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Abstract— Motor babbling and goal babbling has been used
for sensorimotor learning of highly redundant systems in soft
robotics. Recent works in goal babbling has demonstrated
successful learning of inverse kinematics (IK) on such systems,
and suggests that babbling in the goal space better resolves
motor redundancy by learning as few sensorimotor mapping
as possible. However, for musculoskeletal robot systems, motor
redundancy can be of useful information to explain muscle
activation patterns, thus the term motor abundance. In this
work, we introduce some simple heuristics to empirically define
the unknown goal space, and learn the inverse kinematics of a
10 DoF musculoskeletal robot arm using directed goal babbling.
We then further propose local online motor babbling using
Covariance Matrix Adaptation Evolution Strategy (CMA-ES),
which bootstraps on the collected samples in goal babbling for
initialization, such that motor abundance can be queried for
any static goal within the defined goal space. The result shows
that our motor babbling approach can efficiently explore motor
abundance, and gives useful insights in terms of muscle stiffness
and synergy.

I. INTRODUCTION

The human body is an over-actuated system, not only does
it have a higher dimension in motor space than the degree of
freedoms in the action space, i.e., more number of muscles
than joints, it also has more degree of freedoms (DoFs) than
necessary to achieve a certain motor task. How the effector
redundant system adaptively coordinates movements remains
a challenging problem. In the field of robot learning, when
assuming rigid body links with pure rotation and translation
[1], model learning is commonly used to learn the forward
or inverse models of kinematics and dynamics for accurate
yet agile control [2]. However for bio-mechanical and soft
robots such as the elephant trunks [3], or musculuskeletal
systems [4] [5], where models based on rigid body links are
no longer available, learning becomes difficult due to the
highly redundant and non-stationary nature of such systems.

This paper investigates the reaching skills and motor
variability of the reached points on a musculuskeletal robot
arm [6], an over-actuated system of 24 Pneumatic Artificial
Muscles (PAMs) actuating 10 DoFs, as shown in Fig. 1.
Traditionally, this problem could be addressed by learning
the forward kinematics using motor babbling, and explore the
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Fig. 1. 10 DoF musculoskeletal robot arm actuated by 24 pneumatic arti-
ficial muscles (PAMs), with an empirically defined goal space in reference
to the red marker, visualized in rviz.

motor-sensory mapping from scratch [7]–[9] until eventually
the robot can predict the effects of its own actions. However
autonomous exploration without prior knowledge in motor
babbling doesn’t scale well to high dimensional sensorimotor
space, due to the rather inefficient sampling of random motor
commands in over-actuated systems. An alternative in [10]
suggests that learning inverse kinematics by goal babbling
with active exploration, avoids the curse of dimensionality
simply because the goal space is of much smaller dimension
than the redundant motor space. Nonetheless, [10] assumes
that the sensorimotor space can be entirely explored, which is
not feasible in practice for high dimensional motor systems
[3]. Another alternative is then to specify the goal space
a priori as a grid, and sampling the goal grid points to
guide exploration [11], such that sensorimotor mapping can
be sufficiently generalized and bootstrapped for efficient
online learning. It has also been quantitatively evaluated
for an average of sub-centimeter reaching accuracy on an
elephant trunk robot [3] with reasonable experiment time.
We therefore implement and further extend on directed goal
babbling in [3]. Since the goal space of the robot arm is
unknown and non-convex [6], we empirically estimate the
goal space with randomly generated postures, forcing the
convex hull such that directed goal babbling can be applied,
and subsequently remove the outlier goals in the goal space
after learning.

Given the above works aiming to reduce motor redundancy
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for learning [3], [7]–[11], it can be argued that motor
redundancy in human musculoskeletal systems is actually
the key stone to natural movements with flexibility and
adaptability, hence should be termed motor abundance rather
than redundancy [12] [13]. In robotics motor learning, [14]
also suggests that joint redundancy facilitates motor learning,
whereas task space variability does not. Thus we build on
directed goal babbling [3], and and propose local online
motor babbling, in order to explore motor abundance while
fixing space variability on the musculoskeletal robot arm.
Local online motor babbling uses CMA-ES initialized by
local samples generated from directed goal babbling, such
that explorations in the motor space is effectively constrained
locally to any queried goal within the goal space, and
efficiently generated by adapting the covariance.

This paper is organized as follows: in Section II and III
directed online goal babbling and CMA-ES are reviewed.
Section IV introduces the simple heuristics to define the
goal space, implements directed goal babbling on the mus-
culoskeletal robot arm, and evaluates the learning results.
Section V proposes, implements, and evaluates local online
motor babbling using CMA-ES to query motor abundance,
while providing some insights in muscle stiffness and muscle
synergy of the musculoskeletal robot system. Section VI
concludes the paper and discusses possible future research
directions.

II. DIRECTED GOAL BALLING
Given the specified convex goal space X∗ ∈ Rn encap-

sulating K goal points, and denoting all the reachable set
of commands in the motor space as Q ∈ Rm, the aim is to
learn the inverse kinematics model X∗→Q, that generalizes
all points in the goal space to a subset of solutions in
the motor space. Starting from the known home position
xhome

0 , and home posture qhome
0 , i.e., the inverse mapping

g(xhome
0 ) = qhome

0 , the goal-directed exploration is generated
by

q∗t = g(x∗t ,θt)+Et(x∗t ), (1)

where g(x∗t ,θt) is the inverse mapping given learning pa-
rameter θt , and Et(x∗t ) adds perturbation noise to discover
new positions or more efficient motor commands in reaching
goals. At every time step, the motor system forwards the
perturbed inverse estimate, xt ,qt = f wd(q∗t ), and the actual
(xt ,qt) samples are used for regression, where prototype vec-
tors and local linear mapping [15] is used as the regression
model, and to monitor the progress of exploration in the
defined goal space.

The major part of directed goal babbling is to direct the
babbling of the end effector at specified goals and target
positions. Each trial of goal babbling is directed at one goal
randomly chosen from X∗, and continuous piecewise linear
targets are interpolated along the path

x∗t+1 = x∗t +
δx

||X∗g − x∗t ||
· (x∗g− x∗t ), (2)

where x∗t ,X
∗
g are the target position and final goal of the trial,

and δx being the step size. Target positions are generated until

x∗t is closer than δx to X∗g , then a new goal X∗g+1 is chosen.
The purpose of directed goal babbling is to generate smooth
movement around the end effector position, such that the
locally learned prototype vectors can bootstrap and extend
the exploration of the goal space, and allow the integration
of the following weighting scheme

wdir
t =

1
2
(1+ arccos(x∗t − x∗t−1,xt − xt−1) (3)

we f f
t = ||xt − xt−1|| · ||qt −qt−1||−1 (4)

wt = wdir
t ·w

e f f
t , (5)

wdir
t and we f f

t measure direction and kinematic efficiency of
the movement, such that inconsistency of a folded manifold,
and redundant joint positions can be optimized [11]. The
multiplicative weighting factor wt is then integrated to the
gradient descent that fits the currently generated samples by
reducing the weighted square error (see Appendix).

To prevent drifting to irrelevant regions and facilitate
bootstrapping on the local prototype centers, the system
returns to (xhome,qhome) with probability phome instead of
following another goal directed movement. Returning to
home posture stablizes the exploration in the known area of
the sensorimotor space [12], [18], similar to infants returning
their arms to a comfortable resting posture between practices:

q∗t+1 = q∗t +
δq

||qhome−q∗t || · (qhome−q∗t )
, (6)

the system moves from the last posture q∗t to the home pos-
ture qhome in the same way as in (2) by linearly interpolating
the via-points along the path, until ||qhome−q∗t ||< δq

The exploratory noise, or motor perturbation in 1, is
crucial for discovering new postures that would otherwise not
be found by the inverse estimate [12], [29]. By exploring the
local surrounding of the inverse estimate with i.i.d normal
distribution in each motor dimension, and varying these
distribution parameters with a normalized Gaussian random
walk, the noise is modeled as:

Et(x∗t ) = At · x∗t +bt , At ∈ Rm×n, bt ∈ Rm, (7)

where all entries ei
t in the matrix At is initialized and varied

as follows:

ei
0 ∼N (0,σ2), δ

i
t+1 ∼N (0,σ2

∆)

ei
t+1 =

√
σ2

σ2 +σ2
∆

· (ei
t +δ

i
t+1)∼N (0,σ2).

After learning, the average reaching accuracy is evaluated
by querying the inverse model for every goal within the
defined goal space X∗, and a simple feedback controller
to adapt execution failures. Execution failure occurs when
the inverse estimate is not possible to execute, i.e., q∗ /∈ Q,
due to interference, non-stationary bionic robot design and Q
constantly changing overtime. Given the queried goal x∗ and
the predicted posture q∗ = g(x∗), where q∗ /∈Q, the feedback
controller would slightly shift the queried goal from x∗ to x̂∗t ,
then forwarding the inverse estimate xt = f wd(g(x̂∗t )). Target



shifting follows the current observed error errt = x∗−xt , and
integrated over time:

x̂∗0 = x∗, ˆx∗t+1 = x̂∗t +α · errt . (8)

III. CMA-ES

CMA-ES is a method of black box optimization that
minimizes the objective function f : Q∈Rm→R, q→ f (q),
where f is assumed to be a high dimensional, non-convex,
non-separable, and ill-conditioned mapping of the multi-
variate state space. The idea of CMA-ES is introducing
a multi-variate normal distribution to sample a population,
evaluating the population f (q) to select the good candidates,
and updating the search distribution parameters by adapting
the covariance and shifting the mean of the distribution
according to the candidates.

Given a start point q0 and initializing the covariance to
identity matrix C0 = I, the search points in one population
iteration is sampled as follows:

qt
i ∼ mt +σ

tyt
i i = 1, · · · ,λ qi,m ∈ Rn,σ ∈ R+,C ∈ Rn×n

(9)
where yt

i = Ni(0,Ct), m being the mean vector, σ being
the step-size, and λ is the population size. For notation
simplicity, the iteration index t is henceforth omitted.

The mean vector m is updated by using the non-elitistic
selection [16]. Let qi:λ denote the ith best solution in the
population of λ , the best µ points from the sampled popula-
tion are then selected, such that f (q1:λ )≤ ·· · ≤ f (qµ:λ ), and
weighted intermediate recombination is applied:

m← m+Σ
µ

i=1wiyi:λ =: m+ yw, (10)

where w1 ≥ ·· · ≥ wµ > 0, Σ
µ

i=1wi = 1,
1

Σu
i=1w2

i
=: µw ≈

λ

4
.

The step size σ is updated using cumulative step-size adap-
tation (CSA). The intuition is when the evolution path, i.e.,
the sum of successive steps, is short, single steps tend to
be uncorrelated and cancel each other out, thus the step-size
should be decreased. On the contrary, when evolution path
is long, single steps points to similar directions and tend to
be correlated, therefore increasing the step size. Initializing
the evolution path vector pσ = 0, and setting the constants
cσ ≈ 4/n,dσ ≈ 1, the step size is updated as:

pσ ← (1− cσ )pσ +
√

1− (1− cσ )2 √µw yw (11)

σ ← σ × exp
(

cσ

dσ

(
||pσ ||

E||N ((0,I))||
−1
))

(12)

The essential part of the evolution strategy is the covariance
matrix adaptation. It is suggested that the line distribution
adapted using rank-one update will increase the likelihood
of generating successful steps yw, because the adaptation
follows a natural gradient approximation of the expected
fitness of the population f (q).

pc← (1− cc)pc +
√

1− (1− cc)2 √µw yw (13)

C← (1− ccov)C+ ccov pc pT
c (14)
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Fig. 2. Empirical goal space XE(in blue) sampled from 2000 random
postures, and the convex goal space XC(in red), which is used for learning
as shown in Fig. 1

IV. INVERSE KINEMATICS LEARNING

We use a 10 DoF musculoskeletal robot arm from [6]
for the experiments, where the robot is controlled via ROS
messages. The arm is driven by 24 pneumatic muscles, each
with pressure actuation range of [0,0.4]MPa. As shown in
Fig. 1, the hand of the robot is replaced with a tennis ball
as the color marker, and tracking of the end effector is
performed in reference to the center of the red marker as the
origin, using Intel RealSense ZR300. However the tracking
introduces an error up to 1cm in depth, i.e., x-axis, and sub-
millimeter error in y and z axis. The colored point cloud
overlayed in ROS rviz is the specified convex goal space as in
Fig. 1. The control accuracy of the robot is tested according
to [3]. By repeating P= 20 random postures for R= 20 times
each, the average Euclidean norm error is computed to be
D = 1.2 cm as follows:

x̄p =
1
R ∑

r
xr

p

D =
1
P ∑

p

1
R ∑

r
||xr

p− x̄p||

A. Define the Goal Space

The complete task space of the upper limb robot is
unknown and non-convex, however directed goal babbling
would require the specified goal space to be convex to effi-
ciently bootstrap and allow the integration of the weighting
scheme in (5). Thus we first empirically estimate the goal
space by randomly generating 2000 random postures for each
muscle within [0,0.4] MPa, and take the encapsulated convex
hull as the empirical goal space XE . In order to approximate
the uniform samples in XE for efficient online learning and
evaluations, a cube grid C with 3cm spacing encapsulating
XE is defined, where XE ⊂C. The sampled convex hull goal
grid XC in Fig. 1 is then made from the intersection of all
points in the empirical goal space and the cube grid, i.e.,
XC = XE ∩C. However, as shown in Fig. 2, XE is a slanted
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the cut goal space XS reduces the error to 1.8 cm
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Fig. 4. Performance error distribution of the convex goal space XC used
for IK learning in Fig. 2, and that of the cut goal space XS in Fig. 5

non-convex irregular ellipsoid, forcing a convex hull in the
2000 random posture samples would introduce non-reachable
regions in the goal space. This is addressed later with the
similar set operation to remove the outlier goals using the
learned prototype vector space.

B. Experiment and Results

The experiment is conducted with T = 20000 samples,
with target step length δx = 0.02, which corresponds to the
target velocity of 2 cm/s, allowing the robot to generate
smooth local movements. The sampling rate is set to 5Hz,
generating 5 targets and directed micro movements for
learning. After every 4000 samples, performance evaluation
is carried out online. The learning experiment including
online evaluations amount to less than 2 hours real time.
As illustrated in Fig. 3, the learning bootstraps quite fast
in the first 4000 samples, followed by a slow convergence
until 16000 samples. At T = 20000, the feedback controller
is applied, the performance error drops to 3.4cm. However
in XC there are still many outlier goals, which are the non-
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reachable regions introduced by forcing the convex hull. A
similar set intersection operation is applied with the learned
prototype spheres S and the goal space XC, where S is taken
as the encapsulated space of the prototype spheres, and the
final goal space is XS = S∩XC, as shown in Fig. 5, where
the number of goals has been reduced from 179 in XC to
94 in XS. We then evaluate again these 94 goals with the
feedback controller, the performance error reduces further to
an average of 1.8 cm in 3. However due to the forced convex
hull XC, local inverse models cannot efficiently regress at the
edge of the task space, the error distribution still shows a few
errors larger than 3 cm, which can be further reduced later
by motor babbling using CMA-ES.

V. LEARNING MOTOR REDUNDANCY

CMA-ES explores by expanding the search distribution of
the parameters, shifting the mean and expanding covariance,
until optimum solution is found within that distribution,
followed by shrinking the covariance and shifting the mean
to the global optimum. By intentionally setting the initial
mean vector slightly away from the opitimum, i.e., the
posture that leads to closest end effector position to the
goal, CMA-ES would naturally expand the covariance while
keep the search within the vicinity of the queried goal, as
the objective function is set to minimize the goal reaching
error. Essentially CMA-ES is used to effectively generate
motor babbling data, which can be achieved by initializing
the mean vector with neighboring goal postures g(x̂) of the
queried goal x∗, and the step-size with the empirical variance
estimate of the local samples around x∗ gathered from the
goal babbling process.

A. Local Online Motor Babbling

When learning inverse kinematics using online goal bab-
bling, since there are multiple postures q reaching x∗, it
is assumed that we don’t need to know all redundancy,
and only learn the ones with most direction and kinematic
efficiency by integrating the weighting scheme (5) in the
optimization. In fact, Q is not only unknown, and may never



be exhaustively explored on a physical system, but also non-
stationary due to the nature of musculoskeletal robot design
with PAMs. This can be addressed by using the simple
feedback controller in (8), where execution failures due to
the changing of Q are adapted when the queried goal x∗ is
slightly shifted based on the proportion of the euclidean error
x∗− xt .

Algorithm 1: Motor Babbling Using CMA-ES
input : x∗, g(x), Qx̂
output : Qcma
initialize: α = 0.05, T = 30, N = 5, λ = 13, r =

0.02, c = 10, f ∗ = 0.03, Qcma = {}
select N closest goals x∗1, · · · ,x∗N to x∗;
for n← 0 to N do

x̂∗0 = x∗n;
Qfb = {};
for t← 0 to T do

xt ,qt = forward(g(x̂∗t ));
x̂∗t = x̂∗t−1 +α · (x∗− xt);
if ||x∗− xt ||< r then

collect (xt , qt ) In Qfb;
end

end
select qt for the minimum ||xt − x∗|| in Qfb;
initialize m = qt , σ = mean(var(Qx̂∪Qfb)), C = I;
while f̂ < f ∗ do

sample posture population qs : q1 · · ·qλ as in (9);
for k← 1 to λ do

xt ,qt = forward(qk);
f̂ = f (xk) = c · ||x∗− xt ||;
if ||x∗− xt ||< r then

collect qk in Qcma;
end

end
update m as in (10);
update pσ and σ as in (11), (12);
update pc and C as in (13), (14);

end
end

As illustrated in Algorithm 1, the queried goal x∗, the
learned inverse model g(x), and the neighboring postures
Qx̂ : qt∀xt ⇐⇒ ||xt − x∗|| < r, which is collected from
the goal babbling process, are the input to online motor
babbling. The aim of the algorithm is to output a new posture
configuration set Qcma, from which different muscle stiffness
can be generated while keeping the end effector position
fixed. The initialization sets the gain and number of iteration
of the feedback controller to α = 0.05, T = 30, t number of
trials for CMA-ES N = 5, and the prototype sphere radius is
r = 0.02. We use pycma library [17] to implement CMA-
ES, where we encode variables q in the objective function
implicitly f ( f wd(q)) [16]. The objective function is simply
set as the euclidean norm to the goal scaled with a constant,
i.e., c · ||x∗− xt ||, where c = 10, and the optimum objective

function value is set to f ∗ = 0.03, meaning that an empirical
optimum of f ∗/c = 3mm to the goal, which is also the
stopping criteria for each CMA-ES trial.

Each trial of CMA-ES starts by iterating the feedback
controller and finding the posture qt that leads closest to the
neighboring goal, and qt is subsequently used to initialize
the mean vector m. The covariance is initialized to be an
identity matrix, which allows isotropic search and avoids
bias. In order to initialize the step-size, an empirical variance
is estimated from Qx̂ ∪Qfb, and the mean of the variance
is taken as initialization. The union of the two sets is to
ensure sufficient data for a feasible estimation. Near the home
position, which is the centroid of the goal space, many data
samples are available as online goal babbling often comes
back to (xhome,qhome). However around the edges of the goal
space, there are often very few local samples, sometimes
less than the action space dimension, i.e., the 24 muscles.
By taking in the samples generated by feedback controller,
a better initialization of σ can be robustly estimated.

B. Visualizing Muscle Abundance

In order to visualize muscle abundance, namely in terms
of reproducing muscle stiffness and muscle synergy encoded
in the evolved covariance matrix, we assume the distribution
of parameters to be multi-variate Gaussian and multi-modal,
as the motor space is of high dimension, and there can be
different muscle group posture configurations while keeping
the end effector fixed. Therefore a multi-variate Gaussian
Mixture Model [18] is fit to the collected data in Q. By
assuming a distribution of Gaussian parameters over the data
samples p(Q|θ), a prior multi-variate Gaussian distribution
is introduced

p(θ) = Σ
K
i=1wiN (µi,Σi),

wi are the weights for each Gaussian mixture component,
and the posterior distribution is estimated by using Bayes
rule [18], such that the posterior distribution would preserve
the form Gaussian mixture model, i.e.,

p(θ |Q) = Σ
K
i=1w̃iN (µ̃i, Σ̃i),

where the parameters (µ̃i, Σ̃i) and weights w̃i are updated
using Expectation Maximization (EM) to maximize the like-
lihood [18]. The number of mixture models P is estimated
using Bayesian Information Criterion (BIC) [18] for P ∈
[1,10], where the lowest BIC of P is taken. Finally, we
sample from the mixture model with updated parameters and
weights q∗ ∼ ΣK

i=1w̃iN (µ̃i, Σ̃i) and forward q∗ on the robot.

C. Experiment and Results

We evenly selected 10 goals in the final goal space XS to
perform online motor babbling. The selected goals and their
local samples within 2cm radius are shown in Figure 6. The
goals are selected to show case the generality of querying
any goal within the goal space for motor babbling. Around
the edges, goal 26, 5, 89, 52 are chosen, and near the centroid
home position, goal 44 and 39 are selected. The rest goals 17,
43, 55, and 60 are to populate the rest of the goal space. It can
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only increased the means and standard deviations of all 24 muscle variances
for the 10 queried goals, but the reaching error has also been reduced

be expected and observed that more samples were generated
near the home posture, since in online goal babbling the
arm returns to (xhome,qhome) with probability phome, whereas
goals around the edges have only a few samples, such as
goal 26 and 89.

For each selected goal, N = 5 trials of CMA-ES is per-
formed as in Algorithm 1, where each trial takes on average
5 minutes experiment time on the robot. Muscle stiffness
is then reproduced by first fitting the collected neighboring
samples Qx̂ to the Gaussian mixture model, which serves
as a baseline learned during goal babbling, followed by
another experiment fitting Qcma to the mixture model and the
subsequent sampling. 200 samples from the mixture model
is evaluated on the robot, the mean and standard deviation of
the reaching error, and of pressure variance are plotted. As
illustrated in Fig. 7, CMA-ES outperforms the baseline in
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Fig. 8. One evolution trial for goal 44, the search of the step-size increases
until the defined optimum objective function value is found

terms of both larger muscle pressure variance and smaller
goal reaching error, where the average lies close to the
2cm prototype sphere radius. Since online goal babbling
favors kinematic and direction efficiency by reducing motor
redundancy, the sampled muscle pressure generally varies
trivially compared to the ones generated from the CMA-ES
GMM model, which expands the variance in search of global
optimum while keeping the goal reaching accuracy. Due to
non-stationary changes of the possible posture configurations
Q, the local neighboring samples Qx̂ no longer lead to a close
position to the goal, however Qx̂ of the neighboring goals can
be used for initializing the step-size σ , and initializing the
mean vector m from Qfb, to adapt to non-stationary changes
and maintain the goal reaching accuracy while performing
motor babbling.

It can be observed that for goal 44, which is closest
to the home position, the motor variance doesn’t increase
much as other queried goals. This is because every time the
interpolated directed goal path comes across the centroid
home region, goal 44 has a higher chance of collecting
more samples qt of varied motor configurations within the
neighborhood. Nevertheless, CMA-ES still explores motor
redundancy rather efficiently. As shown in Fig. 8, the evo-
lution trial expands the maximum and minimum standard
deviation of the search, i.e., such that the optimum f ∗ is
reached. After 5 such evolution trials, the sampled GMM
data is used to estimate the covariance, compared with
the covariance estimate from the baseline GMM data. As
shown in 9, CMA-ES preserves the structure while enhancing
the variance on the diagonal, while also discovers more
correlation within different groups of muscles, which can
be prominently observed on the robot in Fig. 10.

D. Interpreting Muscle Abundance

The muscle pressure variability in the covariance encodes
muscle abundance, which can be interpreted as muscle stiff-
ness and static muscle synergies. Loosely speaking, muscle
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Fig. 9. Comparing baseline and CMA-ES covariances, where the largest
change of variance occurs at muscle pair (8,20), changing from 0.003 to
-0.01, where the -0.01 covariance corresponds to the standard deviation of
0.1 MPa pressure change, consituting 25% of the PAM actuation range

# Muscle Name Function

3 serratus anterior pulls scapula forward
7 latissimus dorsi rotates scapula downward
8 rear deltoid abducts, flexes,
10 front deltoid and extends
11 medial deltoid the shoulder
15 biceps brachii flexes and supinates the forearm
18 brachialis flexes the elbow
19 pronator pronates the hand
20 supinator supinates the hand

TABLE I
MUSCLE NAMES AND FUNCTIONS

synergy is defined as a co-activation pattern of muscles in a
certain movement from a single neural command signal [19].
It can be argued that muscle synergy is a way of kinetically
constraining the redundant motor control of limited DoFs, or
as neural strategies to handle the sensorimotor systems [20].

We claim no sides in the sensorimotor learning of humans,
however, by constraining the end effector position of the
musculoskeletal robot arm, the static muscle synergies and
stiffness can be encoded in the covariance matrix and provide
some useful insights. In Fig. 9, muscles of high variances,
namely muscle 3, 7, 8, 10, 11, 15, 18, 19, 20 are of
particular interest, where muscle 7 and 8, 20 and 8 are
highly negatively correlated. Inspired by the human’s upper

(a) (b)

(c) (d)

Fig. 10. Static muscle synergies, the labelled muscles are color coded
in green (low), orange (medium), and red (high) to indicate the state of
pressure actuation. A relaxed arm posture with a lowered shoulder can be
observed in (a) and (c), whereas a stiffened arm with pronating hand and
a lifted shoulder and can be observed in (b) and (d), while keep the end
effector position fixed.

limb, the PAMs of the robot arm mimics the function of
human arm muscles, as illustrated in Table I. By fitting the
data Qcma in the mixture models and subsequently applying
sampling, we can observe the co-activation patterns of the
muscles. As shown in Fig.10(a) and 10(c), the upper limb
first reaches goal 44 with a relaxed arm posture and a
lowered adducted shoulder, whereas in Fig.10(b) and 10(d)
the end effector position is maintained by stiffening the arm,
lifting the extended shoulder, and pronating the hand. The
negative correlation of muscle 7 and 8 can be interpreted
as the coordination of extension and abduction, as well as
the flexion and adduction of the shoulder. Muscle 8 and 20
coordinate shoulder abduction with a supinating hand, and
by adducting shoulder while pronating the hand.

VI. CONCLUSIONS
We have implemented directed goal babbling [11] to learn

the inverse kinematics of a 10 DoF musculoskeletal robot
arm actuated by 24 PAMs. We defined the goal space by
empirically sampling 2000 random postures and forcing a
convex hull ready for learning, and post-processed the goal
space to removed outlier goals. The result shows an average



reaching error of 1.8 cm, where the reaching accuracy
achievable by the robot is 1.2 cm. The simple heuristics and
approximation of the goal space allows us to use directed
goal babbling to learn a larger sensory space compared to a
well-defined yet small partial task space, and promote more
efficient mapping to the motor space compared to active
exploration [10]. Nevertheless, learning with a forced convex
goal space where the intrinsic task space is non-convex
introduces outlier goals, which the corresponding directed
babbling can be misleading. A future research direction of
integrating directed goal babbling with active exploration
could be of interest, where the goal space grid can be defined
large enough to encapsulate the whole task space, and active
exploration guided by the k-d tree splitting and progress
logging can indicate the learned task space while still keep
the bootstrapping flavor of the inverse model.

We further extended directed goal babbling to local online
motor babbling using CMA-ES in search of more motor
abundance. By initializing the evolution strategy with local
samples generated from goal babbling, any point within the
goal space can be queried for motor abundance. The idea is to
intentionally initializing the mean vector of CMA-ES slightly
away from the queried goal. By expanding covariance and
setting the stop condition to meeting the set optimum of the
objective function value, efficient motor babbling data can be
generated locally around the queried goal with a few CMA-
ES trials of different initializations from the neighboring
goals. We evenly selected 10 goals within the goal space to
showcase the generality of local online motor babbling. The
results show that our proposed method has significantly in-
creased the average muscle pressure variances, while keeping
the end effector more stable and closer to the queried goals,
compared with the goal babbling baseline. Even in the home
position where motor abundance has already been well-
explored, local motor babbling shows a maximum increased
standard deviation of 0.1 MPa, constituting 25% of the
muscle pressure actuation range. Our method also adapts to
queried goals near the edges of the goal space where samples
for initialization are sparse due to the uneasy posture of the
robot arm around such goals.

By fitting Gaussian mixture models to the data collected
using local motor babbling, the sampling of the GMMs can
reproduce motor abundance in terms of muscle stiffness
and muscle synergies encoded in the evolved single-mode
covariance matrix. Muscle stiffness can be seen on the
inflating and deflating muscles, and muscle synergies can
be clearly observed in the covariance where variances and
correlations are strong, as well as when GMM sampled
postures are applied on the robot correspondingly. The bonus
that comes with the encoded covariance and mixture models
is that the queried motor abundance can be captured and
reproduced by distributions, which enables the formulation
of trials for reinforcement learning in future research, such as
learning weight lifting with varied muscle stiffness, planning
trajectories and learning dynamics using via-points and the
locally queried motor abundance library.
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