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Multiscale Sensing: A new paradigm for actuated sensing of high
frequency dynamic phenomena

Amarjeet Singh, Diane Budzik, Willie Chen,
Maxim A. Batalin, Michael Stealey, Henrik Borgstrom and William J. Kaiser

Electrical Engineering Department
Center for Embedded Networked Sensing

University of California Los Angeles, Los Angeles, California 90095

Abstract— Many environmental applications require high tem-
poral frequency (rapidly changing) and spatially distributed
phenomena to be sampled with high fidelity. This requires mobile
sensing elements to perform guided sampling in regions of high
variability. We propose a multiscale approach for efficiently
sampling such phenomena. This approach introduces a hierarchy
of sensors according to the sampling fidelity, spatial coverage, and
mobility characteristics. In this paper, we report the development
of a two-tier multiscale system where information from a low-
fidelity, high spatial (global) sensor actuates a mobile robotic
node, carrying a high-fidelity, low spatial coverage (spot measure-
ment) sensor, to perform guided sampling in the regions of high
phenomenon variability. As a case study of the proposed multi-
scale paradigm, we investigated the spatiotemporal distribution of
the light intensity in a forest understory. The performance of the
multiscale approach is verified in simulation and on a physical
system. Results suggest that our approach is adequate for the
problem of high-frequency spatiotemporal phenomena sampling
and significantly outperforms traditional sampling approaches
such as a raster scan.

I. INTRODUCTION

A broad class of applications including environmental
sampling, public health environment monitoring, precision
agriculture, and security require distributed sensing capabil-
ities [1]. This requirement is attributed to the high frequency
spatiotemporal distribution of the sensing phenomena. Char-
acterizing such phenomena with only static sensors requires
an impractically large number of sensors to be distributed
across the complete spatial extent of the sampled phenomena.
For example, solar radiation and atmospheric properties that
display variability on a centimeter scale are often required to
be mapped over a large spatial area within a forest (typical
width of 50 m and length of 100 m). High fidelity sampling
of such phenomena over a two dimensional plane with a
required spatial coverage of over 1000 m2 and with a required
resolution greater than 10 samples/m2 requires a deployment
of sensors that is not only excessively costly in resources, but
is also potentially a source of disturbance to the environment
under investigation.

Mobile sensing elements (mobile robots equipped with
sensors) offer an alternative to a network of static sensing
elements for high spatial coverage but at the cost of increased
delay (sampling latency). One approach to reduce such latency
is to apply an adaptive sampling technique [2], [3], which
is a multi-step approach that varies sampling density at each
step. In such algorithms, during the first step a mobile robot

performs a coarse scan of the complete environment to extract
the regions of high phenomenon variability. Then, selected
regions are sampled with higher density to improve the overall
sampling fidelity. Adaptive sampling techniques are known to
perform well in cases where a phenomenon is not changing
significantly. However, the latency involved in extracting the
regions of interest (high variability regions) is large and makes
these techniques unsuited for sampling dynamic phenomena.
Note that many environmental phenomena are dynamic (e.g.
solar light radiation, CO2 flux, humidity etc.).

Another approach to reduce sampling latency is to use a
combination of static sensing elements and mobile robots [4],
[5]. In [4], [5] a set of n static sensors is deployed such
that the environment is discretized into n regions (one sensor
in each region). Next, these sensors monitor corresponding
regions for events of interest (such as high concentration of
a phenomenon). When an event is detected, the system is
notified, and the mobile robot is tasked to sample only in
the region of the sensor that triggered an event. A distributed
task allocation is implemented to deal with task prioritization.
This approach improves the sampling latency and can be
applied to dynamic phenomena. Events occurring outside the
range of a static sensor, however, might be missed in this
approach. Thus, the performance of the system depends on
the number of sensors (or the level of discretization of the
environment). This forces a tradeoff between the high cost
of the solution (too many sensors) and high fidelity of a
phenomenon reconstruction. Note also that in this approach
static sensors are not necessarily required to have high-fidelity
characteristics, because they can only act as triggers and may
not be used for sampling. Consequently, this motivates the
need for a single low cost sensor that can provide low-fidelity,
high spatial coverage (global) information. Such a sensor can
determine regions of importance and task the mobile robots to
sample in those regions, thus improving the sampling fidelity.

We propose a multiscale approach for efficiently sampling
high frequency spatiotemporal phenomena with high fidelity.
This approach introduces a hierarchy of sensors according
to sampling fidelity, spatial coverage, and mobility charac-
teristics. In this paper we focus on a study of a two-tier
system. The first tier is represented by a static low-fidelity high
spatial coverage sensor providing ”global” information about
the environment. This information is then used to extract the
regions of interest (regions of high phenomenon variability).
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The second tier is represented by mobile robots with high-
fidelity low spatial coverage (spot measurement) sensors. The
mobile robots are then actuated to perform guided sampling
of the regions extracted by the first tier sensor.

We investigated spatiotemporal distribution of light intensity
under a forest canopy as both an important application [6] and
a verification of the proposed multiscale paradigm. We used
an imager (a camera) as a first tier sensor. An imager provides
a snapshot of the light distribution over the experimental area.
This snapshot has high spatial coverage, but low fidelity caused
by the varying surface reflectivity of the environment, the
non-linearity of the imager and the small range of possible
intensities (range of pixel values compared with range of the
sensed phenomenon). Global information provided by the im-
ager is used by our algorithm to guide a mobile robot equipped
with a Photosynthetically Active Radiation (PAR) sensor to
obtain low-resolution, high-fidelity information about incident
light. Light is measured as PAR, which is defined as radiation
in the 400-700 nm waveband [7]. Since the imager provides
an instantaneous snapshot of the complete environment, this
technique is neither dependent on the placement or the number
of static sensors, nor constrained by the high frequency of the
sensed phenomenon.

The output of an imager is processed to produce a set of
tasks representing regions covered with sun-flecks (bright light
patches). These tasks are then assigned to the mobile robots
for servicing (sampling). Task Assignment is a well studied
problem in Multi-Robot Task Allocation [8], and Operations
Research [9]. Solutions to such a problem assume certain task
characteristics. In our case, task characteristics are not known
a priori. Therefore, we implemented a greedy heuristic-based
task allocation algorithm where tasks are prioritized based on
a utility (service time and sampled area).

We present an analysis of the performance of our approach
using prerecorded real data in simulation and on an actual
physical system. Note that the simulation and experiments with
the real system were performed on a smaller scale compared to
the scale of the sensing region in the real environment (order
of 1000m2). The absolute performance will be worse with an
increase in the sensing area. However, the overall trend of our
results will still hold true: the multiscale paradigm significantly
outperforms traditional sampling approaches such as a raster
scan.

II. ENABLING ROBOTIC PLATFORM

The requirement of sustainable and precise mobile sensing
for environmental applications inspired the development of
Networked Info-Mechanical Systems (NIMS) [10]. NIMS in-
troduced infrastructure-supported mobility with mobile robots
carrying sensors that can autonomously explore a three di-
mensional volume. Infrastructure supported mobility helps in
precise location resolution, enabling actuation of the NIMS
node to perform guided sampling. NIMS provides large spatial
coverage with precise localization. These characteristics make
NIMS an ideal robotic platform for studying high frequency,
dynamic phenomena with high fidelity. A three dimensional

PAR Sensor

Fig. 1: NIMS-3D performing light sensing

version of NIMS, NIMS-3D [11], is shown in Figure 1. NIMS-
3D is a novel, rapidly deployable cable-based robotic system
capable of accurate positioning within its 3-dimensional span.
The system is designed for indoor and outdoor use. The
hardware is composed primarily of commercially available
components. A motor powered spooling system is a major
component of NIMS-3D [11]. Control of the motor system
is accomplished through a PID controller that ensures precise
location mapping. Motors used in the system are 24V DC
sub-fractional horsepower gear motors.

When the phenomena to be characterized is changing at
a rate faster than the sampling rate of the mobile robot, the
constraints of the physical system, such as sampling time and
average speed, limit the total amount of information that can
be gathered from the environment. System performance with
such constraints can be improved by sampling the environment
in an intelligent way. Next, we present a multiscale approach
for intelligent sampling.

III. AN OVERVIEW OF A TWO-TIER MULTISCALE

ARCHITECTURE

Multiscale sensing, proposed here, is based on a hierarchical
system that enables autonomous arrangement of sensors with
the objective of optimizing sensing fidelity, spatial coverage,
and mobility characteristics. This system of sensors then can
be used for efficient high fidelity sampling of high frequency
spatiotemporal phenomena.

A two-tier multiscale system is reported here. A schematic
view of its architecture is shown in Figure 2. In this architec-
ture, high frequency dynamic phenomena is captured by a first-
tier sensor. The first tier is represented by a static low-fidelity
high spatial coverage sensor providing ”global” information
about the environment. This information is then used to
extract the regions of interest (regions of high phenomenon
variability). These regions form a set of sampling tasks for the
second-tier sensors to pursue. The second tier is represented
by the mobile robots equipped with high-fidelity low spatial
coverage (spot measurement) sensors. A set of new tasks is
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Set of Tasks
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Fig. 2: An overview of a two-tier multiscale architecture. Future
modules and their data flow paths are marked with dotted lines.

given as an input to the Task Allocation module. The task
allocation module prioritizes tasks based on the selected utility
and assigns the task with highest utility to the available mobile
robot for high-fidelity sampling.

An output of the system is a set of high-fidelity phenomenon
measurements in a given region, which then can be used by
scientists. In the future, we plan to augment the described
architecture with two new modules. The first module is Task
Characterization (please refer to Figure 2). Task Charateriza-
tion will collect the complete task information from the Task
Allocation module and build a model of future task arrivals
and distributions. Task characterization would further improve
task allocation and at the limit yield an optimal solution.

Another future module is phenomenon modeling based
on the received high-fidelity sensed values. This information
can be used to improve first-tier sensor data processing and
segmentation, as well as calibration. In theory, if the first-tier
sensor is calibrated in accordance with the spatiotemporal non-
linearities in the environment, the high-fidelity phenomenon
information can be extracted (or much closer approximated)
directly from the first-tier sensor.

IV. SAMPLING LIGHT INTENSITY: A CASE STUDY

Sampling light intensity under a forest canopy is used as a
probe of sensing performance for multiscale actuated sensor
systems. In this application, we use an imager (a camera)
as a first-tier sensor. The imager is a high spatial coverage,
low-fidelity sensor that provides global information about the
light intensity in the environment. This information is then
used to actuate the mobile robot equipped with a low spatial
coverage, high-fidelity PAR (light intensity) sensor (a second-
tier sensor). In this section we describe the two main modules
of the system - Image Processing and Task Allocation.

A. Image Processing Module

The Image Processing Module takes as its input an im-
age of the environment captured by the imager. Images are

Imge from the real
environment

Noise Filtering

Segmentation

Thresholding

New Task Extraction

Update Sensed
Information

Fig. 3: Image Processing Algorithm

processed using the Open Source Computer Vision Library
(OpenCV) [12]. An overview of the Image Processing algo-
rithm is shown in Figure 3. The first step in image processing
is noise filtering, which is accomplished through image down-
sampling and up-sampling. Next, we perform the segmentation
of an image using a pyramid segmentation algorithm [13].
The segmented color image is then converted into a gray-scale
image. Then we apply a thresholding in order to achieve a bi-
level (binary) image from the gray-scale image. In this binary
image, white areas represent regions covered with sun-flecks
(regions of importance) and black areas represent regions
covered with shadow. Intermediate results of these steps are
shown in Figure 4.

The final step in image processing is to extract new regions
of interest. These regions form an input set of tasks to the Task
Allocation module (described next). We assume that only the
regions covered with sun-flecks (bright patches) are the regions
of interest. Regions that were bright when sampled by the
mobile robot and became covered with shadow, according to
the current snapshot of the environment, were updated directly.
Finally, only the regions that were previously covered with
shadow and became covered with sun-flecks are extracted as
tasks. This approach is motivated by a high degree of error
discovered in image information for bright regions caused by
non-uniform reflectivity of the captured surface. Hence, low
resolution high fidelity sampling is required for bright regions.

Note that our focus in this paper is to show the importance
of using a multiscale paradigm in studying high frequency
spatiotemporal phenomena and not novel approaches in im-
age processing. The performance of the image processing,
however, can be further improved by applying more optimal
algorithms for segmentation, thresholding, and task extraction.

B. Task Allocation

A set of tasks extracted by the Image Processing module
is supplied as input to the Task Allocation module. The
Multi-Robot Task Allocation (MRTA) problem has been well-
studied in the robotics community [8] and, simply stated, is the
problem of allocating tasks to robots. Of particular interest is
the online version of the problem (OMRTA), in which tasks in
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(a) Image captured at 10:00 a.m. (b) Image after noise filtering (c) Segmented gray-scale image (d) Binary image after applying a
threshold

Fig. 4: Intermediate results of the Image Processing Algorithm

the environment are geographically and temporally distributed,
and robots need to visit task locations to accomplish task
completion (sampling). The problem is to assign tasks to
robots optimally in an online fashion.

Following the methodology developed in [5], OMRTA con-
sists of assigning available robots to sampling tasks according
to an online greedy heuristic that will maximize the utility
in a given time epoch. We have implemented two heuristics
- Sampling Area and Service Time. The Area heuristic gives
priority to sampling tasks of a larger area (i.e. tasks that will
glean more information). This heuristic is preferred when the
objective is to extract as much information as possible from
an unknown environment. The Time heuristic, on the other
hand, gives priority to tasks that require less service time
(sampling time and travel time). This heuristic is useful when
the purpose is to sample as many tasks as possible. Hence,
the Time heuristic is applied when there is a model of a
phenomenon distribution (i.e. even one sample of the task is
enough to predict its distribution) or when the objective is to
cover as many tasks as possible because of spatial variability
of the phenomenon.

Note that both the Time and Area heuristics are online
greedy algorithms. It has been shown in [14] that greedy
algorithms provide a good approximate solution to online task
allocation problems and, in some cases, are within a bounded
limit of the optimal solution obtained by offline task allocation
algorithms, when the task characteristics are known a priori.

V. EXPERIMENTS AND ANALYSIS

The performance of the multiscale paradigm for sampling
light intensity was tested and analyzed through simulations
and on a real physical system (please refer to section II).

Images were captured every 15 seconds from a study area
located in a field biology station within the mixed conifer
forest of the James San Jacinto Mountain Reserve in Southern
California [15] between 8:00 a.m. and 8:00 p.m. Note that the
physical delay in image acquisition dictates the length of the
decision epoch [5] to also equal 15 seconds. A down-looking
imager captured snapshots (768x480 pixels) of the understory
of a forest canopy covering an area approximately 6 meters in
length by 4 meters in width. Images captured between 10:00
a.m. and 11:00 a.m. were analyzed in simulation and using
NIMS-3D in a laboratory environment. These images were
experimentally verified (by analyzing images during other
times of the day and changing the parameters for image

processing) to be representative of the spatial and temporal
variations occurring in the transect throughout the day. The
images captured constitute the information sensed using a
high spatial coverage, low-fidelity sensor (imager) and were
processed to extract a set of tasks that represent possible
regions that could be sampled using the low spatial coverage,
high-fidelity PAR sensor carried by the mobile robot.

A. Experiments in Simulation

In simulation, the service time for a particular task was
dependent on the sampling time, the sampling density, and the
average speed of the mobile robot. We computed the service
time in simulation as follows:

Tservice = Tsamp + Ttravel while sampling + Tinter task travel

=
⌈w

s

⌉
∗

⌈
h

s

⌉
∗ tsamp +

xcm ∗ ⌈
h
s

⌉
+ ycm

v
+

d

v

where Tsamp is the sampling time to gather all the samples,
Ttravel while sampling is the travel time while sampling a given
task, Tinter task travel is the time to travel from the previous
task to the current task, w and h are the width and height
of the bounding rectangle of the current task, xcm and ycm

are the width and height in cm of the transect captured in the
image, s is the sampling density, tsamp is the sampling time to
gather one sample, v is the average speed of the mobile robot
and d is the distance traveled from the previously serviced task
to the current task.

A sampling time of 0.1 seconds to collect one sample
worked well for sensing light intensity. The sampling density
was varied from s = 4 to s = 20, where higher values of
s imply sparser sampling. For example, when s = 20, every
20th pixel is sampled and the rest are linearly interpolated. The
average speed of the mobile robot was varied from 40 cm/s to
500 cm/s. We performed experiments for the Time and Area
heuristics. A commitment policy was followed while servicing
the tasks. That is, if the robot started servicing a particular task,
all the images that arrived while the task was being serviced
were ignored. The image that arrived immediately after the
task was completely serviced was processed to extract a new
set of tasks.

For comparative analysis, performance of each heuristic at
each sampling density and average speed was normalized to
the absolute performance achievable. To normalize the amount
of information sampled in terms of area, the total information
available between 10:00 a.m. and 11:00 a.m. was calculated by
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(a) Bi-level snapshot of the environment at 10:00 a.m. after
applying a threshold to the segmented gray scale image

(b) Reconstructed environment with Area as the heuristic and
s = 4, v = 40 cm/s

(c) Reconstructed environment with Area as the heuristic and
s = 6, v = 40 cm/s

(d) Reconstructed environment with Time as the heuristic and
s = 4, v = 40 cm/s

Fig. 5: Simulation results

taking the difference between consecutive images and counting
the number of white pixels in the differenced images. To
normalize the amount of information in terms of the number
of serviced tasks, the total number of tasks in each processed
image was calculated and averaged over each sampling density
to get the total number of tasks for a given average speed.

1) Time vs. Area heuristics: Figure 6 shows how the
performance of each heuristic (Area and Time) improves by
decreasing the sampling density (increasing the value of s)
and increasing the average speed. Decreasing the sampling
density results in a greater change in performance as compared
to increasing the average speed. A decrease in sampling
density results in a decrease in sampling time (Tsamp)as
well as a decrease in Ttravel while sampling . Reduction in
Ttravel while sampling is due to a decrease in the total linear
distance that the node has to travel while performing sampling
in the bounding box of the region of interest.

If the performance measure is based on the sampled area,
the Area heuristic performs better than the Time heuristic.
This is because for the Time heuristic, the majority of time
is spent traveling between the tasks. Thus, Tinter task travel is
the dominating term, while for the Area heuristic it is almost
negligible. Since we do not sample while moving in-between
tasks, this time is spent without collecting any information
from the environment. However, if the performance measure is
based on the number of serviced tasks then the Time heuristic
performs much better. This is because in the Area heuristic,
the robot is often committed to sampling a task with a large
area and may miss several images (and therefore tasks) of the

environment.
A snapshot of the sensed regions using area and time

heuristics is shown in Figures 5b and 5d. For the area heuristic,
it took approximately 7 minutes to sense this region, while for
the time heuristic it took approximately 30 seconds to sense
all the small regions. Note that if the sensing rate is faster
than the rate of change of the phenomena in the environment,
then in the limit the two approaches would reconstruct the
phenomena with complete fidelity.

Decreasing the sampling density (increasing the value of
s) results in an improved performance for both heuristics.
The improved performance, however, comes at the cost of
reconstruction error. From Figures 5b and 5c, one can easily
observe that decreasing the sampling density leads to jagged
edges for the sampled task (because of linear interpolation)
and thus to a larger reconstruction error. The reconstruction
error is calculated by counting the number of pixels in the
sampled image (after interpolation) that are different from the
bi-level form of the input image and is normalized with the
total amount of information available in the sampled region.
This normalized error ratio is then averaged over all the
different speeds of the mobile robot considered, to get an
error ratio corresponding to a particular sampling density (s).
The normalized error ratio for different values of s is shown
in Figure 7. As expected, reconstruction error increases as
sampling density decreases.

We also performed an experiment to compare the perfor-
mance of a multiscale approach to a traditional full raster
scan of the environment. The raster scan samples the complete
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Fig. 6: Simulation results for Area and Time heuristics. The graphs on the left compare normalized sampled area for different densities and
speeds. The graphs on the right compare the normalized number of serviced tasks.

environment with a desired density. We implemented the raster
scan with an average speed of 40 cm/s for all sampling
densities (the result is shown as dotted line in Figure 6a).
Figure 6a illustrates that for corresponding speeds, a multiscale
approach performs better than a simple raster scan in terms
of the amount of information extracted from the environment.
Additionally, the multiscale paradigm yields greater fidelity as
well. In the raster scan, the information extracted by sampling
the entire transect area initially results in greater error because
of the phenomenon dynamics. This is evident, for example,
from the number of images processed in the raster scan. They
varied from 1 image for s = 4 to 9 images for s = 20. The
total number of images processed (using the same average
speed as for the raster scan) using a multiscale approach varied
from 13 images for s = 4 to 121 images for s = 20. Thus,
a multiscale approach captures more up-to-date information
from the environment resulting in greater fidelity.

2) Multi-Robot Experiments: The performance of a mul-
tiscale approach with multiple mobile robots was analyzed
in simulation. The sampling density was set to s = 6 and
the average speed to v = 60 cm/s, while the number of
robots was varied and the performance was analyzed using

2 4 6 8 10 20 22
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sampling density (s)

N
o

rm
al

iz
ed

 r
ec

o
n

st
ru

ct
io

n
 e

rr
o

r

Fig. 7: Reconstruction error for different sampling densities

normalized sampled area. Results are shown in Figure 8. The
horizontal line in the graph represents the maximum amount of
information that can be extracted at s = 6 and v = 60 cm/s.
This maximum value equals 0.59 while the total maximum
amount of information possible is 1. This difference is caused
by our commitment policy which results in skipping some
images. Initially, an increase in the number of robots results in
a proportional increase in the information extracted. However,
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Fig. 9: Performance when interfacing with the real system at different
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as the number of robots continues to increase, the additional
information gathered comes from tasks that have much smaller
areas and do not proportionally add new information. As the
environment becomes saturated with mobile robots, the system
approaches the physical limit in extracting new information.

B. Experiments with the Physical Robotic System

While interfacing with the physical system, we projected
the black and white images in a 2-dimensional region that
was scanned by the NIMS-3D robot (refer to Section II). The
projected image spanned an area of 110 cm in length by 93 cm
in height, defining the region in which the mobile node could
move. Note that the original image represents an area of 4m
in height by 6m in width in the real environment. Therefore,
when implementing our algorithm on a real system, we used
an appropriate conversion ratio.

In our experiments, the mobile node achieved a maximum
speed of 200 steps/s with a step size of approximately 0.014
cm. The use of a PID controller necessitates a settle or wait-
period at the end of each move. The average wait-period
was 3 seconds. Position information about the mobile node
was generated three times a second while the sampled values
from the PAR sensor were collected at 10 Hz. The position
information was then interpolated to get a physical location
corresponding to each PAR sensor value.

Trends similar to simulation were observed when the two-
tier multiscale approach was implemented on a physical sys-

tem. Results are shown in Figure 9 for a peak speed of 2.4
cm/s. PAR information was also gathered while the node was
moving. The intermittent values that were not sampled directly
were interpolated.

The NIMS-3D system is developed for general purpose
multiscale sampling in many environments. We performed
a set of experiments to analyze the reconstruction fidelity
achievable with this system at its current state. Figure 10a
shows a result of the best possible reconstruction fidelity
of the statically projected image shown in Figure 5a. This
reconstruction was achieved by sampling points separated in
space by 1 cm along both axes. In reality, the robot sampled
the PAR continuously while moving in 1 cm increments. The
system performed a scan of the environment in around 12
hours. This time performance is prohibitively slow for real
world applications.

Alternatively, we performed a much faster scan (around
40 minutes) to sample the complete environment with the
sampling density equal to 1 cm along the vertical axis while
sampling continuously along the horizontal axis. The horizon-
tal motion from one end to the other was commanded as a
single step to the mobile robot. The result of the reconstruction
is shown in Figure 10b. Figure 10b shows that considerable
reconstruction error is present, which is due to the nonlinear
motion and long term positioning drift of the physical system.
NIMS-3D is still under development, and experiments with
the current system were performed for a proof of concept of
interfacing the multiscale approach with the real system.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a multiscale sensing paradigm for efficiently
sampling high frequency spatiotemporally distributed phenom-
ena with high fidelity. We described a two-tier multiscale
approach where information from a low-fidelity, high spatial
coverage (global) sensor actuates a mobile robotic node, car-
rying a high-fidelity, low spatial coverage (spot measurement)
sensor, to perform guided sampling in the regions of interest
(high phenomenon variability).

As a demonstration of the feasibility of this new multiscale
method, we investigated a spatiotemporal distribution of light
intensity in a forest understory. In this application, we used
an imager (a camera) as a first-tier sensor. The imager is a
high spatial coverage, low-fidelity sensor that provides global
information about the environment. This information is then
used to extract the regions of interest. These regions form a
set of sampling tasks for second-tier sensors to pursue. This
set of tasks is given as an input to the Task Allocation module.
The Task Allocation module prioritizes tasks based on the
selected utility and assigns the task with the highest utility
to the second-tier sensor. The second-tier is represented by
mobile robots equipped with high-fidelity low spatial coverage
(spot measurement) sensors (PAR sensors). The robots then
perform high-fidelity sampling in the regions represented by
these tasks.

We implemented a greedy heuristic-based task allocation
algorithm in which tasks were prioritized based on a utility
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(a) Reconstructed environment from a raster scan of 1 cm along
both axises

(b) Reconstructed environment with a continuous scan along the
horizontal axis and a 1 cm scan along the vertical axis

Fig. 10: Results using the physical system

(Area and Time). Simulations showed that if the performance
metric is sampled area, the Area heuristic performs better
than the Time heuristic. If the performance metric, however,
is the number of serviced tasks then the Time heuristic
performs better than the Area heuristic. Results also showed
that decreasing the sampling density (increasing the value
of s) resulted in improved performance for both heuristics.
The improved performance, however, comes at the cost of
increased reconstruction error.

Next, we analyzed how the performance of a multiscale
paradigm scales with the number of implicitly coordinated
mobile robots operating at the same sampling density and
average speed. The experiments show that as the environment
becomes saturated with robots, the system approaches the
physical limit in extracting new information.

Through simulation we showed that a system using the
multiscale paradigm performs better than a traditional sam-
pling technique such as a raster scan. Finally, the multiscale
approach was tested on a physical system (NIMS-3D). The
performance of the system exhibited behavior similar to that
observed in simulation.

In the future, we plan to characterize the task set in order
to build a model of future task arrivals and distributions. This
would further improve task allocation and, at the limit, yield
an optimal solution. We plan to perform phenomena charac-
terization based on the received high-fidelity sensed values.
This information can be used to improve first-tier sensor data
processing as well as calibration. In theory, if the first-tier

sensor is calibrated in accordance with the spatiotemporal
nonlinearities in the environment, high fidelity reconstruction
of the phenomena may then be extracted entirely from the
first-tier sensor. Improvements in NIMS-3D, that will allow
larger areas to be sensed, are currently underway.
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