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Abstract

Balls-into-bins games for uniform bins are widely used to model randomised
load balancing strategies. Recently, balls-into-bins games have been analysed
under the assumption that the selection probabilities for bins are not uniformly
distributed. These new models are motivated by properties of many peer-to-
peer (P2P) networks. In this paper we consider scenarios in which non-uniform
selection probabilities help to balance the load among the bins. While previous
evaluations try to find strategies for identical bins, we investigate heterogeneous
bins where the “capacities” of the bins might differ significantly. We look at
the allocation of m balls into n bins of total capacity C where each ball has
d random bin choices. For such heterogeneous environments we show that the
maximum load remains bounded by ln ln(n)/ ln(d) +O(1) w.h.p. if the number
of balls m equals the total capacity C. Further analytical and simulative results
show better bounds and values for the maximum loads in special cases.
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1. Introduction

In the standard balls-into-bins game, m unit-sized balls are allocated to n iden-
tical bins. It is assumed that every ball independently and uniformly at random
chooses d bins and that it commits itself to a least-loaded of these bins. The
goal of this strategy is to balance the load among the bins, by minimising the
maximum number of balls allocated to any bin.

Balls-into-bins games are successfully used to model randomised load balancing
strategies in networks and many other “real world” applications (see, e.g., [1,
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Brinkmann), tom.friedetzky@dur.ac.uk (Tom Friedetzky), nagell@uni-mainz.de (Lars
Nagel)

Preprint submitted to Elsevier January 31, 2014



2, 3, 4, 5] for applications of randomisation strategies). In these cases, balls
represent requests or data items, while bins model servers or some form of
storage. Most of the previous papers assume the same uniform capacity (or size)
for all bins and uniform bin probabilities. The goal is to balance the load in a
way that each bin receives approximately the same number of balls. We should
point out that when we refer to a bin’s “capacity” / “size” then we do not mean
to imply the existence of a maximum “volume”, or load threshold (as in e.g. bin
packing); the reader should think more in terms of “speed”, “bandwidth” or
“compression ratio”. The precise notion that we use throughout this paper is
simply that when a ball of size s is placed into a bin of capacity c, then the
“effective” load that this bin experiences is ℓ = s/c.

Standard balls-into-bins games assume that the probability of a bin to be se-
lected by a ball is the same for all bins. It is unfortunately very difficult to
maintain this property in distributed environments without centralised control.
P2P environments like Chord or CAN [2, 1], e.g., are unable to map peers evenly
to their address space, making some bins more likely to be selected than others
[6, 7, 8]. Byers et al. [7, 9] extended the model, assuming that the probability
for a bin to be selected within a random experiment is not uniform over all bins.
Their underlying process still tries to balance the number of balls as evenly as
possible over the set of bins.

However, in many practical applications, some bins can handle a much larger
load than others, under-utilizing stronger bins under these constraints. In the
variant of balls-into-bins games that we consider, it is assumed that the bins are
not uniform, but that they come with an integer capacity, as outlined above.

Let the total capacity C be the sum of the capacities of all bins. The natural
probability for a bin to be chosen would be either 1/n, that is uniform, or ci/C,
proportional to the bin’s capacity ci. We will analyse the latter case for d ≥ 2
and show that the maximum load is ln ln(n)/ ln(d) +O(1) w.h.p. (Theorem 3).
Furthermore, we will investigate cases in which the maximum load is constant
(Theorems 1 and 2). In some cases changing the probability distribution leads
to much better results (Theorem 5).

1.1. Related Work

There is a vast number of papers dealing with balls-into-bins games in their
many different settings. We restrict our attention to major results and previous
work that is relevant to the results presented in this paper.

In the standard game in which each ball chooses d bins i.u.r., the maximum load
can be bounded by ln ln(n)/ ln(d)+Θ(1) if m = n balls are thrown [10]. In case
m ≫ n the deviation of the load from the average m/n is also ln ln(n)/ ln(d) +
Θ(1) and thus independent of the number of balls m [11].

Recently, several papers have examined the case in which bins are not chosen
i.u.r. The motivation for these models comes from the properties of peer-to-peer
networks like Chord, which use Consistent Hashing to distribute requests (balls)
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over computers (bins) [6, 2]. There the computers and requests are mapped to
random points on a ring and the requests are assigned to the closest computer
on the ring in an anti-clockwise direction. Therefore, each bin is responsible for
one arc on the ring. The maximum arc length can be up to a factor of log(n)
larger than the average arc length.

Byers et al. [7, 9] successfully apply the power-of-two-choices paradigm to this
setting by letting each request randomly choose d ≥ 2 points and allocate itself
to a peer of lowest load. Although the maximum arc length can be up to
log(n) times larger than the average one, the maximum load of every peer is
still bounded by ln ln(n)/ ln(d) + Θ(1), w.h.p., for m = n. Hence, the work of
Byers et al. shows that this imbalance does not lead to a shift in the maximum
load for the case m = n.

Wieder [12] demonstrates that in the scenario of Byers et al. the maximum
difference between the loads grows with m. Thus, for m ≫ n the bounds are
not as tight as in the standard case [11]. However, if the number of choices d is
allowed to (slowly) grow with the deviation in the probability distribution, the
maximum load is again bounded by m

n +O(ln ln(n)) (which complies with [11]).
The presented bounds are tight in a way that a smaller d leads to a deviation
of the load linear in m.

Kenthapadi and Panigrahy [13] and Godfrey [14] analyse graph-based models
in which the random choices are non-uniform and dependent. In [13] the 2-
choice game is considered with the restriction that balls can only choose bins
that are connected by an edge in an underlying graph G. The authors assume
that each edge in the graph has the same probability to be chosen and show
that the maximum load does not deviate much from the maximum load in the
standard 2-choice game provided that G is (almost) nǫ-regular where ǫ is a large
enough constant. In [14] Godfrey generalises the model to the d-choice game by
assuming that the underlying graph is a d-uniform multi-hypergraph (which is
even allowed to change with each ball). A ball can only choose sets of d bins
that correspond to hyperedges in its hypergraph. Again, each hyperedge has the
same probability to be chosen. Godfrey investigates under which circumstances
the maximum load in any bin is 1 w.h.p. The authors of [15] consider the same
model and improve the results of [14].

The case of heterogeneous bin sizes has been considered in the related field of
selfish load balancing (e.g., [16, 17]), but to our knowledge nobody has analysed
it for multiple-choice games. Such games are mentioned by Wieder [12] to
motivate his work about multiple-choice games with heterogeneous probabilities.
He suggests to choose the bins’ probabilities proportional to their capacities. In
this paper we will analyse this particular case and variations of it.

1.2. Our Contributions

All previous results assume that each bin has a uniform capacity and that the
balls should be distributed as evenly as possible. In contrast, we assume that
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the system consists of heterogeneous bins where each bin i can have an arbitrary,
integral capacity ci and the objective is to balance the load of each bin, which
is defined as the number of balls inside this bin divided by its capacity. If not
stated otherwise, we assume that a bin’s probability to be chosen is proportional
to its size.

In the analytical part of this paper, we assume that we have n bins with a total
capacity of C and m = C balls. Hence, the optimal maximum load is one. The
main analytical result from Section 3 shows that the maximum load of a bin
is ln ln(n)/ ln(d) +O(1) (Theorem 3) if d ≥ 2. Hence, the maximum load does
not grow with an increasing capacity. We even show that the maximum load
becomes constant if almost all bins are big, i.e., have size Ω(ln(n)) (Theorem
1). Provided that we can choose a different probability distribution, a constant
maximum load can be achieved even if there is only a constant fraction of
Θ(ln ln(n))-sized bins (Theorem 5). The proof of this theorem uses Observation
2, which states that if all bins have the same capacity c̄, the maximum load is
bounded by (m/n+O(ln ln(n))) /c̄ w.h.p.

Based on a simulation environment, we arrange and simulate bin arrays with
varying parameters in Section 4 and compare our analytical results with the
experiments. There we also consider settings that we do not analyse, most
notably the heavily loaded case and systems with a small number of bins.

2. Model and Definitions

We assume bins to be non-uniform. Each bin comes with a positive integer
capacity which we also refer to as size. We denote the capacities / sizes of the
n bins by c1, . . . , cn, and let C =

∑n
i=1 ci.

We usually allocate m = C balls into our system of n bins and assume that
each ball has d ≥ 2 choices. In the following we say that a bin is chosen or that
a ball chooses a bin if we refer to the d choices of a ball. When a bin actually
receives the ball, then we say that the bin gets or is allocated the ball.

The load balancing protocol (see Algorithm 1) greedily tries to minimise the
maximum load within the set B of the d chosen bins after a ball has been

Algorithm 1 Load Balancing Protocol

1: for all balls do
2: Independently choose a set B of d bins at random
3: Determine the set Bopt ⊆ B of bins that would have the lowest load after

allocating the ball
4: Determine the maximum capacity cmax of the bins in Bopt

5: Remove all bins bj with capacity cj < cmax from Bopt

6: i.u.r. choose a bin from Bopt and allocate the ball to it
7: end for
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allocated. It therefore determines the subset Bopt ⊆ B with the smallest load
after a possible allocation and i.u.r. allocates the ball to one of the bins with the
highest capacity from it. We will show within the analysis that it is beneficial
to move the load into the direction of these bigger bins.

We say that if mi balls are allocated to a bin bi of capacity ci ≥ 1, then this
bin’s load is ℓi =

mi

ci
. Usually we will assume that the probability of bin bi with

capacity ci being chosen is ci
C and therefore proportional to ci. If we use other

probability distributions, we will clearly point this out.

The height of a ball is the load of the bin it is allocated to directly after its
allocation. If a ball is allocated to a bin with prior load ℓi and capacity ci then
its height will be (ℓi+1)/ci. The load vector of an allocation of balls into n bins
is a vector L = (ℓ1, . . . , ℓn), where ℓi is the load of bin i as defined above. The
corresponding normalised load vector L̄ = (ℓ̄1, . . . , ℓ̄n) consists of the elements
of L in non-increasing order (one may think of this as sorting the bins according
to their loads whilst reassigning indices accordingly).

To make our proofs more accessible we will occasionally imagine that each bin
of capacity c does actually consist of c many unit-sized slots (the protocol is
entirely unaware of this). Hence, the total number of slots equals the total
capacity C of the bins. For a fixed slot i ∈ {1, . . . , C} let b(i) denote the unique
bin to which slot i belongs. We sometimes pretend that the balls randomly
choose a slot instead of a bin, which is again simply an analytical tool that the
algorithm is entirely unaware of. Note that the probability to choose a fixed
slot will then still be proportional to its bin’s capacity.

When thinking in terms of slots rather than bins we have to determine how
balls are allocated to the slots of a bin. To do so we define the slot load vector

S = (s1,1, . . . , s1,c1
︸ ︷︷ ︸

bin 1

, s2,1, . . . , s2,c2
︸ ︷︷ ︸

bin 2

, . . . , sn,1, . . . , sn,cn
︸ ︷︷ ︸

bin n

),

where si,j is the j-th slot of the i-th bin. We may drop the two-dimensional
indices and instead use {1, . . . , C} as index set where convenient. Let i be a bin
with slots si,1, . . . si,ci . We assume that the slots of bins are filled in a round-
robin fashion. If a ball chooses one of the slots from bin i and bin i contains
ℓ balls, we assume that i’s first (leftmost) ℓ mod ci slots contain one ball more
than the remaining slots. A normalised slot load vector S̄ has length C and an
entry for every slot. Similar to normalised load vectors we assume that S is
sorted in decreasing order. Also, whenever we have slots with the same (slot)
load but whose “host bins” have different loads, we place the one belonging
to the bin with higher (bin) load before the other one with smaller (bin) load.
Note that in a normalised slot load vector a bin’s slots are not necessarily in
successive positions. As a small example consider two bins a and b with 4 slots
each and load 2.5 and 2.75. The normalised slot load vector is 3, 3, 3, 3, 3, 2, 2, 2,
belonging to bins b, b, b, a, a, b, a, a.

If we allocate m balls into n bins, Li (L̄i, Si, S̄i) is defined as the load vec-
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tor (normalised load vector, slot load vector, and normalised slot load vector,
respectively) after the allocation of the i-th ball.

To compare the load of two load vectors or two slot vectors we use the notion
of majorisation.

Definition 1 (Majorisation �). Given two vectors U = (u1, . . . , uℓ) and V =

(v1, . . . , vℓ) we say that U majorises V if and only if
∑k

i=1 ūi ≥
∑k

i=1 v̄i for all
k = 1, . . . , ℓ where ūi and v̄i are the i-th entries of the normalised vectors Ū and
V̄ , respectively. We then write U � V .

3. Analysis

The structure of this section is as follows. The main contribution of this section
is Theorem 3, upper-bounding the maximum load of any bin in a system of
heterogeneous bins. We start by showing Observation 1 that bounds the load
of big bins as well as the height of balls that have at least one big bin among
their choices. Lemma 1 shows that load distributions achieved by systems with
solely unit-sized bins dominate those achieved by systems with heterogeneous
bins with the same total capacity. This Lemma will then be used to prove
Theorem 1 and 2, showing under which circumstances (that is, number of small
bins vs. number of big bins) we may achieve constant maximum load, and
Theorem 3. Observation 2 bounds the maximum load for uniform bin arrays in
the heavily loaded case. Finally, using this observation Theorem 5 shows better
results for the case in which one can choose the bins’ probabilities oneself.

Define a bin to be big if its capacity is at least r · ln(n) for some constant r, and
small otherwise. With Bb we denote the set of balls that have at least one big
bin among their choices and with Bs the remaining balls that probe only small

bins. ℓ
(b)
max (ℓ

(s)
max) is the maximum load in any bin if only the loads of balls from

set Bb (Bs) are counted. Furthermore Cb is the capacity of the big bins and Cs

the capacity of the small bins. Hence, C = Cb + Cs.

First we bound ℓ
(b)
max:

Observation 1. Consider the d-choice game in which m = C balls are thrown
into n bins with total capacity C. Fix any constant k > 0. If k ≤ r

3 −1, the load
in every big bin will be at most 4 with probability at least 1− n−k. This implies

that ℓ
(b)
max ≤ 4 with probability at least 1− n−k.

Proof. First of all, in this proof the load of a slot is the inherited load which
is the load of the bin the slot belongs to. Hence, all slots belonging to one bin
have the same load.

Consider a big bin bi with 2 · ci balls, i.e. load 2. First we show that the
probability for this bin to get a ball b is at most ci/m. As the number of balls
equals the number of slots, at least half of the slots have a load less than 2 when
b is allocated. If more than m/2 slots had at least 2 balls, then the total number
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of balls would exceed 2 ·m/2 = m = C. Let Aℓ be the event that b chooses ℓ
big bins and d − ℓ small bins, and let B be the event that b is allocated to bi.
As a worst case assumption, to upper bound Pr [B | Aℓ ] we assume that the
ball is not allocated to any of the small bins. Then

Pr [B | Aℓ ] ≤ ℓ ·
ci
m

·

(
1

2

)ℓ−1

≤
ci
m

for 1 ≤ ℓ ≤ d and Pr [B | Aℓ ] = 0 for ℓ = 0. Furthermore

Pr [B ] =

d∑

ℓ=1

Pr [B | Aℓ ] ·Pr [Aℓ ] ≤
ci
m

·

d∑

ℓ=1

Pr [Aℓ ] ≤
ci
m
.

The expected number of balls hitting the big bin bi is therefore at most ci after
m balls. Let Xi be the number of balls that have been allocated to bi. Then,
using Chernoff bounds (with ǫ = 1), we obtain

Pr [Xi ≥ 2 · ci ] = Pr [Xi ≥ (1 + ǫ) · ci ] ≤ e−ǫ2·ci/3 ≤ e−r·ln(n)/3

= n−r/3 ≤ n−k−1

Hence, for r chosen suitably, with probability at least 1−n−k−1, bin bi is chosen
by at most 2 · ci many balls and the load can be upper-bounded by

ℓi ≤ 2 +
Xi

ci
≤ 2 +

2 · ci
ci

= 4.

Since there are at most n big bins, the probability that (at least) one of them
exceeds load 4 is bounded by n · n−k−1 = n−k.

For the second part of the lemma, note that we assumed that all balls that
choose at least one big bin will not be allocated to any of the small bins. Since
under these circumstances the maximum load of big bins is still w.h.p. at most
4, no ball of Bb will choose a small bin unless its load is smaller than 4. Hence,

no ball of Bb will have a height of more than 4. This implies ℓ
(b)
max ≤ 4.

Lemma 1. Let P be a d-choice process on n non-uniform bins with total capac-
ity C, and let Q be a d-choice process on C unit-sized bins. Then the maximum
load in P is stochastically dominated by the maximum load in Q.

Proof. We show this result by coupling. Since the number of bins is different
in both processes, we define the state space as the set of normalised slot load
vectors. The slot load vectors in P and Q have equal length because the total
capacity C is the same in both processes. We assume that both processes
randomly choose d slots. In the case of P the ball could be allocated to any
slot of the bin which receives it, but we assume that the ball is allocated to the
rightmost slot. Note that this is only a renumbering of the slots of the bins.
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As the process starts with empty slot load vectors, SP is majorised by SQ in
the beginning. SP will remain stochastically dominated by SQ if an order-
preserving coupling of the two processes exists. This would already imply the
statement of the lemma because the maximum load in P would also remain
dominated due to ℓ̄P1 ≤ s̄P1 ≤ s̄Q1 = ℓ̄Q1 .

Let SP
j and SQ

j denote the slot load vectors after the j-th ball. For the coupling
we have to show that for every ball j there exists a bijection between the random
bin choices of P and Q such that SP

j � SQ
j implies SP

j+1 � SQ
j+1. Let h1 ≤ h2 ≤

. . . ≤ hd be the indices of the d randomly chosen slots in the normalized slot
vector of process Q. Then Q will allocate the ball into slot hd. For the moment
let us assume that P will use the rightmost slot of the bin that contains slot
hd. Hence, P will use the slot hd itself or a slot on the right side of hd in the
normalised slot load vector. It follows from Claim 2.4 in [12] that SP

j+1 � SQ
j+1.

It remains to prove that P allocates the ball to a least loaded bin by choosing
the bin that contains hd. (i) Note that we compare the least loaded slots of the
bins in question and that the slots of a bin are filled in a round-robin fashion.
Therefore, if one slot has a strictly smaller load than another slot, then the
same is true for the according bins. (ii) Recall that we added to the definition
of the normalised slot load vector that slots of the same load are ordered by the
loads of the respective bins in decreasing order. Hence, even if two slots have
the same load, then the slot with the higher index belongs to the bin of lesser
(or equal) load.

Before we state the first theorem, we prove the following lemma, which will be
repeatedly used in the theorem’s proof.

Lemma 2. Define Xs := |Bs| and let Y count the number of times in which a
ball from Bs falls into a non-empty bin. Then

1.

Pr [Xs ≥ k ] ≤

(
e · C2

s

k · C

)k

2.

Pr [Y ≥ λ | Xs = k ] ≤

(
e · k3

λ · C2
s

)λ

.

Proof. First we show Part 1. Recall that Bs denotes the set of balls that have
all d choices among small bins. Note that Cs ≤ c · (n · ln(n))2/3 = o(n) implies
that there are Θ(n) big bins and that therefore m ≥ n · ln(n)/2.

A ball belongs to Bs if all d choices are directed to small bins. Hence, the
probability for a ball to be in Bs is

ps =

(
Cs

C

)d

≤

(
Cs

C

)2

.
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For the number Xs of such balls we therefore obtain

Pr [Xs ≥ k ] = Pr [B(m, ps) ≥ k ] ≤

(
e · C

k

)k

· pks ≤

(
e · C2

s

k · C

)k

where B(m, ps) is the binomial distribution in parameters m (number of tri-
als) and ps (success probability of each trial), and Xs ∼ B(m, ps). The first

inequality in Eq. 1 uses the well-known bound
(
n
k

)
≤
(
en
k

)k
with e = exp(1).

Now we show Part 2. We assume Xs ≤ k where k is taken over from Part 1. The
remaining task is to bound the maximum load of the game in which k balls are
allocated into the small bins with a total capacity of Cs. Lemma 1 states that
the maximum load of this process is dominated by the maximum load of the
process P that allocates k balls to Cs unit-sized bins. Therefore, it is sufficient
to show a constant bound for the maximum load in P.

Recall that Y count the number of collisions, that is, the number of times in
which a ball from Bs falls into a non-empty bin. For each case, we will show
that Y is constant w.h.p. which already implies a constant maximum load. Let
Yi, i ∈ [k], denote binary random variables such that Yi = 1 if the i-th ball
from Bs collides with one of the previous balls and Yi = 0 otherwise. Observe

that Y =
∑|Bs|

i=1 Yi. The collision probability pc := Pr [Yi = 1 ] for ball i is
upper-bounded by

pc = Pr [Yi = 1 ] ≤

(
i− 1

Cs

)d

≤

(
i− 1

Cs

)2

<

(
|Bs|

Cs

)2

.

For the number of collisions Y we obtain

Pr [Y ≥ λ | |Bs| = k ] ≤ Pr [B(k, pc) ≥ λ ] ≤

(
e · k

λ

)λ

· pλc ≤

(
e · k3

λ · C2
s

)λ

.

Theorem 1. Consider the d-choice game in which m = C balls are allocated
into n bins with total capacity C. Let κ be an arbitrary constant, and assume
that either
(1) m ≥ n2 or
(2) Cs ≤ c · (n · ln(n))2/3 for an arbitrary positive constant c.
Then ℓmax ≤ 6κ with probability at least 1− n−κ.

Proof. Since ℓmax ≤ ℓ
(b)
max + ℓ

(s)
max and since Observation 1 states that ℓ

(b)
max is

constant, it remains to show that ℓ
(s)
max is also constant.

In Lemma 2 we calculate upper bounds for |Bs| and ℓ
(s)
max, as a function of both

m and Cs. Here we consider six cases, depending on the values of Cs andm. The
first three cases imply statement (1), the last three cases imply statement (2).
To apply Lemma 2 we will choose k so that Pr [Xs ≥ k ] ≤ n−α for any constant
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α (provided that n is large enough). In two cases we will be able to choose k as
a (small) multiple of α which already implies a constant maximum load.

Case 1: C ≥ n2 and Cs ∈ [1,n3/4]. In this case we use Lemma 2(1) to show

that the size of Bs is w.h.p. at most a constant and clearly ℓ
(s)
max ≤ |Bs|.

Pr [Xs ≥ k ] ≤

(
e · (Cs)

2

k · C

)k

≤

(
e · n3/2

k · n2

)k

=
( e

k · n1/2

)k

≤
1

nκ

for k ≥ 2κ + 1. From this we can directly derive that ℓ
(s)
max ≤ 2 · κ + 1 = O(1)

with probability 1− n−κ.

Case 2: C ≥ n2 and Cs ∈ [n3/4,n].

In this case we first use Lemma 2(1) to show that |Bs| is at most ln(n), w.h.p.

Pr [Xs ≥ ln(n) ] ≤

(
e · (Cs)

2

ln(n) · C

)ln(n)

≤

(
e · n2

ln(n) · n2

)ln(n)

= n− ln ln(n)+1

≤ n−κ/2

Now we use Lemma 2(2) to show that ℓ
(s)
max is w.h.p. constant if the size of |Bs|

is at most ln(n).

Pr [Y ≥ λ ||Bs| ≤ ln(n) ] ≤

(
e · ln3(n)

λ · n3/2

)λ

≤ n−κ/2

for λ ≥ κ. Clearly, We have

Pr [Y ≥ λ ] = Pr [Y ≥ λ ||Bs| ≤ ln(n) ] ·Pr [ |Bs| ≤ ln(n) ]

+Pr [Y ≥ λ ||Bs| > ln(n) ] ·Pr [ |Bs| > ln(n) ]

≤ Pr [Y ≥ λ ||Bs| ≤ ln(n) ] +Pr [ |Bs| > ln(n) ]

Thus, with a probability of 1− n−κ, we have ℓ
(s)
max ≤ κ.

Case 3: m ≥ n2 and Cs ∈ [n,n · r · ln(n)].

Here we use Lemma 2(1) again to show that |Bs| ≤ (r · ln(n))3, w.h.p. Recall,
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a bin is called big if its capacity is at least r · lnn.

Pr
[
Xs ≥ (r · ln(n))3

]
≤

(
e · (Cs)

2

(r · ln(n))3 · C

)(r·ln(n))3

≤

(
e · (n · r · ln(n))2

(r · ln(n))3 · n2

)(r·ln(n))3

=

(
e

r · ln(n)

)(r·ln(n))3

=
( n

rln(n) · nln ln(n)

)r3·ln2(n)

≤ n−κ/2

for r ≥ 1. Hence, using Equation 1 we get

Pr
[
Y ≥ λ | |Bs| ≤ (r · ln(n))3

]
≤

(
e · (r · ln(n))9

λ · n2

)λ

≤ n−κ/2

for λ ≥ κ/2. Similar to the last case we have ℓ
(s)
max ≤ 2κ with a probability of

1− n−κ.

Case 4: C ≥ n · ln(n)/2 and Cs ∈ [1, (n · ln(n))5/12].

Pr [Xs ≥ k ] ≤

(
e · (n · ln(n))5/6

k · 1/2 · n · ln(n)

)k

=

(
2e

k · (n · ln(n))1/6

)k

≤ n−κ

for k ≥ 6κ. This immediately yields ℓ
(s)
max ≤ 6 · κ with probability 1− n−κ.

Case 5: C ≥ n · ln(n)/2 and Cs ∈ [(n · ln(n))5/12, (n · ln(n))7/12].

Again, we first show that |Bs| ≤ (n · ln2(n))1/6, w.h.p.

Pr
[

Xs ≥ (n · ln2(n))1/6
]

≤

(
e · (Cs)

2

(n · ln2(n))1/6 · C

)(n·ln2(n))1/6

≤

(
e · (n · ln(n))7/6

(n · ln2(n))1/6 · 1/2 · n · ln(n)

)(n·ln2(n))1/6

=

(
2e

(ln(n))1/6

)(n·ln2(n))1/6

≤ n−κ/2.

11



Again,

Pr
[

Y ≥ λ | Xs < (n · ln2(n))1/6
]

≤

(
e · k3

λ · (Cs)2

)λ

≤

(
e · (n · ln2(n))1/2

λ · (n · ln(n))5/6

)λ

=

(

e · ln1/6(n)

λ · n1/3

)λ

≤ n−κ/2

for λ ≥ 4κ. Thus, with a probability of 1− n−κ we have ℓ
(s)
max ≤ 4κ.

Case 6: C ≥ h · n · ln(n) and Cs ∈ [(n · ln(n))7/12, c · (n · ln(n))2/3].

Again we first show (using Lemma 2(1) again) that w.h.p. |Bs| ≤ (n · ln2(n))1/3.

Pr
[

Xs ≥ (n · ln2(n))1/3
]

≤

(
e · (Cs)

2

(n · ln2(n))1/3 · C

)(n·ln2(n))1/3

≤

(
e · c2 · (n · ln(n))4/3

(n · ln2(n))1/3 · 1/2 · n · ln(n)

)(n·ln2(n))1/3

=

(

2e · c2

ln1/3(n)

)(n·ln2(n))1/3

≤ n−κ/2.

Now Lemma 2(2) gives us

Pr [Xc ≥ λ ] ≤

(
e · k3

λ · (Cs)2

)λ

≤

(
e · n · ln2(n)

λ · (n · ln(n))7/6

)λ

=

(

e · ln5/6(n)

λ · n1/6

)λ

.

for λ ≥ 7κ. Similar to the last case, this implies that with a probability of 1−nκ

ℓ
(s)
max ≤ 6 · κ.

Theorem 2. Let d ∈ N with d ≥ 2. Consider the d-choice game in which C
balls are allocated into n bins with total capacity C. Let κ ∈ (0, r

3 − 1] (with r
being the constant of the definion of “bigness” of a bin), and assume

Cs ≤ C
d−1

d · (logC)1/d.

Then, with a probability of at least 1− n−κ,

ℓmax ≤ 2(κ+ 4).

12



Proof. Notice that Cs ≤ r · n · ln(n) where r is a positive constant (see the
definition of smallness of a bin). Recall that the probability that a ball sends
all d requests to only small bins is (Cs/C)d. Let Xs denote the number of balls
sending all d queries to small bins. Then

E[Xs] = C ·

(
Cs

C

)d

=
Cd

s

Cd−1
.

Case 1: Cs = 0. In this case all bins are big, and we can simply apply Ob-
servation 1 and find ℓmax ≤ 4 with probability at least 1 − 1/nκ whenever
0 < κ ≤ r

3 − 1.

Case 2: 1 ≤ Cs ≤ C1/4. In this case, the probability that a ball sends all d
requests to small bins is

(
Cs

C

)d

≤

(
C1/4

C

)d

= C− 3

4
d ≤ C− 3

2

(the last inequality holds as d ≥ 2). The probability that there are k or more
balls in Bs is

Pr [Xs ≥ k ] ≤

(
C

k

)

· C− 3

2
k ≤

(
Ce

k

)k

· C− 3

2
k

= Ck− 3

2
k ·
( e

k

)k

≤ C−k/2 ≤ n−k/2 ≤ n−(κ+2)

for k ≥ max{e, 2(κ + 2)} = 2(κ + 2) (also recall that C ≥ n). Of those balls
sending all d queries to small bins, no small bin will receive more than k balls
with probability at least 1− 1/nκ+2.

According to Observation 1, the additional load of small bins due to balls that
mix requests between small and big bins is at most four with probability 1 −
1/nκ+2, so long as κ+2 ≤ r

3−1. Hence, with probability at least 1−1/nκ+1, the
maximum load of the small bins is at most k+4. For the maximum load of the
big bins we can use Observation 1 again, and conclude that with a probability
of at least 1− 1/nκ, the maximum load of any bin is no greater than 4 + k for
any k ≥ 2(κ+ 2).

Case 3: C1/4 < Cs ≤ C
d−1

d log1/d C. In this case,

E[Xs] =
Cd

s

Cd−1
≤

(

C
d−1

d log1/d C
)d

Cd−1
=

Cd−1 logC

Cd−1
= logC.

After applying Chernoff’s inequality we obtain Pr [Xs > 2 logC ] < n−ℓ for any
constant ℓ > 0 (this is because C ≥ n, and we obtain an inversely polynomial
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probability already for n/ log n.

Let Ys count the number of balls from Bs that fall into bins that already contain
at least one ball of Bs. Then,

Pr [Ys ≥ k ] ≤

(
2 logC

k

)

·

(
2 logC

C1/4

)dk

≤

(
2e logC

k

)k

·

(
2 logC

C1/4

)dk

≤
logk(C) · 2dk · logdk C

Cdk/4

≤
Cd

Cdk/4
=

1

Cd(k/4−1)
≤

1

Ck/2−2

provided that k ≥ 2 · e and C is large enough. For k ≥ 2(κ+ 4) we obtain

Pr [Ys ≥ k ] ≤
1

Ck/2−2
≤

1

Cκ+2
≤

1

nκ+2
.

Hence, with a probability of at least 1− 1/nκ+2 the maximum load of the small
bins is at most k for k ≥ max{2e, 2(κ + 4)} = 2(κ + 4). The remainder of this
case may be dealt with as in Case 2 above.

In summary, we find that for any positive κ < r
3 − 1 with a probability of at

least 1− 1/nκ, ℓmax ≤ 4 + k for k ≥ 2(κ+ 4).

Theorem 3. Consider the d-choice game in which, for any constant k ≥ 1,
m = C = nk balls are allocated into n bins with total capacity C. Then, w.h.p.,
the maximum load is bounded by

ln ln(n)

ln(d)
+O(1).

Proof. Lemma 1 compares the process in which m balls are allocated into n
bins of total capacity C with the process that throws m balls into C unit-
sized bins and states that the maximum load of the former is stochastically
dominated by the maximum load of the latter. By applying Theorem 1.1 of [10]
on the standard game with m balls and m = C bins, we obtain a bound on the
maximum load that is also valid for the first process. W.h.p., the maximum
load is

ℓmax ≤
ln ln(m)

ln(d)
+O(1) ≤

ln ln(nk)

ln(d)
+O(1) =

ln ln(n)

ln(d)
+O(1).

The next observation considers the game in which all bins have capacity c̄ and in
which m balls are allocated to n bins. The maximum load equals the maximum
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load of the standard game (in which m balls are allocated into n bins of capacity
one) divided by c̄. The observation follows from the main result in [11], namely
a tight analysis for multiple- choice algorithms allocating an arbitrarily large
number of unit-size balls into unit-size bins:

Theorem 4 (Corollary 1.4 in [11]). If m balls are allocated into n bins using
Greedy[d] with d ≥ 2, then the number of balls in the fullest bin is m

n + ln lnn
ln d ±

O(1), w.h.p. (that is, the maximum height above average is ln lnn
ln d ±O(1), w.h.p.).

Our corresponding result is as follows.

Observation 2. Assume we allocate m balls into n bins with capacity c̄ each.
For d ≥ 2 the maximum load is w.h.p.

ℓmax =
1

c̄
·
(m

n
+O(ln ln(n))

)

.

For m = n · c̄ in particular we obtain

ℓmax =
1

c̄
·
(n · c̄

n
+O(ln ln(n))

)

= 1 +
O(ln ln(n))

c̄
.

Proof. Since all capacities are the same, namely c̄, the loads are computed in
the same way for all bins and every ball adds the same load to the total load
regardless of where it is allocated. Therefore the allocation process equals that
of the standard game in which all bins have capacity 1. For the number of balls
in the fullest bin the bounds given in [18, 11] can be applied. Finally we get the
load by dividing by the bin’s capacity c̄.

The following corollary follows directly from the last observation.

Corollary 1. If c̄ ∈ Ω(ln ln(n)) and if m = k · n · c̄ for some arbitrary k, the
maximum load is k +O(1), w.h.p.

Theorem 5. Let k > 0 and 0 < α ≤ 1 be constants. Consider the game in
which α ·n bins have capacity q(n) and all other bins have capacity smaller q(n).
If q(n) ∈ Ω(ln ln(n)), then there is a probability distribution over the bins such
that the maximum load will be constant w.h.p. after the allocation of m = k ·C
balls.

Proof. Assign probability 1
α·n to all bins with capacity q(n) and probability 0

to all others. Ignoring the bins with probability 0, we may consider this a game
of m = k ·C ≤ k ·n ·q(n) balls and α ·n bins. Applying Observation 2 we obtain

ℓmax ≤
1

q(n)
·
( m

α · n
+O(ln ln(α · n))

)

≤
1

q(n)
·

(
k · n · q(n)

α · n
+O(ln ln(n))

)

≤
k

α
+

O(ln ln(n))

q(n)
≤

k

α
+O(1) = O(1).
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The last result implies that in some cases much better results for the maximum
load are possible if one can choose the probabilities oneself.

4. Simulations

The purpose of the simulations in this section is two-fold. On the one hand we
consider the games analysed in the previous section and demonstrate that the
asymptotic bounds behave well in practice. On the other hand we introduce
settings and evaluate the performance of the approach in models not covered
previously in this paper. Among others we will present experiments indicating
that our results also hold for a very small number of bins and for the heavily
loaded case, which are, of course, settings important for many practical applica-
tions. Whereas the main focus is on the maximum load in the analytical section,
we often consider complete distributions here.

In order to obtain meaningful results, the experiments are usually repeated
10,000 times, and the values plotted are the average values. If not stated oth-
erwise, the probabilities are proportional to the capacities and the number of
balls equals the total capacity. Within this section, we use the term large bins
slightly different from the use of big bins within the evaluation section, as we do
not formally define their capacity as being bigger than r · lnn for a specific value
of r. Nevertheless, we use the term large bins for bin sizes, where we expect a
behavior similar to big bins in the evaluation section.
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Figure 1: Uniform bins

4.1. Uniform Bins

This section analyses the influence of larger capacities on the load distribution
for uniform bins. The setting is similar to the evaluation of the heavily loaded
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case presented in [11], as having bigger, but uniform capacities with ∀ci : ci =
c > 1 and throwing m = c ·n balls leads to the same distribution as the classical
balls-into-bins strategy, as Algorithm 1 becomes identical to the standard d-
choice game presented by Azar et al. [10].

In the first experiment, we have n = 10,000 bins, d = 2 and the uniform
capacities have been set in the different experiments to c = 1, 2, 3, 4, 8. The
capacities cover the interesting range between ln ln(n) ≈ 2.22 and ln(n) ≈ 9.21.

In Figure 1 we plot the normalised load distribution (with load given by num-
ber of balls divided by capacity) of the entire bin vector for the five different
(uniform) capacities. In the figure, “x-bins” refers to bins of capacity x.

According to Observation 2 the maximum load is 1+O(ln ln(n))/c for capacity
c ≥ 2 and m = C = c · n. And in fact in our simulations the maximum load is
very close to 1 + ln ln(n)/c for c = 2, 3, 4, 8 and close to ln ln(n)/ ln(2) for c = 1
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Figure 2: 32 uniform bins. Load distribution for C balls
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Figure 3: 32 uniform bins. Load distribution for 10 · C balls
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Figure 4: 32 uniform bins. Load distribution for 100 · C balls
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Figure 5: 32 uniform bins. Load distribution for 1,000 · C balls

(see [10] or Theorem 3).

In Figure 2, 3, 4 and 5 we consider a smaller set of 32 uniform bins. The
experiments show how an increase in the number of balls, m, affects the load
distribution for different capacities C = c · n for c = 1, 2, 3, 4. The four plots
show, top to bottom, left to right, the load distributions over the entire array of
n = 32 bins, for m = C, 10 · C, 100 · C, 1,000 · C respectively. Observe how the
absolute deviation from the average load m/n remains essentially invariant. In
fact the curves for m = 10 · C, 100 · C, 1,000 · C look identical and suggest that
this absolute deviation is independent of the number of balls, which corresponds
to the theoretical results for the heavily loaded case in [11] with all bins and
balls being uniform.
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4.2. Load Distribution in Mixed Arrays

In this section we look at heterogeneous bin arrays. We assume that the number
of balls m equals the total capacity C (unless stated otherwise) and that the
bins’ probabilities are proportional to their capacities. We fix the number of
bins and increase the total capacity of the system.

In this scenario it is plausible that an increase of the total capacity leads to a
decrease in the maximum load because the bigger bins draw balls and a ball in
a big bin adds little to the total load. We will present a few simulations that
substantiate this assumption. Moreover, we will analyse which type of bins are
likely to hold the biggest load.

Figure 6 depicts the results from an experiment with a fixed number of n = 1,000
bins. We mix small bins of capacity 1 with large bins of capacity 10. The fraction
of large bins is depicted on the x-axis and varies from 0% to 100%. The figure
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Figure 6: Bins of size 1 and 10. Maximum load depending on fraction of large bins.
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Figure 7: Bins of size 1 and 10. Location of maximally loaded bin.
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shows how the maximum load changes when we increase the fraction of large
bins and hence the total capacity. We can see clearly that, as expected, the
maximum load decreases as the proportion of large bins increases.

Observe the slow decrease between 10% and 30% in Figure 6. The phenomenon
can be linked to another one known to occur in standard (uniform) balls-into-
bins games. There, the maximum load can be observed to remain invariant for a
relatively large number of successive balls, during whose placement the number
of maximally loaded bins grows, but not their (individual) loads. An image often
used to describe this effect is that of horizontally growing a plateau. Clearly,
as the probability for a ball to query only bins of maximum load (members of
the plateau) grows proportionally with the width of the plateau, the maximum
load will eventually increase by one, and a new plateau will be formed.

The large bins start to exert a pull effect from the beginning of our experiment,
very quickly decreasing the maximum load from 3 to 2. Then the maximum
load remains more or less unchanged until the large bins reach a fraction of 25
percent. Afterwards the fraction of large bins increases considerably until they
are able to “pull” enough balls from the small bins such that the maximum load
of the small bins drops to 1 (see also Figure 7). This happens when approxi-
mately 90% of the balls hit at least one big bin. From there on, the maximum
load stays in one of the large bins and slowly decreases to 1.2.

Figure 7 gives a different view on and some explanations for the same experi-
ment. The plot shows, for each point on the curve, the fraction of 1,000 indepen-
dent runs in which a small bin of capacity 1 was among the maximally loaded.
The maximum load is more likely to be in one of the small bins as long as the
pull effect from the large bins is not too strong. With about 45% large bins the
fraction of small bins containing the maximum load drops under 50%. Then the
probability to choose at least one big bin is already 4,500/(4,500+ 550) > 0.89.
The figure suggests that small bins have the maximum load as long as the num-
ber of big bins is small, and that the plateau in Figure 6 coincides with the area
where the maximum load is moving from the small bins to the large bins.

It is interesting to analyse the small dent around 2% in Figure 7. One reason
for this phenomenon is the relatively high maximum load among the large bins,
which results from insufficient load balancing. The load is poorly balanced
among the large bins because most of the time a big bin is chosen, it is chosen
together with a small bin. The second reason is that deviations in the maximum
load of the small bins are more substantial than deviations in the maximum load
of the big bins. In this particular case, the maximum load of the small bins is
either 2 or 3 and the maximum load of the large bins usually slightly below 2,
but not always. Thus, with a small probability, the maximum load is among
the large bins.

The results presented in Figure 6 and 7 have shown how the maximum load
moves from the small bins to the larger bins for an environment with two dif-
ferent bin sizes. Figure 8 and 9 now present results for environments with more
than two bin sizes, where the maximum load is a function of the overall capacity.
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Figure 8: Randomised bin sizes. Maximum load depending on system capacity.
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Figure 9: Randomised bin sizes. Location of maximally loaded bin.

In this case, the results are not obtained by gradually increasing the fraction of
large fixed-size bins. Instead, we determine each bin’s capacity using a random
process in which, for a desired total capacity C = c ·n (with c between 1 and 8)
the size of each bin is determined by 1+X where X is a binomially distributed
random variable with X ∼ Bin(7, c−1

7 ), where 7 is the number of Bernoulli
experiments and (c− 1)/7 is the probability in each of the experiments. Notice
that the total capacity will in general not be precisely equal to c · n, but it can
be shown, theoretically and experimentally, that it will be very close to it with
high probability. The number of balls is always the same as the respective total
capacity (m = C). The result is very similar to the previous experiment. While
increasing the total capacity, the maximum load rapidly decreases.

The shapes of Figure 6 and Figure 8 seem to be similar, nevertheless, it could
be seen that Figure 8 is less smooth and that multiple smaller plateaus try to
emerge. These smaller plateaus can be explained by Figure 9. It can be seen
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that the smallest load is in the beginning in bins of size 1. This can be easily
explained, as most of the bins have in this case a capacity of 1. The situation
changes, when the capacity of the system becomes bigger than 2,500. In this
case, the maximum load is moving to bins of capacity 2. This has two reasons:
Firstly, the bigger bins generate a pull from the bins of size 1 to the bigger bins.
Secondly, the number of size 1 bins decreases with increasing system capacity.
The maximum load starts to decrease again at a system’s capacity of 3,000. In
this case, the bins of size 3 or 4 are dominating and receive this maximum load.
Figure 8 and 9 nicely show that it makes sense to build heterogeneous systems
and to add bigger bins to an already existing systems to achieve better load
balance. The dents in Figure 9 can be explained in the same way as the dents
for Figure 7.

This behaviour can also be seen in the plots of Figure 10 and 11. They show load
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Figure 10: 32 bins of capacity 1 and 2
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Figure 11: 10,000 bins of capacity 1 and 8
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distributions for different ratios of small bins and large bins. Here, load stands
for the average over 10,000 repetitions of the same experiment. We consider two
cases: In the first plot we have only 32 bins, and the bin sizes are 1 and 2. In
the second plot there are 10,000 bins, and the bin sizes are 1 and 8. We observe
in both plots: The more large bins we have, the more even the load distribution
becomes.

The experiment depicted in Figure 12 and 13 equals the one in Figure 11 as we
consider the same ratios of small and large bins; sizes 1 and 8 respectively. We
provide the results this time in two separate plots that complement each other.
The left part shows only the bins of size 8, the right part only the bins of size 1.
Notice that the curves do not generally span the entire width of the figures as
there are simply not in general n = 10,000 bins of a given size available. Again,
load denotes the average load over 10,000 repetitions.
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Figure 12: Bins of capacities 1 and 8. Load for bins of capacity 8.
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Observation 1 and Theorem 3 predict a constant load in the large bins and
higher loads in some small bins. We can observe that the asymptotic bounds
behave very well in our experiment.

4.3. Dynamically Increasing the Number of Bins

This subsection discusses an issue to be observed in cloud computing and high
performance computing (HPC) environments. The environment starts with a
small number of storage systems and grows over time. New disks are bought
in batches and each generation of disks is bigger than the previous one. Never-
theless, new disks do not replace the old ones, but the old disks remain in the
system to improve both capacity and bandwidth. In our experiments, we scale
the environment from two hard disks (bins) up to 1,000 disks. Each increase is
by 20 disks. We assume two growth models: linear and exponential.

In the linear growth model, the i-th batch of new disks is bigger than the (i−1)-
st batch by some constant offset. In the simulations, we start with capacity 2
for the first batch, and increase by a = 1, a = 2, a = 4, or a = 6 in each new
batch. We perform an entire run of the experiment, from two disks all the way
up to 1,000, for each of those values of a. The outcome can be seen in Fig. 14.
The diagram also contains a graph for the “baseline setting” in which no growth
at all is assumed but all disks have capacity 2.

In the exponential growth model, the i-th batch of new disks is bigger than
the (i− 1)-st batch by some constant factor. In the simulations, we start with
capacity 2 for the first batch, and increase by a factor of b = 1.005, b = 1.1,
b = 1.2, or b = 1.4. Again, we perform an entire run of the experiment, from
two disks all the way up to 1,000, for each of those values of b. The outcome can
be seen in Fig. 15. The diagram again also contains a graph for the “baseline
setting” in which no growth at all is assumed but all disks have capacity 2.
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Figure 14: Linear growth between generations
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Figure 15: Exponential growth between generations

In both settings, linear and exponential, on adding a new batch of disks the
simulation is started from scratch (data could of course be reallocated instead),
and, most importantly, whatever the capacity distribution and total system
capacity C are, we always allocate precisely C many balls. This results in an
average load (#balls/capacity) of 1, and a maximum load of 1 is optimal in any
of the settings.

As expected, it can be observed that the exponential growth model is a little
slow to take off, but once the capacities of new batches are significant (and the
factor is large enough, i.e., not 1.005) it clearly outperforms the linear growth
model. It is notable that either model, with any parameter, exhibits a decreasing
maximum load as function of the system size, quite unlike the baseline model.

Although in our experiments we allocate data from scratch when new disks
arrive, it should be pointed out that a number of algorithms have been proposed
and implemented which are able to perform a reorganization with minimum
overhead (please see, e.g., [19, 20, 21, 5]).

4.4. The Heavily Loaded Case

In Figure 2, 3, 4 and 5 we have already seen an example for the heavily loaded
case (m ≫ C) when we simulated the uniform game in which all bins have
the same capacity. We observed that, in accordance with Observation 2, the
difference between the maximum load and the average load m

n is independent
of the number of balls m. In this section we find indication that the same holds
if the bins have random capacities.

In the experiment that is depicted in Figure 16 we fix n = 10,000 as well as a
total capacity CAP, a multiple of n. We then generate individual bin capacities
such that the (expected) total capacity is equal to the prescribed capacity CAP,
using an approach similar to that in Section 4.2. For each fixed value of CAP, we
throw 100×CAP many balls into the systems and at certain points throughout
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this process plot the current deviation of the maximum load from the average
load as a function of the number of balls currently in the system (that is, we
measure this quantity after the (i · CAP)-th ball for i = 1, 2, . . . , 100).
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Figure 16: Heavily loaded, deviation of maximum from average

The plot shows curves for a variety of CAP-values. What we see is essentially
a bundle of parallel lines, indicating that indeed the deviation of the maximum
load from the average does not grow with the number of balls thrown, apparently
regardless of the underlying total capacity. The positions of the lines also match
our intuition and predictions as the lines get closer to zero as the total capacity
increases, meaning the maximum load approaches the average load for large
capacities. Notice that the curves slightly jiggle up and down. One might not
expect such behaviour when tracing a term depending on the maximum load
(which ought to be monotonic). However, the maximum load of each individual
time step is still based on a random process, which fluctuates over time.

4.5. Optimal Probability Distribution

So far the probabilities were chosen to be proportional to the capacities. This
is a natural approach and works well if the differences between the capacities
are small. However, if this is not the case, it might be beneficial to use another
strategy and alter the probabilities. Theorem 5 shows, for instance, that in
certain cases in which a constant fraction of all capacities is of order ln ln(n),
a constant maximum load can be achieved by simply ignoring the low-capacity
bins.

Let us consider the following setting: The number of bins is n = 100, half of them
have capacity one and the other half (integer) capacity x, for 2 ≤ x ≤ 14. The
number of balls is m = C =

∑n
i=1 ci =

n
2 +x· n2 = 50·(x+1), and the probability

of a bin that has capacity c is set to ct/C(t) where C(t) =
∑n

i=1 c
t
i. Note that

the probabilities sum up to 1 and that bins with the same capacity have the
same probability. Since we have only two different capacities, all probabilities
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are fixed as soon as the probability for one bin is set. For this probability,
however, we can choose any value in the open interval

(
0, 2

n

)
1.

The question is, given x, what is the optimal exponent t? Figure 17 shows
our experimental results for the simulation of the random allocation according
to the altered probability distribution. For every capacity c ∈ {1, 2, ..., 14} and
every exponent t ∈ {1, 1.005, ..., 3} the maximum load is averaged over 1,000,000
repetitions, and the best values for t are used in the plot. It shows that the

1Let p denote the probability for a bin with capacity c ∈ {1, x} where x ∈ {2, 3, ...}. Since
c
t

1+xt can take any value in (0, 1), it follows:

p =
ct

C(t)
=

ct

n

2
· 1t + n

2
· xt

=
2

n
·

ct

1 + xt
∈

(

0,
2

n

)
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optimal exponent can differ considerably from 1. For the array in which 50 bins
have capacity 1 and 50 bins capacity 3, the optimal exponent is about 2.1.

5. Conclusions

We have analysed the multiple-choice game with unit-sized balls and heteroge-
neous bins assuming that a bin’s load is determined by the number of balls it
contains divided by its capacity.

First we assumed that the probabilities of the bins to be selected by a ball are
proportional to their capacities and that the number of balls equals the total
capacity of the bins. For the maximum load we obtained a bound that is not
worse than the one in the standard game [10], which is a special case of our
model (all capacities set to one). For certain settings, we have been able to
show that the maximum load can be even reduced to a constant by having a
set of heterogeneous bins, as bigger bins are able to attract balls and help to
reduce the load of smaller bins.

The experiments indicate that the asymptotic bounds are tight and that the
strategy can even be employed in applications with a small number of bins,
making it applicable in practical environments.

Interestingly and surprising, our analytical and experimental results show that
it can be beneficial to choose different probability distributions over the hetero-
geneous bins.

To the best of our knowledge, even though it is of great practical relevance,
this model has not previously been examined in a formal way. Future work
could address the problem of finding a general upper bound for the maximum
load in the heavily loaded case. Additionally, it would be interesting to further
analyse the problem of choosing the best probability distribution for a given
heterogeneous bin array.
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