific and strictly local computation based on the previous
values. This local pairwise interaction is designed in such a
way that all approximate values in the system will quickly
converge to the desired aggregate value.

The algorithm proposed is proactive and adaptive;
proactive means that all nodes participating in an aggregate
computation are made aware of the final result, while adap-
tive means that aggregate information is kept continuously
up-to-date in spite of dynamism of the network. In order
to satisfy the latter requirement, the protocol needs to be
periodically restarted; the final aggregate value is provided
to higher-level protocols, while the approximate values are
initialized again to the local property. The periodicity of
restarting events is called epoch.

Among the algorithms described in [8], we will adopt
COUNT, that computes the size of a random overlay network
in logarithmic number of cycles w.r.t. to its size. To give an
idea of the numbers involved, cycle length is around 10 s;
messages contains around 20 numerical values; epochs nor-
mally corresponds to 20-30 cycles, a value sufficient for net-
works containing millions or even billions of nodes. As be-
fore, the overhead associated to this protocol is negligible.

3.4 Distributed Slicing

As far as we know, the distributed slicing problem was
studied in a P2P system for the first time in [7]. In this
paper, a node with the kth smallest attribute value, among
those in a system of size n, tries to estimate its normal-
ized index k/n. The algorithm proposed in [7] works as
follows. Initially, each node draws independently and uni-
formly a random value in the interval (0, 1] which serves as
its first estimate of its normalized index. Then, the nodes
use a variant of NEWSCAST [10] to gossip among each other
to exchange random values when they find that the relative
order of their random values and that of their attribute val-
ues do not match. This algorithm is robust in face of fre-
quent dynamics and guarantees a fast convergence to the
same sequence of peers with respect to the random and the
attribute values. At every point in time the current random
value of a node serves to estimate the slice to which it be-
longs (its slice).

3



An alternative algorithm has been proposed in [5], which
works by locally approximating the rank of the nodes in the
ordering, without the application of random values. The
basic idea is that each node periodically estimates its rank
along the attribute axis depending of the attributes it has
seen so far. This algorithm is robust and lightweight due
to its gossip-based communication pattern: each node com-
municates periodically with a restricted dynamic neighbor-
hood that guarantees connectivity and provides a continu-
ous stream of new samples. Based on continuously aggre-
gated information, the node can determine the slice it be-
longs to with a decreasing error margin. The paper shows
that this algorithm provides accurate estimation at the price
of a slower convergence.

4 Problem Definition

We consider a dynamic collection of nodes N , where
each node i is provided with a partial function fi : A →
V associating attribute names taken from a domain A to
attribute values in V .

A slice S(c, s) is a dynamic subset of N defined by the
following parameters:

• c is a condition expressed through first-order logic over
the sets A and V (attribute names and values), identify-
ing nodes that can be potentially members of the slice;

• s is the desired slice size.

The goal is to build and maintain a slice S(c, t) con-
taining only nodes satisfying c whose size approximates,
as much as possible, the desired size s.

Obtaining an exact value (instead of an approximate one)
is not possible in general, due to they dynamism of the sys-
tem, which may prevent to reach a steady-state situation.
For this reason, our figure of merit to evaluate our approach
will be the approximation quality q(c, s), defined as the ra-
tio between the actual size and the desired one:

q(c, s) =
|S(c, s)| − s

s
.

5 The Algorithm

So far, we have discussed the slicing problem using the
generic terms of “building” and “maintaining”; since we are
considering only decentralized solutions, we must explain
what this means from the point of view of each single node
belonging to the system.

First of all, each node must be aware (i) whether it can
potentially belong to the slice, because it satisfies the spec-
ified condition – in which case it is called a potential node;

(ii) whether it currently belongs to the slice, because it has
been selected among the potential nodes – in which case it
is called a member node. Achieving (i) could be done by
simply broadcasting the condition defining the slice to all
nodes, while how to achieve (ii) is the subject of this sec-
tion.

Second, member nodes must be aware of the member-
ship of the slice; such information is needed by higher-
level services and applications to exploit the node resources.
Here, the problem is complicated by the large scale and ex-
treme dynamism of the system. In practice, it is not possible
for a node to know, at any time, the exact composition of the
entire slice. Peer sampling comes to rescue here: each node
obtains a sample of the entire network, while the network
is kept connected by the random overlay network. These
two conditions are sufficient to implement other epidemic
protocols on top of peer sampling.

Third, nodes must be aware of the current number of po-
tential and member nodes; based on this information, each
node will be able to locally decide whether additional poten-
tial nodes need to join the slice, or whether existing mem-
ber nodes must leave it. For this purpose, we will adopt the
COUNT protocol summarized in Section 3.

Based on these considerations, we are now ready to de-
scribe the general idea behind our solution, summarized in
Figure 2 and described in the following.

1. Start from the global group N of nodes, that includes
all nodes of the system (potential or not). The global
group is maintained by the lowest-level peer-sampling
service.

2. Using an epidemic broadcast protocol based on ran-
dom samples from the global group, inform all the
nodes about the slice we want to build (by broadcast-
ing the pair (c, s), where c is the condition and s is the
size).

3. Potential nodes satisfying the condition join a second
peer sampling service, whose task is to maintain the
potential group P , i.e. the set of nodes that satisfy
condition c.

4. Using a third peer-sampling service, build and main-
tain the slice S. At the beginning, the slice is empty.

5. Using an aggregation protocol [8], evaluate the size
size(P ) of set P and the size size(S) of set S. Such
values are known to all nodes.

6. If size(S) < s (i.e. the current size is less than target
size), each potential node which is not already member
of the slice joins the slice with probability pjoin :

pjoin =
s− size(S)

size(P )− size(S)

4



Overall
group

Potential
group

Slice

Application

Peer Sampling

Peer Sampling

Peer Sampling

Application
Protocol

Aggregation

Aggregation

N

P

S

Broadcast

Figure 2. Architecture of the absolute slicing protocol

corresponding to the ratio between the missing nodes
and the nodes available to join.

7. If size(S) > s (i.e. the current size is greater than
required – for example due to a variation in the user
requirements), each member node leaves the slice with
probability pleave :

pleave =
size(S)− s

size(S)

corresponding to the ratio between the excessive nodes
and the nodes currently in the slice.

8. Go to step 5.

While the general approach is simple, there are some de-
tails to be discussed.

One problem to be solved is how to bootstrap a new peer
sampling layer from an existing one. When a new slice is
created, two new peer sampling instances must be created,
one containing the potential nodes, and the other containing
the slice itself. The problem here is that for each group,
nodes belonging to it do not know each other, yet they must
populate a single, connected overlay topology.

The second problem to be solved is related to mainte-
nance. After the creation of a slice, nodes belonging to it
may be subject to churn, meaning that existing nodes could
leave and be substituted by new ones - which are not aware
of the slice, however. As a consequence, the slice would
tend to continuously shrink until its death. For this reason,
slices need to be continuously fed with new nodes, taken

by the potential group; the potential group must be contin-
uously fed with nodes satisfying the condition, taken by the
global group.

In both the previously identified problems, the real issue
is the need of nodes to discover other nodes of the same
kind; i.e., potential nodes to locate other potential nodes,
and member nodes to locate other member nodes. While
alternative, more centralized solutions may exist, we look
again for a completely decentralized approach.

We propose a modified version of the peer sampling ser-
vice for maintaining the potential group and the slice. In
order to enable nodes to join the potential group, all nodes
in the global group participate actively (by exchanging mes-
sages) in the peer sampling layer maintaining the potential
group. In order to enable potential nodes to join the slice,
all nodes in the potential group participate actively (by ex-
changing messages) in the peer sampling layer maintaining
the slice.

The differences with the original NEWSCAST protocol are
the following:

• Function getPeer() returns a random peer from the
underlying peer sampling service, not from the local
view;

• In function prepareMessage(), only potential nodes
inject their fresh descriptors in the message they send.

• Function update() works as in the original version.

These modifications have the equivalent effect of broadcast-
ing fresh descriptors of potential nodes to all nodes in the
underlying peer sampling service.

5



 4900

 4950

 5000

 5050

 5100

 0  200  400  600  800  1000

Sl
ic

e 
si

ze

Cycles

Experiment

Figure 3. Static network scenario. Behavior
over time of the actual slice size.

 4600

 4700

 4800

 4900

 5000

 5100

 5200

 5300

 5400

 0  200  400  600  800  1000

Sl
ic

e 
si

ze

Cycles

Single experiment

Figure 4. Dynamic network. Behavior over
time of the actual slice size with churn 10−4.

 0

 1000

 2000

 3000

 4000

 5000

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

Sl
ic

e 
si

ze
 (#

 n
od

es
)

Churn level (failures per node per second)

Experiments

 3000

 3500

 4000

 4500

 5000

 5500

 0  0.002 0.004 0.006 0.008

Figure 5. Dynamic network. Actual slice size
with variable churn.

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

Sl
ic

e 
si

ze
 (%

)

Message losses (%)

Slice size

Figure 6. Static network. Actual slice size with
variable message losses

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70  80

Pe
ri

od
s

Slice size (%)

Figure 7. Static network. Time to reach con-
vergence with variable slice size.

 4400

 4600

 4800

 5000

 5200

 5400

 0  200  400  600  800  1000

Sl
ic

e 
si

ze

Cycles

Single experiment

Figure 8. Realistic scenario with churn and
message losses. Actual slice size.

6



6 Experimental Results

In this section, we experimentally evaluate the behav-
ior of our protocol, both in the absence and in the presence
of churn. All the experiments have been performed using
PEERSIM, an open-source simulator designed for large-scale
P2P systems and publicly available at SourceForge [9]. In
all figures, 20 individual experiments were performed for
all parameter settings. Whenever possible, the result of each
experiment is shown with single dots to illustrate the entire
distribution; in that case, the x-coordinates are shifted by a
small random value so as to separate results having similar
y-coordinates.

The size of the neighbor sets maintained and exchanged
by the various instances of the NEWSCAST protocol is set to
30. Cycles length are equal to 10 s for all protocols; further-
more, in the aggregation protocol one epoch corresponds to
25 cycles. The size of the simulated network is equal to
25.000 nodes; we assume than 30% of them belongs to the
potential set, corresponding to 7.500 of them; finally, we
select 5.000 nodes out of these 7.500. Similar results can be
obtained with larger sizes – this is a direct consequence of
the extreme scalability of the component protocols.

In Figure 3 we show the behavior of our protocol in a
static network, with no churn. The figure shows the size of
the actual slice size, as measured by an external observer. It
is possible to see that in the absence of failures, the target
size is quickly reached. The slight oscillation that can be ob-
served in the actual slice size are motivated by the stochastic
behavior of the protocol.

In Figure 4 the behavior in case of churn is shown. As
before, the figure represents the actual size of the slice.
The level of churn shown in the figure corresponds to 10−4

leave/joins per node per second, meaning that during an
epoch, 2.5% of the network nodes suddenly fail or volun-
tarily leave, and are substituted by the same number of new
nodes (keeping the size of the network constant). Such level
of churn corresponds to the typical behavior of some P2P
networks [3]. It is possible to observe two important facts:
the actual size of the slice is smaller than the requested
size (up to 4%), and it periodically oscillates. These facts
are partially motivated by the particular implementation of
the decentralized aggregation protocol, as described in [8],
which slightly overestimate the actuals size; and partially by
the fact that during an epoch, existing nodes leaves the slice
and new nodes will not join it until the epoch is restarted.
This has the effect of reducing the probability for a node
to join the slice, and of generating the diagonal stripes in
Figure 4.

Figure 5 illustrates the behavior of the protocol with dif-
ferent levels of churn. It is possible to observe that at higher
levels of churn correspond slices smaller and smaller. Yet,
the scenarios evaluated here are extreme in their pessimism;

the typical behavior described above corresponds to the left-
most group of dots in the subfigure of Figure 5.

Figure 6 illustrates the behavior of the protocol with dif-
ferent levels of message losses. It is possible to observe that
only in very critical scenarios, message losses start to have
an important impact on the quality.

Figure 7 illustrates the behavior of the protocol when
you variate the size of the selected slice. This figure shows
space for potential improvement of our work: building
small slices is less performant than building larger slice; this
is motivated by the difficulty of putting together the nodes
when there a are a few of them.

of the protocol with different levels of churn. It is pos-
sible to observe that at higher levels of churn correspond
slices smaller and smaller. Yet, the scenarios evaluated here
are extreme in their pessimism; the typical behavior de-
scribed above corresponds to the leftmost group of dots in
the subfigure of Figure 5.

Finally, Figure 8 combines the previous scenarios and
shows a realistic situation, where together with a churn level
of 10−4 failures per node per second, 2% of the messages
get lost.

7 Conclusions

In this paper, we have introduced an alternative version
of the generic distributed slicing problem, called absolute
slicing. In this problem, the goal is to assign a specified
number of nodes to a slice and maintain such assignment
in spite of churn. We have proposed a simple algorithm
that solves the problem by combining well-known protocols
such as peer sampling and aggregation, and we have exper-
imentally evaluated its performance. While many optimiza-
tions are possible, we believe that the pedagogical value of
this work lies in the composition of simple, light-weight
protocols.

A potential extension of this work could be a third in-
stance of the distributed slicing problem, called cumulative
slicing. Given a subset S ⊆ P and an attribute a, we define
the cumulative sum CS (S, a) of attribute a in S as the sum,
over all nodes in S, of the values associated to attribute a:

CS (S, a) =
∑
i∈S

fi(a)

The goal of the cumulative slicing problem is to build
and maintain a slice such that its cumulative sum for a
given attribute is approximately equal to a target value. This
would enable to express slice requests such as “give me
enough machines to store 10 TB of data, such that each ma-
chine has at least 1 GB of available storage and a least a T1
line”.

It is interesting to note that absolute slicing is a sub-
problem of cumulative slicing; it is sufficient to consider the

7



presence of a dummy attribute with value 1 at all nodes, and
then use such attribute in the definition of the cumulative
slice. Even more interesting, the architecture of our algo-
rithm could be easily adapted to solve cumulative slicing; it
would be sufficient to let a node become active with a prob-
ability proportional to the attribute value. Due to space and
time constraints, the experimental analysis of such problem
will be performed in a future paper.

Acknowledgements

Work supported by the project CASCADAS (IST-
027807) funded by the FET Program of the European Com-
mission.

References

[1] O. Babaoglu, T. Binci, M. Jelasity, and A. Mon-
tresor. Firefly-inspired heartbeat synchronization in
overlay networks. In Proceedings of the First IEEE
International Conference on Self-Adaptive and Self-
Organizing Systems (SASO 2007), Boston, USA, July
2007.

[2] O. Babaoglu, M. Jelasity, A.-M. Kermarrec, A. Mon-
tresor, and M. van Steen. Managing clouds: A case
for a fresh look at large unreliable dynamic networks.
Operating Systems Review, 40(3):9–13, July 2006.

[3] M. Castro, M. Costa, and A. Rowstron. Performance
and dependability of structured peer-to-peer overlays.
In Proceedings of the 2004 International Confer-
ence on Dependable Systems and Networks (DSN’04),
Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[4] A. Demers, D. Greene, C. Hauser, W. Irish, J. Lar-
son, S. Shenker, H. Sturgis, D. Swinehart, and
D. Terry. Epidemic algorithms for replicated database
maintenance. In Proceedings of the 6th Annual
ACM Symposium on Principles of Distributed Com-
puting (PODC’87), pages 1–12, Vancouver, British
Columbia, Canada, August 1987. ACM Press.

[5] A. Fernandez, V. Gramoli, E. Jimenez, A.-M. Ker-
marrec, and M. Raynal. Distributed slicing in dy-
namic systems. In Proceedings of the 27th Interna-
tional Conference on Distributed Computing Systems
(ICDCS ’07), page 66, Washington, DC, USA, 2007.
IEEE Computer Society.

[6] M. Jelasity and O. Babaoglu. T-Man: Gossip-based
overlay topology management. In S. A. Brueckner,
G. Di Marzo Serugendo, D. Hales, and F. Zambonelli,

editors, Engineering Self-Organising Systems: Third
International Workshop (ESOA 2005), Revised Se-
lected Papers, volume 3910 of Lecture Notes in Com-
puter Science, pages 1–15. Springer-Verlag, 2006.

[7] M. Jelasity and A.-M. Kermarrec. Ordered slicing
of very large-scale overlay networks. In A. Montre-
sor, A. Wierzbicki, and N. Shahmehri, editors, Peer-
to-Peer Computing, pages 117–124. IEEE Computer
Society, 2006.

[8] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-
based aggregation in large dynamic networks. ACM
Trans. Comput. Syst., 23(1):219–252, 2005.

[9] M. Jelasity, A. Montresor, G. P. Jesi, and
S. Voulgaris. PeerSim - Peer-to-Peer simulator.
http://peersim.sourceforge.net.

[10] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Ker-
marrec, and M. van Steen. Gossip-based peer sam-
pling. ACM Transactions on Computer Systems,
25(3):8, Aug. 2007.

[11] C. Kesselman and I. Foster. The Grid: Blueprint for
a New Computing Infrastructure. Morgan Kaufmann,
1999.

[12] A. Montresor, M. Jelasity, and O. Babaoglu. Chord
on demand. In Proceedings of the 5th International
Conference on Peer-to-Peer Computing (P2P 2005),
pages 87–94, Konstanz, Germany, Aug. 2005. IEEE.

[13] Planet Lab. http://www.planet-lab.org/.

[14] The BOINC Project. http://www.boinc.org/.

[15] S. Voulgaris, A.-M. Kermarrec, L. Massoulié, and
M. van Steen. Exploiting semantic proximity in peer-
to-peer content searching. In Proceedings of 10th
IEEE International Workshop on Future Trends of
Distributed Computing Systems (FTDCS 2004), pages
238–243, 2004.

[16] S. Voulgaris, E. Riviere, A. Kermarrec, and M. van
Steen. Sub-2-sub: Self-organizing content-based pub-
lish and subscribe for dynamic and large scale collab-
orative networks. In Proceedings of the Fifth Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS06),
2006.

8


