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Abstract

Localization is one of the fundamental problems of mo-
bile robots. In order to efficiently perform useful tasks such
as office delivery, mobile robots must know their position
in their environment. Existing approaches can be distin-
guished according to the type of localization problem they
are designed to solve. Tracking techniques aim at moni-
toring the robot’s position. They assume that the position
is initially known and cannot recover from situations in
which they lost track of the robot’s position. Global local-
ization techniques, on the other hand, are able to estimate
the robot’s position under complete uncertainty. In this pa-
per we present the dynamic Markov localization technique
as a uniform approach to position estimation, which is able
(1) to globally estimate the position of the robot, (2) to ef-
ficiently track its position whenever the robot’s certainty is
high, and (3) to detect and recover from localization fail-
ures. The approach has been implemented and intensively
tested in real-world environments. We present several ex-
periments illustrating the strength of our method.

1. Introduction

The estimation of the robot’s position is one of the funda-
mental problems in mobile robotics. Knowledge of its posi-
tion is necessary for it to use existing or previously learned
maps of the environment as well as to perform useful tasks
such as office delivery. Existing techniques for estimating
the position of a mobile robot can be roughly divided into
two classes [2]: methods for keeping track of the robot’s po-
sition and methods for global position estimation. Most of
the research carried out so far has concentrated on the first
class which assumes that the initial position of the robot is
known and aims to compensate the accumulated odometry
error of the robot while it performs its tasks (see [2] for
a comprehensive overview). Although several robust and
even accurate methods have been developed, tracking tech-
niques have two important weaknesses.

� Tracking techniques are not able to globally estimate
the position of the robot, which is obviously highly im-

portant for truly autonomous robots. Instead, tracking
systems require the starting position of the robot to be
known in advance.

� Since tracking methods are not inherently able to de-
tect and recover from localization failures, they re-
quire to be monitored by human operators and must
be stopped whenever a localization failure occurs.

The second class contains methods for globally estimating
a robot’s position. These methods allow robots to be started
even under complete uncertainty with respect to their initial
position. This capability is a basic precondition for truly
autonomous robots.

Tracking techniques and methods for global localization
can be distinguished by the state space in which they op-
erate. While tracking techniques maintain and update only
a small state space generally centered around the estimated
position of the robot, global position estimation methods
deal with the complete configuration space. Consequently,
since they reduce the search space, tracking techniques are
more efficient than global localization methods but they
lack the crucial ability to recover from localization failures.

In this paper we present theDynamicMarkov Locali-
zation method (which we will denote as the DML-method)
which combines the advantages of both approaches. The
DML-method is a global localization approach that uses a
probabilistic technique to reduce the state space during lo-
calization thus achieving the efficiency of position track-
ing methods. Moreover, it can determine when the robot
lost track of its position. By using a dynamic representa-
tion technique for the state space, the memory requirements
are adapted according to the robot’s certainty in its posi-
tion. Thus, the DML-method builds a uniform framework
for global position estimation and efficient position tracking
and simultaneously inherits the advantages of both meth-
ods.

This paper is organized as follows. After discussing re-
lated work in the following section, we describe the ba-
sic Markov localization technique together with some of its
variants in Section 3. In Section 4 we describe the DML-
approach. Finally, Section 5 contains experiments illustrat-
ing various aspects of the DML-method.



2. Related Work

The problem of mobile robot localization has been in-
tensively studied in the past and a variety of systems and
techniques have been developed (see [2] for a comprehen-
sive overview). Recently there has been increasing inter-
est in probabilistic methods. Several systems apply Kalman
filters to keep track of the robot’s position [10, 13, 7, 1].
Kalman filter techniques have been proven to be robust and
accurate for keeping track of the robot’s position. How-
ever, they cannot represent ambiguities and lack the ability
to globally (re-)localize the robot in the case of localization
failures.

To overcome these disadvantages, recently different vari-
ants of Markov localization have been developed and em-
ployed successfully [11, 14, 8, 5, 15]. The basic idea
of Markov localization is to maintain a position probabil-
ity density over the whole three-dimensionalhx; y; �i state
space of the robot in its environment. This density, which is
not restricted to a Gaussian as in Kalman filter techniques,
is updated whenever the robot moves or receives new in-
formation from its sensors. The different variants of this
technique can be roughly distinguished by the type of dis-
cretization used for the representation of the state space.
In [11, 14, 8, 15] Markov localization is used for landmark-
based corridor navigation and the state space is organized
according to the topological structure of the environment.
Based on an orthogonality assumption [11, 14, 8] consider
only four possible headings of the robot.

In [5] we proposed a fine-grained grid-based discretiza-
tion of the state space. The advantage of this approach is
that it provides accurate position estimates and that it can
be applied in arbitrary unstructured and even densely pop-
ulated environments [3, 6]. The disadvantage of this ap-
proach, however, is the huge state space which has to be
maintained. The DML-approach presented in this paper
overcomes this problem because it dynamically adopts the
size of the state space according to the robot’s certainty in
its position. It is able to globally localize the robot when-
ever necessary and to efficiently keep track of the robot’s
position in normal situations in which the robot has almost
certain knowledge about its location. Moreover, and in con-
trast to all Markov localization techniques presented so far,
the DML-method is able to decrease the estimation error
by dynamically enhancing the resolution of the state space.
As a consequence, DML is a uniform approach to localiza-
tion, which inherits the benefits and the advantages of both
global localization and tracking techniques.

3. Markov Localization

The key idea of Markov localization is to compute and
update a probability distribution over all possible locations

in the environment. Letl = hx; y; �i denote a location in
the state space of the robot. The distribution, denoted by
P (Lt = l), expresses the robot’s subjective belief for be-
ing at positionl at timet. Initially, P (Lt0) reflects the ini-
tial state of knowledge: if the robot knows its initial posi-
tion,P (Lt0) is centered on the correct location; if the robot
does not know its initial location,P (Lt0) is uniformly dis-
tributed to reflect the global uncertainty of the robot.P (L)

is updated whenever the robot receives new sensor readings.
These sensor readings generally come from the odometry or
from sensors measuring features of the environment such as
proximity sensors or cameras.

Robot motion is modelled by a conditional probability
p(l j l0; a) = P (Lt+1 = l j Lt = l

0
; At = a) specifying

the probability that a measured movement actiona, when
executed atl0, carries the robot tol. P (Lt+1 = l) is then
computed according to the following general formula com-
ing from the domain of Markov chains:

P (Lt+1 = l) =
X
l0

p(l j l0; a)P (Lt = l
0) (1)

The termp(l j l0; a) represents a model of the robot’s kine-
matics, which in our current implementation is a bounded
Gaussian centered aroundl.

Sensor readings are integrated according to the well-
known Bayesian update formula. Lets denote a sensor
reading andp(s j l) = P (St = s j Lt = l) be the like-
lihood of perceivings given that the robot is at positionl.
Thus, after receivings, P (Lt+1) is computed according to
the following rule:

P (Lt+1 = l) =
p(s j l)P (Lt = l)

P (St = s)
(2)

The termP (St = s) is a normalizer which ensures that
P (Lt+1 = l) sums up to1 over alll.

Our method uses a fine-grained discretization of the state
space. While the resolution of robot orientation is typically
of the order of1� to 5�, the longitudinal resolution varies
from4 to64cm. To provide accurate position estimates with
a finer resolution than the cell size we compute the maxi-
mum likelihood estimatel� by integrating over all neighbor
cells in a small regionR(lm) around the global maximum
lm of the state space:

l
� =

P
l2R(lm) l � p(Lt = l)P
l2R(lm) p(Lt = l)

(3)

In contrast to the topological approaches described [11,
14, 8], which use predefined landmarks to computep(s j l),



we obtain this likelihood directly from a metric model of
the environment and a model of proximity sensors [4]. The
advantage of this approach is that it can operate based on
the raw data of the proximity sensors and thus permits the
exploitation of arbitrary geometric features of the environ-
ment such as the width of a corridor or the size of a cup-
board. However, it can easily be extended to incorporate
the abstract features or landmarks used in [11, 14, 8].

4. Dynamic Markov localization

The disadvantage of our grid-based method lies in the
huge state space which has to be maintained. For an en-
vironment of size30 � 30m2, a cell size of15 � 15cm2,
and an angular resolution of2� the state space consists
of 7; 200; 000 states. The DML-approach presented here
is motivated by the observation that in typical situations,
in which the system is almost certain about the robot’s
position, the major part of the probability density is cen-
tered on the true position of the robot while the remain-
ing states have vanishingly small probabilities. Therefore,
the DML-system uses an octree-based representation of the
state space permitting dynamic expansion, refinement and
shrinking according to the current degree of belief. It thus
focuses on the relevant part of the state space. Simultane-
ously, it estimates the likelihood, that the robot’s position is
not contained in the currently considered states. This way, it
is able to determine, that it lost track of the robot’s position.

The first optimization of the DML-approach is theselec-
tive update strategy, which excludes unlikely states from
being updated. For this purpose, we introduce a thresh-
old �, which is 10�10 times the average a priori position
probability in our current implementation. States for which
P (Lt = l) > � are updated in a different way than states
which haveP (Lt = l) � �. The basic idea is to assign
the same small probability to all unlikely states. This way
we have to apply Formulas 1 and 2only once to update the
probabilities ofall unlikely states.

4.1. Reducing the Computation Time

4.1.1. Integration of Sensory Input

To compute the new belief state given new sensory input, we
approximatep(s j l) for cells withP (L = l) � � by ~p(s),
which is the average or a priori probability of measuring
the features given a uniform distribution over all possible
locations. Thus, the formula to integrate new sensory input
changes to:

P (Lt+1 = l) =

8<
:

p(sjl)P (Lt=l)

P (St=s)
if P (L = l) > �

~p(s)P (Lt=l)

P (St=s)
otherwise

(4)

Please note that~p(s) differs fromP (St = s), which is the
probability of measurings given the current belief state of
the robot. Obviously, this update rule is equivalent to

P (Lt+1 = l) =(
�t

p(sjl)

~p(s)
P (Lt = l) if P (Lt = l) > �

�t P (Lt = l) otherwise
(5)

where�t is a normalizer, ensuring thatP (Lt+1 = l) sums
up to one over alll.

Instead of updating all unlikely cells we update a single
variableut containing the probability, that the robot’s posi-
tion is not included in the active states. This cellut, which is
initialized by0, accumulates the probability of all unlikely
positions. Whenever a cell is deactivated,ut is increased by
the likelihood of that cell. Measurements are incorporated
by multiplyingut by the normalization factor�t:

ut+1 = �t � ut (6)

In essence,ut represents the likelihood, that the actual state
of the robot is not contained in the cells withP (L) > �.
Thus, wheneverut exceeds a given threshold, which is
0.001 in our implementation, all unlikely states are again
considered as possible states of the robot.

4.1.2. Integration of Odometric Information

While measurements generally increase the certainty in
P (L), movements generally decrease it because of the in-
herent uncertainty of the odometry. In Markov localization
systems the motions are modelled by Equation 1. Since we
assume that the odometric errors can be approximated by a
bounded Gaussian, this equation is equivalent to shifting all
cells according to the measured movement combined with
an application of a Gaussian kernel. When applying this
kernel to the likely cells ofP (L), only a certain number
of unlikely states lies within the scope of the kernel and
are thus re-activated after each movement. Since the like-
lihood p(s j l) is generally small for unlikely cells these
reactivated states become inactive again after incorporating
the next sensor readings. Accordingly, robot motion gen-
erally decreases the certainty of the positioning system and
increases the number of active states, whereas sensing gen-
erally increases the certainty and decreases the number of
states.

4.2. Reducing the Space Requirements

In all approaches to Markov localization, which have
been developed so far, the discretization of the state space
is fixed and is left unchanged during operation. Increas-
ing the resolution, however, is advantageously if fine-motor
manipulations have to be carried out. On the other hand,



in order to speed-up the global self-localization process a
coarser partitioning of the state space is recommended. Our
technique for representing the state space is motivated by
octrees, which are a hierarchical data structure “based on
the principle of recursive decomposition of space” [12]. The
root node of the tree corresponds to the entire state space of
the robot. Each son of the a node represents one of eight
cubes obtained by subdividing the node in octants. Our tree
structure distinguishes two kinds of nodes: leaf nodes and
nonleaf nodes. A leaf node corresponds to a single state of
the robot and contains the probability of being at the corre-
sponding position. A nonleaf node only contains pointers to
its eight sons. The pointer to a son isnil if that son contains
no state withP (Lt = l) > �.

The advantage of this data structure is (1) that the space
requirement is adopted automatically according to the num-
ber of likely positions and (2) that the resolution of the state
space can be easily increased or even decreased. An impor-
tant aspect of this tree structure is that all necessary oper-
ations, which are the integration of new sensory input, the
normalization, and the convolution, can be performed by
tree traversals and thus requireO(n) steps wheren is the
number of leaf nodes [12].

Fig. 1: Memory requirements of the grid- and tree-based
representations in an ambiguous situation

Figure 1 illustrates the advantage of our tree-based rep-
resentation over a grid-based representation. For the sake
of clarity, this figure only shows a two-dimensional grid
and the corresponding two-dimensional variant of our tree
structure. The grey-shaded fields are the likely states of the
robot (more likely positions are darker). White fields in the
tree correspond to inner nodes which are not sub-divided
because all their sons represent unlikely states. In this situ-
ation the state space contains two local maxima.

5. Experimental Results

The DML-approach has been implemented and inten-
sively tested using our mobile robot RHINO [16], which is
an RWI B21 robot equipped with a ring of 24 ultrasonic sen-
sors and two laser-range finders. The experiments described
below focus on the following aspects of the DML-approach:
(1) global (re-)localization ability, (2) dynamic state space

representation and representation of ambiguities, and (3) the
relationship between the localization accuracy and the cell
size.

5.1. Global Localization

The first experiment is designed to demonstrate the abil-
ity of the DML-approach to globally (re-)localize the robot
within its environment. This ability is important after local-
ization failures which for example occur after bumping into
an obstacle. Throughout the experiment, which was carried
out in a27m � 20m large section of our department, only
the ultrasound sensors were used.
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Fig. 2: Number of active states during the experiment

Figure 3 contains an outline of the environment and the
trajectory of the robot and Figure 2 shows a plot of the num-
ber of active cells in the tree during this experiment. The
robot started at position 1 andP (L) was initialized by the
corresponding Dirac distribution. At position 2 we man-
ually rotated the robot by 140 degrees thus introducing a
large rotational error. Between positions 2 and 3 the DML-
method detected that it lost track of the robot’s position. Ac-
cordingly, all states were activated and the resolution of the
cells was reduced to64�64cm2. Before reaching position 3
two ultrasound scans could be integrated so that the number
of active cells started to decrease. The corresponding belief
state is shown in Figure 4. It contains a logarithmic density
plot ofP (L) when the robot was at position 3. Between po-
sitions 3 and 4 further ultrasound scans were integrated into
P (L) so that the certainty of the robot increased. Simulta-
neously, the resolution of the state space was increased to
16 � 16cm2. At position 4, the state space contained only
3,600 cells corresponding to two local maxima coming from
the symmetry of the corridor (see Figure 5). Finally, at po-
sition 5 and after entering room A the robot was able to
resolve the ambiguous situation because of the differences
between room A and B. At this point, the state space shown
in Figure 6 contained only 400 cells.



1
23

4

5A

B

A

B

A

B

A

B

Fig. 3: Outline of the office
and path of the robot

Fig. 4: Belief state position 3
shortly after starting the

re-localization

Fig. 5: Ambiguous situation
at position 4

Fig. 6: The position of the
robot has been determined

uniquely at position 5

4

3
2

1

Fig. 7: Trajectory
of the robot

Fig. 8: Belief
state position 2

Fig. 9: Belief
state at position 3

Fig. 10: Final
belief state

5.2. Representation of Ambiguities

This experiment is designed to give a deeper insight in
how the DML-method represents the state space in ambigu-
ous situations. Due to the lack of an appropriate environ-
ment, this experiment has been carried out with the RHINO
system simulator. The environment with a size of48�30m2

and the path of the robot are illustrated in Figure 7. In this
experiment we used a fixed cell size of 30cm. At the be-
ginning of the experiment, the robot was absolutely certain
about being at position 1. We assumed that the robot has
large normally distributed odometric errors, so that there
was a large region of possible positions when the robot ar-
rived at position 2 after passing the hallway (see Figure 8).

Fig. 11: Active cells in the tree structure at position 3

The active cells were grouped in a single but large cluster.
After entering one of the corridors (at position 3), the set
of active cells was partitioned in 5 different clusters each
representing similar positions in the neighbouring corridors
(see Figures 9 and 11). Finally, after reaching position 4,
the robot again was absolutely certain about its position due
to the different shapes of the corridors (see Figure 10).

5.3. Accuracy

The final experiment is designed to demonstrate that the
estimation error can be reduced by increasing the resolution
of the discretization. Figure 12 shows a path of the robot
in our office environment including 22 reference positions
where the true position of the robot was determined using
the scan matching technique presented in [7, 9]. All data
recorded during this run were split into four disjoint traces
of the sensor data. These different traces were then used
to localize the robot. Figure 13 shows the average localiza-
tion error for ultrasound and laser-range finder based local-
ization over all reference positions in all four runs. These
results demonstrate (1) that the the average localization er-
ror for both sensors is generally below the cell size and (2)
that the laser-range finders provide a significantly higher ac-
curacy than the ultrasound sensors. When using the laser-
range finders at a spatial resolution of4cm, the average po-
sitioning error can even be reduced to3:5cm.

6. Conclusions

In this paper we presented the DML-approach as a uni-
form approach for estimating the global position of a mobile
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robot as well as for fast and accurate position tracking. The
DML-approach is a Markov localization technique which
uses a fine-grained discretization of the state space. It ap-
plies a selective technique for updating only the likely states
of the robot and dynamically adopts the resolution of the
discretization according to its certainty. In the case of un-
certainty it uses coarse resolutions to efficiently determine
the position of the robot. On the other hand, it applies a fine-
grained discretization to achieve accurate position estimates
whenever the robot is quite certain about its position. An
experiment carried out in a structured office environment
demonstrates that average localization error can be reduced
to less than4cm. Thus, the DML-technique combines the
advantages of global localization techniques with the accu-
racy and efficiency of tracking methods.

Despite these exciting results, there are several warrants
for future research. Currently we do not have any means
for determining the optimal discretization with respect to
the current belief state, the task to be performed, and the
available computing resources. One way to deal with lim-
ited resources is to slow the robot down in order to be able
to integrate a sufficient number of sensor readings. In this
context the question has to be answered, how fast a robot
may drive in order to be able to keep track of it’s position.
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