
Efficient Onboard RGBD-SLAM for Autonomous MAVs

Sebastian A. Scherer1 and Andreas Zell1

Abstract— We present a computationally inexpensive RGBD-
SLAM solution taylored to the application on autonomous
MAVs, which enables our MAV to fly in an unknown en-
vironment and create a map of its surroundings completely
autonomously, with all computations running on its onboard
computer. We achieve this by implementing efficient meth-
ods for both tracking its current location with respect to a
heavily processed previously seen RGBD image (keyframe)
and efficient relative registration of a set of keyframes using
bundle adjustment with depth constraints as a front-end for
pose graph optimization. We prove the accuracy and efficiency
of our system based on a public benchmark dataset and
demonstrate that the proposed method enables our quadrotor
to fly autonomously.

I. INTRODUCTION

Autonomous MAVs (micro aerial vehicles) are getting
more and more attention within robotics research. For true
autonomy, we want a MAV to neither rely on external sensors
(i.e. an external tracking system) nor on offloading pro-
cessing to an external computer for autonomous navigation.
RGBD cameras, i.e. cameras that provide registered color
and depth images, seem to be the perfect sensor for this task:
They are small, light-weight, and provide rich information
in hardware already, without requiring additional expensive
postprocessing computations by the onboard computer, like
stereo cameras do.

One of the most essential problems for autonomous MAVs
is localization or pose estimation: Other than ground robots,
a MAV typically cannot just stop and wait for pose estimates.
In order not to crash, it needs reliable pose estimates in
6D (position and orientation) at a high frequency. If the
autonomous MAV should also be able to navigate in pre-
viously unkonwn environments, it has to solve the SLAM
(simultaneous localization and mapping) problem.

II. RELATED WORK

A. RGBD SLAM

SLAM using RGBD cameras has attracted much attention
already. The first RGBD mapping system was presented
in the year 2010 in [1], which works by matching 3D
points of pairs of RGBD frames using SIFT features for
an inital estimate of the relative transformation, followed by
refinement using iterative closest point (ICP). The whole map
is kept consistent using pose graph optimization (PGO). The
open source system RGBD-SLAM1 described in [2] works in

1 Sebastian A. Scherer and Andreas Zell are with the Department of
Computer Science, Faculty of Science, University of Tuebingen, Tuebin-
gen, Germany. {sebastian.scherer, andreas.zell} at
uni-tuebingen.de

1http://openslam.org/rgbdslam.html

Fig. 1. The RGBD-UAV used for this work.

a similar fashion: It registers RGBD frames by matching 3D
point pairs using various available image features but without
the successive ICP refinement step. There are also some ap-
proaches that rely on depth images alone, e.g. KinectFusion
[3], which uses coarse-to-fine iterative closest point with pro-
jective data association implemented on graphics hardware
for registration with the map. The authors themselves in [4]
introduced bundle adjustment with depth constraints, which
allows us to easily extend monocular visual SLAM systems
like the very efficient PTAM system [5] to also utilize depth
measurements of RGBD data. This method was shown to
enable autonomous flight of a MAV with a stereo camera in
[6], but has some systematic limitations: For optimizing the
full map, PTAM relies on global bundle adjustment, which
quickly becomes computationally infeasible in real time for
large numbers of keyframes.

B. Autonomous MAVs using RGBD Cameras

Notable cases of autonomous MAVs using RGBD cameras
include [7], in which the MAV uses the RGBD camera to
compute visual odometry onboard and mapping is done on
an external computer using the system detailed in [1]. While
this is impressive work, it is not a fully autonomous MAV
according to our previous definition.

In [8], an RGBD camera mounted on a quadrotor is used
for indoor exploration, which is an interesting topic on its
own. Pose estimates, however, are provided using a laser
range finder also mounted in the MAV.

C. Our Approach

Our goal is an RGBD-SLAM system that should enable a
fully autonomous MAV. This means we need it to produce
pose estimates that are accurate and fast enough to enable
autonomous flight while all processing required for both lo-
calization and mapping should run on the onboard computer.
This work is customized for the limitations of our RGBD-
MAV described in sect. III. The general approach, however,
should be almost universally applicable.

III. HARDWARE SETUP

Our RGBD-MAV is a quadrotor helicopter based on
the open source Pixhawk platform [9]. It uses a frame,
brushless motor controllers and motors from Mikrokopter2,
the pxIMU inertial measurement unit and autopilot and a
Kontron microETXexpress-PC single-board computer (SBC)
for computer vision tasks hosted on the pxCOMex COM-
Express baseboard. Its main sensor is an ASUS Xtion Pro
Live RGBD camera, which is similar to a Microsoft Kinect,
but smaller, lighter, and provides slightly better synchronized
color and depth images.

IV. SOFTWARE ARCHITECTURE

We implement a keyframe-based RGBD-SLAM system
focused on being able to use it on our RGBD-MAV described
in sect. III. Its main requirements are being able to generate
pose estimates that are both accurate and fast enough to
allow autonomous navigation on the one hand, and a scalable
mapping process that should be able to map environments
that are not limited to parts of a room.

We adopt the major idea of PTAM, namely splitting up
the SLAM task in one thread for tracking (or localization)
running at video rate and a second thread for mapping, i.e.
extending and optimizing the map. As opposed to PTAM,
however, we employ a relative representation of our map
which is inspired by [10]. This means that each map point
belongs to one source keyframe, in our case the one in which
it was measured for the first time, and has its position stored
only relative to its source keyframe.

This relative representation allows the combination of
bundle adjustment as a SLAM front-end with pose graph
optimization as a back-end and helps keeping the map
consistent: If pose graph optimization modifies the pose of
one keyframe, the positions of all of its map points will
implicitly be modified as well.

A. Map

The map in our case is a set of keyframes, which in turn
contain all relevant information: An RGBD image pair, map
points, i.e. triangulated interest points of the RGB image,
and measurements of map points of other keyframes within
its own image. Additionally, each keyframe corresponds to
a node in our pose graph. Pose graph edges are added
whenever keyframes were registered with respect to each
other.

2http://www.mikrokopter.de

B. Localization: Tracking Thread

The tracking thread is responsible for processing incoming
RGBD pairs and producing pose estimates at video rate. For
each new RGBD pair it will predict the current camera pose
based on a motion model, choose the best keyframe within
the map to track its pose, project all map points of this best
keyframe into its current image based on the pose predicted
by the motion model, find these map points close to their
expected positions within the current image using sparse
optical flow, find the camera pose relative to the reference
keyframe using robust nonlinear least squares, and finally
decide whether it should create a new keyframe from the
current RGBD pair.

1) Motion Model: We use a modified version of the
decaying-velocity motion model in [5], which assumes the
MAV to keep flying at a nearly constant but slowly decaying
velocity. Given a previous 6D velocity estimate vt−1 ∈ se(3)
and the old relative pose Ct−1TR ∈ SE(3), were Ct−1 is the
camera frame at time t− 1 and R is the reference frame, it
will predict the new pose at time t as:

CtTR = exp (vt−1) · Ct−1TR (1)

Where exp : SE(3) 7→ se(3) is the exponential map and
log : se(3) 7→ SE(3) its inverse. From the equation above
it follows that the velocity estimate should be:

vt−1 = log
(
CtTCt−1

)
= log

(
CtTR · Ct−1T−1

R

)
(2)

Since we do not know the true pose CtTR at the time of
prediction, we estimate the velocity for the next prediction
after successful localization, assuming it to remain roughly
constant:

vt = α1

(
α2 · log

(
CtTCt−1

)
+ (1− α2)vt−1

)
(3)

With α1, α1 ∈ (0, 1), this is a basic decaying low-pass filter.
Special care has to be taken since we track relative poses
only: Compared to a previous update step, we could be using
a different reference keyframe in the current step, i.e. we have
different reference frames Rt and Rt−1. The prediction in
eq. 1 must then be computed using:

CtTRt = exp (vt−1) · Ct−1TRt−1 · Rt−1TRt (4)

And the transform CtTCt−1
required for estimating the

relative velocitiy in eq. 2 is in fact:

CtTCt−1
= CtTRt

· RtTRt−1
· Ct−1T−1

Rt−1
(5)

The relative transform between both references required in
both steps has to be recomputed at the moment it is needed
based on their current pose estimates relative to a fixed world
frame, since it might change due to the mapping thread
modifying the map in parallel:

RtTRt−1
= RtTW ·

(
Rt−1T−1

W

)
(6)

2) Keyframe Selection: From all keyframes within the
map, we want to select the one which is best for tracking.
In our case, this means we want to find as many map
points as possible in the current image, so we select the
keyframe with the most map points theoretically visible in
the current image. We can compute this by projecting all map
points into the current image based on its predicted pose and
counting how many map points would be visible, i.e. are in
front of the camera and their projection is within the image
boundary. Since the number of keyframes might grow too
big and this simple heuristic does not consider occlusion
or filter out keyframes far away, we restrict our search to
keyframes within a certain distance of the predicted pose
both in translation and orientation.

3) Finding Map Points using Sparse Optical Flow:
After determining the expected positions of all relevant map
points within the current image, we need to find their actual
locations nearby. PTAM looks for map points at locations of
FAST corners by computing the zero-mean sum of squared
differences (ZMSSD) between the patches around both. In
our experience, this often fails when there is considerable
motion blur as the number of FAST corners is limited. We
instead decided to use sparse optical flow using the Lucas-
Kanade method [11] using the implementation in OpenCV
[12] as it requires finding interest points in keyframes only
and can cope with at least some motion blur in images
in between. Sparse optical flow, however, will always find
the local optimum and is therefore usually not able to do
wide-baseline matching. When using a proper initialization
as provided by applying even a very simple motion model,
however, the gaps between expected and actual positions
of map points that have to be bridged by are typically
very small, which makes finding a wrong local minimum
in between rather unlikely. This is illustrated in fig. 2.

Fig. 2. A typical result of tracking: Green and blue lines are distances
covered by the prediction step of our motion model, red lines are the gaps
that have to be bridged by sparse optical flow. They are difficult to see
beacuse most are very short for inliers. Outliers that were removed are
marked in blue.

4) Relative Pose Estimation: Determining the pose of the
camera relative to the reference keyframes based on the
known 3D position of some map points and their 2D image
coordinates in the current frame is called the Perspective-n-
Point (PnP) Problem.

Since tracking using sparse optical flow always yields a
small number of wrong matches, we first determine inliers
and outliers using preemptive RANSAC [13] with Gao’s
solution to the P3P problem [14] to generate hypotheses.
After that, we refine the best hypothesis based on all
inlier measurements using robust nonlinear least squares.
In addition to 2D image coordinates, we also consider
depth measurements at the corresponding image locations,
if available. The mathematical details of this optimization
are described in sect. V-A

5) Deciding about Adding a new Keyframe: The decision
whether we should add a new keyframe is made using the
following heuristic: If either the distance (both in translation
and orientation) relative to the best keyframe or the mean
distance of tracked points in 2D image coordinates exceed
certain limits, or if the visible ratio of map points of the
reference keyframe goes below a certain limit, the current
frame should be added as a new keyframe and is passed
along to the mapping thread.

C. Mapping

Combining all incoming RGBD frames that are supposed
to become keyframes to a consistent and accurate map is the
job of the second mapping thread. It will create keyframes
from RGBD pairs, refine the pose estimate from tracking
using bundle adjustment with depth constraints, try and
match more reference keyframes to the latest keyframe, and
finally run pose graph optimization to optimize the map.

1) Keyframe Creation: The main task in keyframe cre-
ation is selecting map points. Since keyframe creation has
to be fast, we apply a FAST corner detector on multiple
pyramid levels. As also noticed in [15], FAST corners tend
to flock to image regions with high contrast whereas there
might be some regions with no FAST corners at all. We
tackle this problem by detecting many FAST corners more
than needed and assigning each to one of n × n grid cells
within the image. We then sort all corners within a cell by
their Harris score and keep only the best m. The result of
this process is illustrated in fig. 3.

2) Relative Pose Refinement: From tracking we know a
rough pose estimate of the latest keyframe w.r.t. its reference
keyframe and a list of measured map points of the reference
keyframe in the image of the latest keyframe. This is good
enough for tracking, but we want to refine this pose estimate
before using it for mapping.

We first find more matches by backward tracking, i.e.
trying to find all map points of the new keyframe within
the reference keyframe’s image using the same method as
described in IV-B. Using this higher number of matches, we
apply bundle adjustment with depth constraints to find the
accurate relative pose between both keyframes. The details
of this optimization are described in sec. V-B.

Fig. 3. Keyframe creation: Green circles: FAST corners on various pyramid
levels. White lines: Grid layout for map point selection. Red dots: Actually
used map points.

Once bundle adjustment is done, we update the refined 3D
positions of the relevant map points, update the refined pose
of the latest keyframe, and add an edge between the latest
keyframe and its reference to the pose graph.

D. Finding and Utilizing More Reference Keyframes

1) Finding Match Candidates: Strictly speaking, the steps
described so far compose a visual odometry system, but not a
complete SLAM system. For full SLAM, we need to be able
to detect and handle loops. We do this by trying to track the
latest keyframe in the nref best keyframes that were again
found as described in sect. IV-B.2.

2) Verifying Match Candidates: We have to be extra care-
ful, however, not to add badly registered keyframe pairs to
our pose graph as basic pose graph optimization is not robust
to outliers.3 To overcome this problem given a candidate pair
of keyframes ki and kj , we first try to find the two relative
poses iTj and jTi by tracking keyframe i relative to keyframe
j and vice versa. Only if both pose estimates roughly agree
(i.e. iTj ≈ jTi

−1), we continue to refine this pose estimate
and add a corresponding edge to the pose graph.

3) Refining Matches: In order to refine such an additional
edge, we again utilize bundle adjustment with depth con-
straints as described in sect. V-B.

E. Global Pose Graph Optimization

We use HOG-MAN [17] to optimize the pose graph
consisting of keyframes (nodes) and relative poses (edges)
that were added after registering pairs of keyframes.

V. OPTIMIZATION WITH DEPTH CONSTRAINTS

We use depth constraints as introduced in [4] in two
stages of our SLAM system: For tracking by solving a

3There is work on robustified variants of pose graph optimization, e.g.
[16]. We doubt, however, that it will work well with our small numbers of
edges: If there is one inlier and one outlier edge, it might be impossible to
decide which one to discard as an outlier.

modified perspective-n-point problem, and for registering
pairs of keyframes, using a modified variant of relative
bundle adjustment.

A. Perspective-n-Point Problem with Depth

For the conventional pespective-n-point problem, we are
given n map points Rpi of a reference keyframe R w.r.t.
the pose of R and their image locations Cui where they
were seen in the current camera image C. We then want to
find the relative pose CTR that minimizes the following 2D
reprojection errors:

e2D,i = h(CTR
Rpi)− Cui (7)

Here, h is the camera projection function that projects
3D points given in the camera coordinate system to pixel
coordinates. In our case, we use the typical pinhole-camera
model with radial and tangential distortion as also used in
OpenCV. The error term e2D,i is thus the difference between
the expected and actually measured pixel coordinates.

In addition to 2D image locations, however, we often
also measure valid depth values at these pixel positions.
We integrate this additional information by adding depth
reprojection errors:

ed,i =

{ (
CTR

Rpi
)
3
− Cdi if Cdi > 0

0 else
(8)

Both errors are of unrelated dimensions (e2D is in pixels,
ed in meters). They need to be properly scaled according
to their expected uncertainties σ2D and σd before they can
be combined. We use σ2D = 0.5 px and σd(d) = d2 ·
6.331 × 10−3m−1 as determined in [4]. Note that σd(d) is
not constant but a function of depth d.

Since image positions obtained using sparse optical flow
always contain a small number of outliers, we need to apply
robustified nonlinear least squares optimization. This can be
obtained by applying a robustifier ρ which scales all errors.
The resulting objective function to be minimized in order to
find the optimal CTR is:∑

i

ρ

(
||e2D,i||
σ2
2D

2
)

+ ρ

(
||ed,i||2

σd(Cdi)2

)
(9)

We implement this optimization using ceres solver4 [18], an
open source c++ library for robust nonlinear least squares
problems and choose ρ to be the Huber loss function.

B. Relative Bundle Adjustment with Depth Constraints

Deviating from [4], we need to modify our bundle adjust-
ment formulation to accomodate the relative representation
chosen for this work. Given two keyframes, let us call map
points that were measured not only in their source keyframe
S but also in the other keyframe O relevant map points. Each
relevant map point was per definition measured at least twice
with 2D pixel coordinates and there might be valid depth
measurements in none, one, or both depth images.

4http://code.google.com/p/ceres-solver/

Each of these up to four measurements leads to a slightly
different reprojection error. For each map point at position
Spi which is stored relative to its source keyframe S:

• We always measure it in its own keyframe at a pixel
location Sui, which leads to reprojection error esrc,2D,i

in eq. 10.
• We always measure it in the other keyframe at a pixel

location Oui, which leads to eoth,2D,i in eq. 11.
• We might measure valid depth Sdi at its location within

its source keyframe, which leads to esrc,d,i in eq. 12.
• We might measure valid depth Odi at its measured

location within the other keyframe, which leads to
eoth,d,i in eq. 13.

esrc,2D,i = h(Spi)− Sui (10)

eoth,2D,i = h(OTW
ST−1

W
Spi)− Oui (11)

esrc,d,i =

{ (
Spi
)
3
− Sdi if Sdi > 0

0 else
(12)

eoth,d,i =

{ (
OTW

ST−1
W

Spi)
)
3
− Odi if Odi > 0

0 else
(13)

Again, 2D and depth reprojection errors need to be properly
scaled and the whole system needs to be robust to a small
number of outliers so the final optimization problem is:

argmin
∑
i

ρ

(
||esrc,2D,i||

σ2
2D

2
)

+ ρ

(
||eoth,2D,i||

σ2
2D

2
)

(14)

+ρ

(
||esrc,d,i||
σd(Cdi)2

2
)

+ ρ

(
||eoth,d,i||
σd(Cdi)2

2
)

(15)

Which we again solve using ceres, choosing ρ as the Huber
loss function.

VI. EVALUATION: BENCHMARK DATASET

We first evaluate our system on the
fr3/long office household file from the benchmark dataset
described in [19] and available online5. Our two main
objectives are computational efficiency and accuracy of the
pose estimates, so we evaluate both.

A. Computational Cost

We measure and log the time required for each individual
step on two different computers: On an average laptop
computer with an Intel Core 2 Duo CPU P9400 running
at 2.40 GHz, and the onboard single-board computer used
on our UAV with an Intel Core 2 Duo SL9400 Low Voltage
running at 1.86 GHz. We do this by running our system in a
sequential single-threaded mode utilizing only one core. The
measured mean times and their standard deviation are shown
in table I for tasks of the localization thread and in table II
for tasks of the mapping thread.

We can see that tracking is really fast and can be com-
pleted in much less than the 33ms required for video rate

5http://vision.in.tum.de/data/datasets/rgbd-dataset

task laptop [ms] SBC [ms]
sparse optical flow 6.38 ± 1.06 8.38 ± 1.23
preemptive RANSAC 3.80 ± 0.46 5.23 ± 0.28
robust optimization 1.90 ± 0.93 2.44 ± 1.18
total 12.08 ± 1.46 16.05 ± 1.62

TABLE I
COMPUTATION TIMES REQUIRED FOR LOCALIZATION

(TRACKING THREAD).

task laptop [ms] SBC [ms]
keyframe creation 12.54 ± 2.02 15.60 ± 2.20
reverse tracking 13.05 ± 4.16 16.41 ± 1.32
refinement (BA) 32.96 ± 15.20 43.62 ± 19.27
additional edge accepted 51.95 ± 12.50 67.46 ± 15.74
additional edge rejected 22.11 ± 2.08 30.03 ± 2.63
pose graph optimization 16.20 ± 9.61 21.70 ± 12.66

TABLE II
COMPUTATION TIMES REQUIRED FOR PROCESSING A NEW KEYFRAME

(MAPPING THREAD).

(30Hz) processing, even on the slower onboard single-board
computer. The mapping thread has to perform some more
complex computations, which does not pose a problem,
however, since these only need to be performed when adding
a new keyframe. Also, except for keyframe creation, all tasks
might be interrupted without breaking the mapping process.
Currently, we stop checking for more additional edges as
soon as there is a newer keyframe to add, but we could also
actively interrupt each task except keyframe creation: Not
checking for additional edges a few times is not a problem,
and we could even live without reverse tracking or bundle
adjustment and just trust the pose estimate from tracking.

B. Accuracy

We evaluate the accuracy of our pose estimates using
the tool included with the benchmark dataset. It reports an
absolute position root-mean-square error (RMSE) of 0.136m
comparing the full estimated trajectory to ground truth. As
we do both tracking and refinement relative to reference
keyframes, we are mainly interested in relative position and
orientation errors relative to the corresponding reference
keyframe. This is shown in table III. Note that the errors
for tracking and refinement are not directly comparable as
the transforms estimated in refinement can typically represent
considerable steps in translation and/or rotation, whereas the

method tracking refinement (BA)
position RMSE 1.8 cm 1.4 cm
position MAE 1.2 cm 1.1 cm
orientation RMSE 0.95◦ 0.85◦

orientation MAE 0.67◦ 0.60◦

TABLE III
ERRORS OF POSE ESTIMATES RELATIVE TO REFERENCE KEYFRAME ON

THE FREIBURG3 DATASET.

transforms estimated in tracking usually consist of very small
motions.

Fig. 4. Visualization of the map obtained by applying our proposed system
on the freiburg3 dataset: Keyframe poses (red), edges between keyframes
(golden), and map points (in their original color).

A visualization of the resulting map obtained by running
our SLAM system on the freiburg3 dataset is shown in
fig. VI-B. The trajectory starts at the keyframe all the way
at the bottom and ends where the colored pose marker is. It
is interesting to see that our system is accurate enough that
it implicitly closed several loops without active loop closure
detection, simply because rather old keyframes were among
the closest.

VII. EVALUATION: AUTONOMOUS FLIGHT

We use the same system running in real-time on the on-
board computer of our MAV while it is flying autonomously
in our laboratory. We let it follow a predefined list of
waypoints arranged on a rectangular pattern. Position control
is achieved by the nested PID controller implemented on the
pxIMU autopilot. Whenever the MAV is close enough to its
current waypoint, it uses the successive waypoint as the set
point of its position controller.

We let it fly autonomously based on pose estimates
provided by an external tracking system, run our SLAM
system onboard, and record all data for offline evaluation
and inspection. We captured this flight on camera and show
the logged data (visualizations of the tracking and mapping
processes) in the video attached to this paper. A higher-
quality version of this video will also be available on our
youtube channel.6

A. Accuracy

Since the computational cost does not change with differ-
ent data, we only evaluate the accuracy based on ground truth
poses provided by an external tracking system. We use an
Optitrack tracking system by Naturalpoint, currently using a
total of 7 V100:R2 cameras to provide pose estimates at
100Hz. We again compute relative errors in position and
orientation for both tracking and refinement. The resulting

6http://www.youtube.com/user/ZellTuebingen

method tracking refinement (BA)
position RMSE 1.7 cm 2.5 cm
position MAE 1.5 cm 2.3 cm
orientation RMSE 1.71◦ 1.00◦

orientation MAE 1.30◦ 0.79◦

TABLE IV
ERRORS ON THE AUTONOMOUS MAV DATASET.

errors are shown in table IV. They are slightly higher in this
case, which is mainly due to the starting and landing phases,
during which the MAV moves very quickly, which introduces
considerable motion blur.

VIII. CONCLUSIONS

We present a very efficient RGBD-SLAM system which is
able to run in real-time on the onboard single-board computer
of our autonomous MAV. This is achieved by a combination
of fast tracking and localization relative to a single keyframe
and bundle adjustment with depth constraints as a SLAM
front-end for pose graph optimization.

Future work will focus on making this system more robust,
especially during the critical phases of takeoff and landing.
We also want to test this system for larger-scale mapping
and take advantage of the resulting map for autonomous
navigation, i.e. path planning.

ACKNOWLEDGMENT

The authors would like to thank Konstantin Schauwecker
for providing his code for waypoint following, Shaowu
Yang for helping out when we had hardware problems and
Prof. Dr. Andreas Schilling for letting us use his tracking
system.

REFERENCES

[1] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using depth cameras for dense 3d modeling of indoor
environments,” in the 12th International Symposium on Experimental
Robotics (ISER), vol. 20, 2010, pp. 22–25.

[2] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-
gard, “An evaluation of the RGB-D SLAM system,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
2012, pp. 1691–1696.

[3] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,
J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International
Symposium on. IEEE, 2011, pp. 127–136.

[4] S. A. Scherer, D. Dube, and A. Zell, “Using depth in visual simulta-
neous localisation and mapping,” in Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, St. Paul, Minnesota,
USA, May 2012.

[5] G. Klein and D. Murray, “Parallel tracking and mapping for small AR
workspaces,” in Proc. Sixth IEEE and ACM International Symposium
on Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November
2007.

[6] K. Schauwecker, N. R. Ke, S. A. Scherer, and A. Zell, “Markerless
Visual Control of a Quad-Rotor Micro Aerial Vehicle by Means of On-
Board Stereo Processing,” in 22nd Conference on Autonomous Mobile
Systems (AMS). Stuttgart, Germany: Springer, September 2012, pp.
11–20.

[7] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight
using an RGB-D camera,” in International Symposium on Robotics
Research (ISRR), 2011.

(a) Visualization of the actual map: Keyframe poses, edges between
keyframes, and map points.

(b) Reconstruction based on the full point clouds of all keyframes
transformed according to their keyframe poses. The estimated trajec-
tory is shown as red dots.

Fig. 5. Mapping result obtained while the MAV flies autonomously within
our laboratory.

[8] S. Shen, N. Michael, and V. Kumar, “Autonomous Multi-Floor Indoor
Navigation with a Computationally Constrained MAV,” in Proceedings
of the IEEE International Conference on Robotics and Automation.
IEEE, 2011, pp. 20–25.

[9] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “PIXHAWK:
A system for autonomous flight using onboard computer vision,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, May 2011, pp. 2992–2997.

[10] G. Sibley, C. Mei, I. Reid, and P. Newman, “Adaptive relative bundle
adjustment,” in Robotics Science and Systems Conference, 2009, pp.
1–8.

[11] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Proceedings of the 7th
international joint conference on Artificial intelligence, 1981, pp. 674–
679.

[12] J.-Y. Bouguet, “Pyramidal implementation of the lucas kanade feature
tracker: Description of the algorithm,” Tech. Rep., 2001.

[13] D. Nistér, “Preemptive RANSAC for live structure and motion estima-
tion,” Machine Vision and Applications, vol. 16, no. 5, pp. 321–329,
2005.

[14] X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng, “Complete solution
classification for the perspective-three-point problem,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp.
930–943, 2003.

[15] K. Schauwecker, R. Klette, and A. Zell, “A new feature detector
and stereo matching method for accurate high-performance sparse
stereo matching,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Vilamoura, Algarve, Portugal: IEEE,
October 2012, pp. 5171–5176.

[16] N. Sünderhauf and P. Protzel, “Towards a robust back-end for pose

graph SLAM,” in Proceedings of the IEEE International Conference
on Robotics and Automation. IEEE, 2012, pp. 1254–1261.

[17] G. Grisetti, R. Kümmerle, C. Stachniss, U. Frese, and C. Hertzberg,
“Hierarchical optimization on manifolds for online 2d and 3d map-
ping,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Anchorage, AK, USA, May 2010.

[18] S. Agarwal and K. Mierle, Ceres Solver: Tutorial & Reference, Google
Inc.

[19] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in Proceed-
ings of the 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Vilamoura, Algarve, Portugal, October 2012.

