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Abstract—In this paper we describe a system for passive
acoustic sound source localization in 3D using a distributed
microphone array. By distributing the microphones into small-
scale and large-scale arrays we can exploit array processing
algorithms that use near-field and far-field properties of the sound
source with respect to the array. The microphones on the small-
scale device are sampled using a single, simultaneously sampling
analog to digital converter which results in time synchronization
between these microphone channels up to a small fraction of the
signal’s phase. The large-scale array consists of multiple small-
scale devices and can be deployed over a much larger capture
volume. We create the distributed microphone arrays in a manner
that is scale-free with regard to the amount of microphones in
the system, the capture volume, the type of sound and the type
of sensors/microphones. In this paper we describe the hardware
topology, the localization algorithms and the obtained results.

Keywords—passive acoustic localization; microphone array;
scale-free; wireless sensor network; bio-acoustic localization

I. INTRODUCTION

Passive acoustic localization has many benefits in biological
research as opposed to active tracking methods which typically
require capturing the animal for attaching some kind of marker
or device which may be very disturbing to the animal. A
passive approach to animal localization by their vocalizations
can be done using a microphone array [1]–[4]. By observing
the difference in arrival time of the subject’s vocalization,
an estimate about the position of the sound source can be
made [5]–[7]. In our distributed microphone array we make
the distinction between large- and small-scale arrays. A small-
scale array is defined as a single device containing a limited
amount of microphones spaced relatively close together (in
the order of centimeters). Due the microphones being spaced
closely together, most sound sources will originate in the far-
field of that small scale array. Therefore, due to the planar
nature of the impinging sound waves this type of array can
only provide information about the direction of arrival [8],
[9]. A large-scale array consists of multiple smaller devices
encompassing a larger area thus placing the sound source in
the near-field of the array aperture. From a sound source in
the near-field we can find the 3D position by making use of
the spherically-shaped wavefronts [10]. Acoustic localization
using microphone arrays can usually be divided in two main
areas: (1) acoustic imaging using small-scale arrays within a
single capture device where the result is often an acoustic
overlay of sound intensity over an image or video [11], [12]
(2) 2D or 3D localization using large-scale arrays [13], [14]

e.g. by placing microphones along the runway on an airport,
the location of a plane on the runway can be detected.

Small-scale nodes can be manufactured as a single device
with exact specifications such as microphone locations on
a Printed Circuit Board (PCB) using a single Analog to
Digital Converter (ADC). Due to the fact that a synchronous
sampling ADC can be used, there are less uncertainties in
the time differences between the signals of the microphones
which in turn reduces the uncertainty in the estimated quantity
of the device. This is Angle of Arrival (AoA) in the case
of a small-scale node. Large-scale arrays suffer from time
synchronization errors [15], [16] and higher uncertainties in
the microphone locations as they consist of multiple nodes
and can be deployed over much larger areas. By constructing
a large-scale array consisting of small-scale devices we can
create a distributed Wireless Sensor Network (WSN) that is
scale-free in terms of capture area, amount of microphones,
amount of nodes and type of sensor. E.g. different microphones
using different sample rates or even different types of sensors
such as 3D camera’s can be combined due to the use of
a probabilistic localization algorithm and the usage of a
synchronization mechanism.

The goal of this paper is to describe a complete system
for bio-acoustic localization using a distributed microphone
array resulting in a scale-free WSN. In section II we describe
in more detail how the small- and large-scale arrays can be
constructed and what considerations there may be for the
topology with special consideration for microphone positions
and data synchronization between the microphones. We show
that it is possible to robustly time-synchronize nodes in a
WSN. We also describe how the synchronization method
allows for various data sources to be synchronized into a single
context. In section III we explain our localization algorithms
for both the small-scale array where we can identify the
direction or angle of the incoming sound, and the large-scale
array where we can identify the sound source location in
3D. We also indicate measures for reducing the computational
complexity of the localization algorithm. Next, in section IV
we show the results of our system from both lab experiments
where we tracked the location of an ultrasonic transducer in
a lab environment following a trajectory similar to that of
a free-flying trawling bat. Finally, in section V we give our
conclusions to this work and indicate future research.
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Fig. 1. Panel a): The small-scale microphone array consisting of five MEMS-microphones soldered in an elliptical pattern on a PCB. The component count
on the top layer of the PCB is kept to a minimum in an attempt to keep the acoustic profile of the board close to a flat surface. Panel b): Overview of
the hardware stack. At the top level there are five microphones on the PCB. The microphones are sampled by a single simultaneously sampling ADC. An
optional antenna and CC430 module can be used for wireless synchronization between nodes in a sixth channel. Low level interfacing with the ADC is done
using a PRU to ensure real-time consistency in the data. Higher level interfacing such as network interfacing for data offloading is done using a BeagleBone
Black Single-Board Computer (SBC). Panel c): Complete hardware stack of a single small-scale node showing the three layers of the node. At the bottom
(black) there is a BeagleBone Black SBC with Programmable Real-time Unit (PRU), On the middle layer (green) there is a PCB with the 6-channel ADC
and a hardware band-pass filter, on top (purple) the microphone array can be found. Panel d): The node in an enclosure to protect it during transport. The
enclosure allows for easy mounting on a tripod or similar mounting system.

II. ACOUSTIC LOCALIZATION - SYSTEM TOPOLOGY

We have created hardware and software that allow the
construction of microphone arrays for 3D acoustic localization.
At the small-scale level we consider a single node consisting
of five closely spaced microphones, as can be seen in figure 1.
As the microphones are spaced closely together, any detected
sound will be in the far-field which means we can only extract
AoA information. We provide more insights in the underlying
reasoning for this in section III-B. By distributing multiple
small-scale arrays over a larger capture area we create a large-
scale array where the sound is in the near-field of the array, see
figure 2. Using the large-scale array we can use a probabilistic
Time Difference of Arrival (TDoA) approach to locate the
sound source in 3D.

Considering that TDoA localization relies on detecting
offsets in the arrival times of a single sound at different nodes
or microphones, there are two key factors that determine the
accuracy and precision of our localization algorithms:

1) Degree of synchronization: As the absolute emission
time of the sound is not known, we can only use relative
differences in the arrival times of the sound for our localization
algorithms. We also have to know the relative (or absolute)
start and stop times of the each of the recordings which re-
quires our nodes to have a synchronized timing reference. Any
synchronization errors will appear to the system as a timing
offset in the relative arrival times, hence resulting in possibly
severe errors on the final source position estimates. More
information on synchronization can be found in section II-C.

2) Microphone position: Considering that TDoA works
by comparing arrival times based on the location of the
microphones, we can surely state that inaccuracies in the
microphone locations will lead to more uncertainties in the lo-
calization algorithm. This can be explained due to the fact that
an erroneous microphone position results in an inconsistent
measurement which in turn will lead to a lower, more spread
out probability distribution for the source position. More
information on the probabilistic source position estimation
algorithm can be found in section III.

A. Small-Scale Arrays

A single node contains a top level PCB with five closely
spaced microphones. The inter-microphone distance lies be-
tween 4 cm and 11 cm, as can be seen in figure 1a. These
microphones are soldered to a predestined pad on the PCB
which means their location is known to a very high degree
of accuracy. The microphones are sampled using a single
simultaneously sampling ADC to ensure a very high degree
of time-synchronization between the microphones. As shown
in figure 1b an optional antenna can be connected for wireless
synchronization between different nodes. The synchronization
channel is then recorded as a sixth channel by the ADC [17].
More information on the synchronization method for the
sensor array can be found in section II-C.

Low-level interfacing with the ADC must be done at a
precise rate using a real-time processor to ensure data is
captured at a correct sample rate. In our system, we selected
a BeagleBone Black (BBB) Single Board Computer (SBC) as
this device uses a Sitara AM335x processor. This processor
has a real-time co-processor, or Programmable Real-time Unit
(PRU), which is a Reduced Instruction Set Computer (RISC)
processor running at 200 MHz capable of single instruction IO
and Direct Memory Access (DMA), programmed in assembly
language. The PRU executes commands at a fixed rate without
interrupts which guarantees real-time code execution at a suffi-
cient data rate to deal with the relatively high data throughput:

285 kHz · 16 bit · 6 channels ≈ 3.3 MiBps

Higher level interfacing, such as data transfer over User
Datagram Protocol (UDP), is handled by a small SBC running
GNU/Linux. Some processors such as the Sitara AM335x
combine a PRU and a general purpose processor running
GNU/Linux in a single chip solution. In the case of the
Sitara processor both PRU and general purpose processor share
access to the same memory which can be accessed through
DMA.

The PRU of the BBB controls a six-channel simultaneously
sampling ADC from Texas Instruments (ADS8556) capable of



Fig. 2. Example of a large-scale array composed of three nodes of nearly
identical orientation. The relative 3D rotation for each node with regard to
the global coordinate system is indicated as a 3-axis coordinate system. Each
node has five microphones indicated with a yellow o. The red X indicates
the center of the microphones or the virtual microphone. Node 1 and node 3
have the same microphone layout, node 2 differs slightly. This layout could
be used for the localization of a bat flying towards the nodes. The locations
and orientations of the nodes have been gathered using the Qualisys system,
see also section IV.

sampling up to 630 kHz. Data is fed to the ADC by a third
order Sallen-Key low-pass sampling filter, the ADC and filter
reside on a separate board as can be seen on figure 1c. On
top of the ADC board, a PCB with the microphone array is
mounted.

B. Large-Scale Arrays

By distributing multiple small-scale nodes over a larger
area we can expand the capture volume of our array. This
is what we designate as a large-scale array, see figure 2 for an
illustration of a large-scale array constructed using three small-
scale nodes. By varying the configuration in terms of amount
of small-scale nodes, their position and their orientation we
can control the size of the capture volume and the accuracy
within that volume. As the array can span an entire room
or part of a forest, the acoustic source can be considered to
be in the near-field of the large-scale array and as a result,
we can locate the acoustic source in 3D given that the large-
scale array is 1) spread over a large enough area to place the
sound source in the near field, and 2) the large-scale area has
enough dimensional diversity in the node locations to eliminate
any ambiguities in the sound source location. The system
described here is scale-free with regard to the amount of nodes
that can simultaneously be used for localization. As such, the
large-scale array is also scale-free in terms of the size of the
capture volume and the accuracy withing that capture volume.
For example, when tracking the foraging routes of Proboscis
monkeys, the necessary capture volume of the system may
well exceed a couple of square kilometers while precision
within 2 m may be acceptable as this leaves ample room for
identifying the location of the animal to a single tree. On the

other hand, when analyzing the flightpath of a bat approaching
prey as in [1], [4], the system must be able to locate the animal
much more accurately, however the capture area can be kept
much smaller because such experiments are typically done
in a flight cage or above a small portion of a lake. From
these examples we can make the following requirement for
the system: the large-scale array must be able to support any
amount of nodes in any size of capture volume.

As the TDoA algorithm depends on the combination of data
from multiple nodes, the calculations must be done offline
on a central processing point such as a laptop. The large-
scale network requires a medium for sending commands to the
nodes and transporting the recorded data from the nodes to the
processing point. For large-scale networks that are restricted
in size (e.g. networks that are confined to a single room),
this medium could be WiFi or a cabled network connection.
Most SBCs provide interfaces for connecting to standard WiFi
or ethernet. For larger setups, where a single access-point is
beyond the wireless range of a standard WiFi connection,
or where a wiring all nodes to a central hub or switch is
not feasible, a multi-hop protocol is needed. Many references
about the creation of multi-hop wireless networks for the
intended purpose of creating a WSN can be found in the
literature [10], [18] as well as solutions for a wired multi-
hop protocol. The wireless solution can have it’s merits if the
whole setup is made wireless and battery powered, however we
will restrict ourselves to wired experiments in the near future
so we created a Power over Ethernet (PoE) solution where the
power, synchronization and network data are transported over
a single cable. A small secondary device attached to the node
is able to split the signal from the cable and feed them to the
node. This device could have an internal ethernet switch to
allow daisy chaining of the devices thus supporting multi-hop
communication.

C. Synchronization

In our large-scale microphone array, microphones are not
simultaneously sampled. As a result, timing offsets will occur
in the recorded data. Indeed as we use non real-time network
protocols such as UDP over a wired, or even wireless network
to perform synchronization, small time differences will exist
in the capture start and stop times. Network timing protocols
such as Network Time Protocol (NTP) can achieve timing
offsets below 1 ms under ideal circumstances [16]. These
timing errors may be even larger for multi-hop networks. As
we use a timing sensitive TDoA algorithm for localization, it
is quintessential that we are able to accurately synchronize our
recordings. Indeed, an error of 1 ms results in a distance of
34 cm, given that the speed of sound in air is 343 m/s. The
actual error of our TDoA algorithm will change significantly
with the changed TDoA measurement due to the fact that the
sound is located on a hyperbolic surface which is the solution
of the standard TDoA approach.

Synchronization of recorded data is usually done by adding
a time stamp to the recorded data. Accuracy of the time stamp
is not trivial as this requires a high degree of synchronization



between the nodes. Different methods for synchronizing clocks
in a WSN can be found in the literature [19]. Some methods
such as NTP, Mock’s algorithm [20] or Delay Measurement
Time Synchronization (DMTS) [21], rely on a master node
for synchronization and are therefore less robust against the
failure of the master node. Furthermore synchronization errors
increase with the amount of hops in the case of a multihop
WSN. A more robust approach would be to utilize a peer-
to-peer synchronization method where all nodes contribute
equally. These methods are more robust against the failure
of any single node and do not suffer from multi-hop delays.
Peer-to-peer synchronization allows for a more flexible and
more scale-free deployment of nodes in the WSN. Examples
of masterless synchronization can be found in the peer-to-peer
version of NTP or a separate protocol such as Reference-
Broadcast Synchronization (RBS) [22], or Time-diffusion Syn-
chronization Protocol (TDP) [23]. Furthermore, the time stamp
needs to be added very carefully in the metadata of the capture
and include information such as pre- and post-trigger data.
This information can easily be lost if the data is truncated or
otherwise manipulated.

Other methods of synchronization such as the pulse per
second (PPS) output from a GPS receiver [24] may be used for
accurate slot-synchronization. However, in a distributed system
such as described here there is a need for time- or absolute-
synchronization as slot synchronization alone may still yield
ambiguities in the post processing of the data. Furthermore,
the usage of GPS may not be feasible in an indoor setting.

In [17] we describe a biologically inspired, distributed
synchronization mechanism using pulse-coupled oscillators
for clock synchronization in a WSN. By embedding the
synchronization data in the recorded data, we can robustly
add timing information to a recording. More details on such
a synchronization mechanism can be found in [25] where
we embed a 1-bit signal with pseudo-randomly chosen duty
cycles in the recorded data. As the random signal exhibits
a very narrow autocorrelation function we can use it to find
timing offsets between multiple streams of recorded data. As
shown in figure 3, we can use the cross-correlation product of
two synchronization channels, a sharp peak will then identify
the timing offset between the recordings. Selecting fragments
of a stream does not hamper the cross-correlation based
synchronization.

Each of our small-scale nodes can sample up to six channels
simultaneously. One of the channels is sacrificed for the
recording of the synchronization channel, leaving five channels
for acoustic data. After the capture, recordings are transferred
to a central processing point (e.g. a laptop) where the syn-
chronization channel is used to find timing offsets between all
recordings. This method also enables synchronization of other
sources with the acoustic data. An infrared LED on the PCB,
connected to the same synchronization channel, will emit a
visual signal with the same pseudo-random structure as the
recorded data. By extracting the pseudo-random signal from
a camera recording, we can correlate the acoustic recordings
with a high-speed camera. Using formula 1 from [25] we can

find an optimal operating point for the random signal:

K =
2 · L · TS

Pmin(Pmax

Pmin
+ 1)

(1)

with K the estimated number of transitions in each capture, K
should be kept above 10 for a strong auto-correlation function.
With L being the smallest fragment length in number of sam-
ples that can still be used for synchronization, TS representing
the largest sample period in seconds, this corresponds to the
lowest sample rate in the system, with Pmin the minimal
period and Pmax the maximal period of the random sequence.
In our setup, we record acoustic data at 285 kHz, the camera
records at 300 Hz, this gives the following values for (1)

fmin = 300 Hz

Ts =
1

fmin
= 3.33 ms

Pmin = 2Ts = 6.67 ms (2)

Considering our minimal sample time to be 0.7 s thus

L = fmin · 0.7 s = 210 samples

we choose
Pmax = 20 · Pmin

to keep the operating point K above 10, which results in a
strong autocorrelation function as is shown in figure 3a and
figure 3b. Indeed, when applying the coefficients calculated
in formula 2, the autocorrelation function shown in figure 3a
displays a sharp peak at t = 0. In figure 3b we show the
cross-correlation product between a small-scale node, where
the synchronization is sampled directly by the ADC at 285 kHz
and a high speed camera recording of an LED on one of the
PCBs recorded at 300 Hz. From figure 3b it is clear we can find
the timing offsets in the recordings using our synchronization
method.

III. PROBABILISTIC LOCALIZATION ALGORITHMS

The goal of sound source localization is to retrieve the
position ~Ps of a sound source:

~Ps = [xs, ys, zs]
T

We use a probabilistic algorithm for sound source localization
as a probabilistic method retains information on the likelihood
of this and other positions rather than a deterministic algorithm
such as least squares approximated solution which will only
give us a single best fitted position. Data analysis may present
edge cases where a single best fitted result is not the desired
result e.g. multiple clusters of higher likelihood or an even
spread of almost equally likely positions. A deterministic
algorithm does not quantify the uncertainty of the solution,
something that the probabilistic techniques do include natu-
rally. Furthermore, the probabilistic formulation allows elegant
extension to recursive Bayesian tracking algorithms such as an
extended Kalman filter (EKF) or a particle filter.
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Fig. 3. The cross-correlation product of two embedded synchronization
channels will show a sharp peak which can used to identify timing offsets
in the recorded data so that we may synchronize the data in post processing;
Panel a): Autocorrelation peak of the synchronization channel from a single
small-scale node sampled at 285 kHz which shows a strong peak at t = 0 s.
This means the synchronization channel has no timing offset when compared
to itself. Panel b): Cross correlation product between two nodes where the
synchronization channel is sampled at two different sampling frequencies,
285 kHz and 300Hz. Data sampled at a lower sampling frequency is re-
sampled to a higher sampling frequency. This plot shows a timing offset of
t ≈ −5.8 s which is to be expected due to a timing offset while starting a
capture.

A. Peak Detection

The first step in either localization algorithm, AoA or
TDoA, is determining the relative arrival times of the sounds.
When identifying a sound with known properties we use a
matched filter on the recorded data so that we can observe a
sharp peak at timing intervals whenever the sound of interest
is present in the recording. Another frequently used approach
for determining timing differences in different microphone
recordings relies on the generalized cross-correlation phase
transform (GCC-PHAT) [26], [27]. Using GCC-PHAT takes
into account phase information of the frequency spectrum
and may yield lesser results for recordings with a bad signal
to noise ratio [7]. Some filtering may be required based on
properties such as room acoustics, signal to noise ratio or
spectral properties of the sound to better identify peaks and
eliminate false positives. Special care for linking sounds across
the recordings needs to be taken when multiple sounds are
present in a single recording due to the fact that not all
sounds are detected by all microphones, which will definitely
be the case when tracking a directive sound source such as
a bat. By placing constraints on the maximum relative time
difference based on properties of the capture area and previous
sound locations we can better separate discrete sound emission
events in our recordings and identify which microphones may
have missed the sound.

From the detected peaks we can construct an arrival time
vector ~A of the relative arrival times for each sound position
relative to microphone 1. Note that microphone 1 is an

arbitrarily chosen microphone which is used as a reference
point. As no exact time of emission is known, it is safe to
subtract d1 from all detected peak times.

~A = [d1 − d1, d1 − d2, d1 − d3, . . . , dj − d1]T

Where j is the number of microphones. Hereafter we will refer
to the relative arrival time ~A(j) when we mention to the arrival
time dj .

B. Small-Scale - Angle of Arrival

At the small-scale level, microphones are spaced a few
centimetres apart and lie in a flat plane due to being placed
on the surface of a PCB. Due to this configuration, nearly
all incoming sound sources will be in the far-field for this
array. As a first step we define a local measurement vector
~ML with the difference in arrival times from all microphones

of the node. To keep the formulas below compact, we restricted
ourselves to 3 microphones:

~ML = [d1 − d2, d1 − d3, d2 − d3]T

with dj the relative arrival time for microphone j. Using the
location of each microphone, we can calculate an expected
local measurement vector ~ML, calc(~Ps) for all possible points
~Ps. This gives us a distance vector ~D( ~Ps) as a function of ~Ps.

~D(~Ps) = calc(~Ps) (3)

Sampling the points ~Ps for the distance vector ~D( ~Ps) from
a Cartesian grid is less optimal due to the far-field nature of
the sound, indeed when we express the position in a spherical
coordinate system we obtain more natural results. A spherical
grid is better suited to the shape of the upcoming probability
distributions.

~Ps = [θs, ϕs, rs]
T

With θs the azimuth of the sound source position, ϕs the
elevation of the sound source position and rs the range to the
sound source, or the distance from the microphone to point
~Ps. Sampling the grid at equidistant intervals in a 3D volume
would be wasteful of computational resources as this will yield
multiple points with equal azimuth and elevation that only
differ in range. Sampling the grid as a 2D projection of equal
azimuth and elevation would also be wasteful of computational
resources as the equator length becomes shorter for directions
near the poles. Therefore, we use a unit sphere partitioning
algorithm to divide N points equally on the frontal hemisphere,
avoiding the oversampling of the polar regions [28]. The radius
of the unit sphere is much larger than the inter-microphone
distance, thus all points of the distance vector reside in
the far-field of the node. By only using points on a single
hemisphere we can greatly reduce the amount of points ~Ps

in the calculation thus reducing the computational complexity.
Using distance vector ~D, we can calculate the local likelihood
LL of the measurement ~ML,i for a given point ~Ps for each
microphone pair i as:

LL( ~ML,i|~Ps) = exp

[
− ( ~ML,i − ~D)T · Σ−1

L · ( ~ML,i − ~D)

]
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Fig. 4. Panel a): Shows the AoA from measurements on a single node. A sound source was placed at (θ, ϕ) relative to the node, upper left: (30,0), upper
right: (0,30), lower left: (90, 0), lower right: (0,0). Panel b): In the lab we simulated a bat flight by moving an ultrasonic transducer free-handed in a manner
that resembles the flighpath of a bat approaching prey. The ultrasonic emitter imitates a bat call i.e. a frequency sweep from 80 kHz to 20 kHz at an interval of
100ms. Each discrete emission event is recognized by the large-scale array and the probabilistic likelihood is plotted. The obtained result shows an unimodal
distribution arround the true source position in the form of an orb. To keep the figures clean, we only plotted points above a likelihood threshold.

with ΣL the expected covariance matrix of the measurement
errors. The combined local likelihood LL for the entire small-
scale array can then be found by multiplying the likelihoods
for the individual microphone pairs together:

LL( ~ML|~Ps) =

n∏
i=1

LL,i( ~ML|~Ps)

with i the individual microphone pairs. The posterior distribu-
tion probability P for each position ~Ps given the measurement
~ML can be found using Bayes’ theorem:

P(~Ps| ~ML) =
LL( ~ML|~Ps) · P(~Ps)

P( ~ML)

with P(~Ps) the prior distribution for position ~Ps and P( ~ML)
the marginal of the posterior distribution. An estimate about
the sound source position can now be made as

P̃L = argmax P(~Ps| ~ML) (4)

The result of (4) for a single node will be a point with
Cartesian coordinates. However due to all ~Ps being sampled on
a hemisphere with unique azimuth and elevation, we usually
express (4) only in azimuth and elevation, or AoA.

C. Large-Scale - Time-Difference of Arrival

At the large-scale level we have microphones from multiple
nodes distributed over a much larger area. As a result, sound
recordings are made by multiple devices and the recordings are
started and stopped by a non-realtime network protocol. The
first step for the TDoA algorithm is to offload the recordings
to a central processing point where the recordings can be
synchronized. As described in section II-C we use an em-
bedded synchronization signal to synchronize the recordings

post-capture by calculating timing offsets in the recording
and padding the recordings to match their timings. As a
next step we select one or more microphones from each
node to use in the TDoA localization algorithm. The trade-
off made by choosing fewer microphones from each node for
localization may only marginally decrease the performance of
the localization algorithm while requiring far less computation
power thus improving the time required for obtaining a result
which may be desirable if the results of the localization
algorithm are used in a feedback loop or if the calculations
are done on an embedded SBC which typically has less than
average computing power. We start by constructing the global
measurement vector ~MG for the large-scale array as:

~MG = [d1 − d2, d1 − d3, d2 − d3]T

where di can be any microphone of any small-scale node. In
the notations, we restricted ourselves to 3 microphones for
readability. As a next step, a grid of possible source locations
is constructed by taking into account information such as
the node locations, the capture volume, room dimensions
or known properties of the sound source path/location. An
equidistant spaced grid in the area of interest is constructed
for ~Ps so that we can calculate a distance vector ~D for the
points in the grid and the microphones of interest. Much con-
sideration is needed when constructing ~Ps to ensure the actual
position of the sound is within the bounds of ~Ps otherwise
the most likely position will be meaningless. Furthermore,
under-sampling ~Ps, or choosing too few points, may lead to
inaccurate results while over sampling can drastically increase
the required compute time, a good strategy for choosing points
of interest is needed.

Similarly to what we have done in (3) for the local measure-
ment, we construct a global distance vector ~DG as a function



of ~Ps where we use the global grid so that we can calculate
the global likelihood LG for measurement ~MG given ~Ps.
For individual microphone pairs or individual clusters of
microphones, the individual global likelihood LG,i can be
found using:

LG( ~MG,i|~Ps) = exp

[
− ( ~MG,i− ~DG)T ·Σ−1

G · ( ~MG,i− ~DG)

]
with i the individual microphone pair or cluster. During the
construction of Σ−1

G it is important to note that the error
variance between microphones from the same small-scale
node are much smaller the the variance in the error between
microphones from different nodes of the large-scale array.
Furthermore, it is expected that covariances are required only
for the small-scale microphone pairs and not for large-scale
pairs. This is something that can be measured in future
experiments. For now, we use a diagonal matrix with different
values for the small-scale pairs and large-scale pairs for Σ−1

G .
The global likelihood LG can be found by multiplying the

individual likelihoods together:

LG( ~MG|~Ps) =

n∏
i=1

LG( ~MG,i|~Ps)

which can be used in a Bayesian formulation to find the
probability P for a certain position Ps:

P(~Ps| ~MG) =
L( ~MG|~Ps) · P(~Ps)

P( ~MG)
(5)

Finally, the sound source position can be estimated as:

P̃G = argmax P(~Ps| ~MG) (6)

By calculating the posterior distribution as described in (5)
we are able to find a unimodal peak around the true source
position that takes the form of an ellipsoid, as can be seen
in figure 4b, which is true if the measurement ~M only
contains unbiased Gaussian measurement errors. A possible
optimization can be performed by running the TDoA algorithm
again on a finer grid delimited by the ellipsoid.

Equation (6) can also be maximized using a non-linear
optimization function which reduces the need for evaluation
on a grid. Furthermore, the tracking of an animal becomes
more straightforward as we can use a recursive Bayesian filter
such as an EKF or particle filter where we can also use the
motion model for the source-of-interest.

IV. EXPERIMENTAL RESULTS

To verify the validity of our approach, we constructed three
small-scale nodes, see figure 1c for the hardware stack and
figure 1d for the finished device. Using an ultrasound trans-
ducer (SensComp 7000 series) we can play a bat call that we
recorded from an M. Daubentonii bat i.e. a frequency sweep
from 60 kHz to 40 kHz. The large-scale array consists of three
small-scale nodes mounted on tripods for easy reconfiguration
of the node location and orientation. In the lab we also have
access to a Qualisys optical motion capture system which

uses infrared light to triangulate small retro-reflective markers
within 0.5 mm. Using the Qualisys system we can measure
the location and orientation of the nodes and provide ground-
truth verification for the location of the sound source. The
sound source was placed on a robot-arm for easy replication
of measurements, as well as used free-handed to imitate the
flight-path of a bat approaching his prey. As shown in [1],
[4], [29], some species of bats exhibit trawling behavior when
approaching prey.

1) Angle of Arrival: Using a robot-arm (STRobotics R17)
we were able to place the emitter at exact locations with regard
to the the nodes. We moved the transducer to a couple of points
with known azimuth and elevation in front of the node. The
results, as can be seen in figure 4a show that we were able to
estimate the AoA of the sound using a single node to within
2 degrees with an average error of 1 degree.

2) 3D localization: Using a large-scale array of three nodes
of equal orientation, we made a free-handed motion mimicking
a trajectory of a trawling bat (e.g. M. Daubentonii) toward the
large-scale array. The emitter transmitted an ultrasonic pulse
mimicking the hunting calls of M. Daubentonii continuously
with a repetition rate of 5 Hz. We collected 10 echolocation
calls of which 7 were eligible for path reconstruction. The
missing calls can be explained by the directivity of the
transducer, causing some microphones not to be able to pick
up the emitted signal. We repeated this experiment 10 times
and we show a typical example of a reconstructed path in
figure 4b. Around the estimated maximum a-posteriori posi-
tions we indicated the a-posteriori probability function using
colored circles. As expected from array localization theory, the
posterior distribution of the location estimate becomes more
narrow as the source gets closer to the microphone array. This
is caused by the fact that the source gets more in to the near-
field of the microphone array.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that a low-cost hardware
architecture can be used to construct a flexible, scale-free
WSN capable of localizing an bio-acoustic source. We have
described a topology that can be used for the creation of
distributed microphone arrays where the microphones are
distributed in large-scale and small-scale arrays. We described
some considerations that are relevant when creating such a
topology. We also created the required hardware for construct-
ing a low-cost microphone array that can be used to create a
WSN able to locate a sound. In our lab experiments we are
able to locate a sound source to within 2 degrees using the
AoA method for the small-scale arrays and within a couple
of centimeters using the TDoA algorithm for the large-scale
array. In our future work we will focus on tracking wild
echolocating bats in relevant biological settings and use motion
tracking systems to validate the localization performance of
our acoustic sensor. Furthermore we will expand on the
tracking algorithm by implementing recursive Bayesian filters
such as particle filters or non-causal approaches as this type
of behavioral data is typically processed in batches. Finally



we will demonstrate the scale-free aspect of our approach
by jointly tracking different animal species that interact in a
certain ecological niche such as Trachops cirrhosus hunting
small vocalizing frogs.
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