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ABSTRACT

CT image denoising can be treated as an image-to-image
translation task where the goal is to learn the transform be-
tween a source domain X (noisy images) and a target domain
Y (clean images). Recently, cycle-consistent adversarial
denoising network (CCADN) has achieved state-of-the-art
results by enforcing cycle-consistent loss without the need
of paired training data. Our detailed analysis of CCADN
raises a number of interesting questions. For example, if
the noise is large leading to significant difference between
domain X and domain Y , can we bridge X and Y with an
intermediate domain Z such that both the denoising process
between X and Z and that between Z and Y are easier to
learn? As such intermediate domains lead to multiple cycles,
how do we best enforce cycle-consistency? Driven by these
questions, we propose a multi-cycle-consistent adversarial
network (MCCAN) that builds intermediate domains and
enforces both local and global cycle-consistency. The global
cycle-consistency couples all generators together to model the
whole denoising process, while the local cycle-consistency
imposes effective supervision on the process between adja-
cent domains. Experiments show that both local and global
cycle-consistency are important for the success of MCCAN,
which outperforms the state-of-the-art.

Index Terms— Machine learning, Image enhancement/r-
estoration (noise and artifact reduction), Computed tomogra-
phy (CT), Multi-cycle-consistency

1. INTRODUCTION

Computed tomography (CT) is one of the most widely used
medical imaging modality for showing anatomical structures
[1, 2, 3, 4]. The foremost concern of CT examination is the
associated exposure to radiation, which is known to increase
the lifetime risk for death of cancer [5]. The radiation dose
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can be lowered at the cost of image quality [1], and the re-
sulted images are denoised for enhanced perceptual quality
and diagnostic confidence from radiologists.

Various deep neural network (DNN) based methods exist
for CT image denoising [6, 7, 8, 9], which require paired clean
and noisy images for training. Yet simulations are usually
used to generate such paired data, where the synthetic noise
patterns can be different from the real ones, leading to biased
training results [10]. To address this issue, recently cycle-
consistent adversarial denoising network (CCADN) was pro-
posed in [10], which formulates CT image denoising as an
image-to-image translation problem without paired training
data. CCADN consists of two generators: one transforms
noisy CT images (domain X) to clear ones (domain Y ) and
the other transforms clear CT images (domain Y ) to noisy
ones (domain X). Both generators are trained by adversarial
loss. In addition, cycle-consistency loss and identity loss are
utilized to gain better performance [11], which will be dis-
cussed in detail in Section 2. However, since CCADN only
contains two domains X and Y , its efficacy degrades as the
noise becomes stronger leading to larger differences between
X and Y that are harder to learn.

To tackle this issue, we propose to establish an intermedi-
ate domain between the original noisy image domain X and
clear image domain Y , and decompose the denoising task into
multiple coupled steps such that each step is easier to learn by
DNN-based models. Specifically, we construct an additional
domain Z with images of intermediate noise level betweenX
and Y . These images can be considered as a step stone in the
denoising process and provide additional information for the
training of the denoising network. The multi-step framework
particularly suits the denoising problem: while it is difficult to
either find or define a good collection of images in the “half-
cat, half dog” domain in “cat-to-dog” type of image transla-
tion problems, a domain Z of images with intermediate level
of noise exist naturally.

With the new domain Z, we further propose a multi-
cycle-consistent adversarial network to perform the multi-
step denoising, which builds multiple cycles of different
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scales (global cycles and local cycles) between the domains
while enforcing the corresponding cycle-consistencies. In the
experiments, we find that both global cycles and local cycles
are necessary for the success of MCCAN, which combined
outperforms the state-of-the-art competitor CCADN.

2. METHODOLOGY

Given training images that are either labelled as noisy (do-
mainX) or clear (domain Y ), we first construct a new domain
Z which contains images with an intermediate noise level be-
tween X and Y . How to obtain Z is flexible in practice. In
our experiments, it is obtained from X and Y by separating
out those images with intermediate noise level.

With CT images from three domains, the multi-step de-
noising architecture of MCCAN is shown in Fig. 1(a). We
train four convolutional neural networks as generators and
three as discriminators. Arrows in Fig. 1(a) define how im-
ages are transformed in the training stage. Specifically, the
generator GX→Z aims to transform an image from X to Z.
GZ→X ,GZ→Y , andGY→Z can be interpreted similarly. Dis-
criminators DX , DY , and DZ aim to distinguish the “real”
images originally belonging to the domainsX , Y , andZ from
the “fake” images transformed from other domains respec-
tively.

(a) (b)

Fig. 1. (a) Structure of MCCAN and (b) its cycles. The ar-
rows inside each domain denote the computation of cycle-
consistency loss. The solid and dashed arrows across domains
form global and local cycles, respectively. For clarity, we only
show cycles from left to right. Symmetric cycles going from
right to left also exist but are not shown.

As the MCCAN structure in Fig. 1(a) contains thee do-
mains, there are multiple ways in which we can construct cy-
cles (paths where an image from a source domain is trans-
formed through one (in [11]) or several other domains (in this
paper) and back to the source domain) for cycle-consistent
loss. In particular, we introduce two types of cycles as shown
in Fig. 1(b). In this figure, each dot represents an image,
which is color-coded based on the domain. The solid ones
represent the images originally in the domain (“real” ones),
and the hollow ones represent those transformed from another
domain (“fake” ones). As such, the dashed arrows form the
local cycles, each of which goes across only two adjacent do-
mains. On the other hand, the solid arrows constitute a global
cycle that starts from X through Z, Y , Z, and back to X se-
quentially. Note that in the figure we only show half of the

cycles (from left to right) for clarity, and the other half which
are from right to left and symmetric to the ones shown also
exist. We then enforce cycle-consistency loss, which mea-
sures the difference between the original images and the final
images produced at the end of the cycle as represented by the
small arrows within each domain in Fig 1(b). Ideally, the im-
ages transformed back to the source domain should be identi-
cal to the original ones. The cycle-consistency loss is applied
to every cycle, no matter whether it is local or a global.

The global cycles are important for the denoising perfor-
mance due to the following reason. In the inference stage,
an input noisy CT image x in domain X will be transformed
by GX→Z and GZ→Y sequentially, which means GX→Z and
GZ→Y are coupled by data dependency. Without global cy-
cles, GX→Z and GZ→Y will be trained independently. Thus,
errors of the prediction of noise at intermediate steps may be
accumulated as processing progresses. The global cycles en-
able the joint training of the generators, which models the de-
noising path used in the inference stage for better consistency.

The local cycles are also important to address two issues
in the training. First, the global cycles go through all the
four generators and have long paths for the gradient to back-
propagate, which makes the end-to-end optimization difficult.
The locals cycles are shallow and have shorter paths for the
gradient to back-propagate. Second, adversarial training only
enforces the generators to output “fake” images identically
distributed as the original “real” images in the intermediate
domain Z. However, they do not necessarily preserve the
meaningful content in the inputs, which is critical for the
denoising task. The local cycle-consistency supervises each
generator to learn to transform images while preserving their
meaningful content from the inputs more easily.

In summary, our MCCAN has two major advantages over
CCADN. First, it decomposes the one-step transform into
multiple steps using images in a constructed intermediate do-
main as a step stone. Second, it not only incorporates global
cycles that model the denoising path in the inference stage
for consistency, but also uses local cycles that provide strong
supervision to facilitate the more challenging training pro-
cess. In the experiments we find that MCCAN outperforms
CCADN.

Note that in the discussion so far, only one intermediate
domain was assumed. It is also possible to include more than
one intermediate domains with more global and local cycles.
However, our study suggests that any additional domains be-
yond one will not introduce further performance gain in the
dataset we explored.

Finally, we state the training objective used in our frame-
work. Denote {G} and {D} as the set of generators and dis-
criminators respectively. Denote I ∈ {X,Y, Z} as one do-
main and DI as the discriminator associated with domain I .
We let Ci be a cycle and Pi,j be a path of half Ci that has the
same source domain, where i, j are used to distinguish differ-
ent cycles and paths merely. For example, X → Z → X is



a cycle, saying C1, thus we can have P1,1 = X → Z, and
P1,2 = Z → X , which are both half cycles of C1. {PI}
represents the set of all the paths that end at domain I . We
denote ICi

as the source domain of Ci and GPi,j
as the or-

dered function composition of the generators in Pi,j . Thus,
the total adversarial loss is

LGAN ({G}, {D}) =
∑

I∈{X,Y,Z}

∑
Pi,j∈{PI}

LGAN (I, Pi,j)

(1)

where LGAN (I, Pi,j) is the adversarial loss associated with
domain I and the transform path Pi,j . LGAN (I, Pi,j) is ob-
tained by

LGAN (I, Pi,j) = Ey∼pdata(I)[logDI(y)]

+ Ex∼pdata(ICi
)[log(1−DI(GPi,j

(x)))]

(2)

where pdata(I) is the distribution of “real” images in the do-
main I and DI(x) represents the probability determined by
DI that x is a “real” image from domain I rather than a “fake”
one transformed by generators from another domain.

The cycle-consistency loss is associated with each Ci, de-
fined as

Lcyc({G}, Ci) = Ex∼pdata(ICi
)[|GCi

(x)− x|1]. (3)

The final optimization problem we solve in the training
stage is:

{G}∗ = argmin
{G}

max
{D}

(LGAN ({G}, {D})

+ λ
∑

Ci∈{C}

Lcyc({G}, Ci).
(4)

where λ is set to 10 in our experiments.

3. EXPERIMENTS AND RESULTS

3.1. Experiments Setup

The original dataset contains 200 normal-dose 3D CT im-
ages and 200 low-dose ones from various patients for training,
and separate 11 images for test. All examinations are per-
formed with a wide detector 256-slice MDCT scanner (Bril-
liance iCT; Philips Healthcare) providing 8cm of coverage.
Each 2D CT image is of size 512×512, which is then ran-
domly cropped into 256×256 for data augmentation. We con-
struct the additional domain Z with images of intermediate
noise level from these clear and noisy scans to make the num-
ber of scans in each domain comparable. There are CT images
with more noise than usual from clear scans that use high dose
radiation, and vice versa, because the noise variation cannot
be controlled quantitatively.

(a) (b)

(c) (d)

Fig. 2. Comparison of (a) CCADN, (b) MCCAN without
global cycles (c) MCCAN without local cycles, and (d) MC-
CAN. For the clarity of presentation, we only show cycles
from left to right and symmetric cycles from right to left also
exist.

We compare MCCAN with a state-of-the-art CT denois-
ing framework CCADN [10]. In order to see how the local
cycles and global cycles contribute to the final performance,
we also implement and compare MCCAN without local cy-
cles and without global cycles respectively as ablation study.
The various structures are shown in Fig. 2. We train all the
networks following the setting in [11]. Our implementation
will be available online. We ensure that all network sizes and
number of training epochs are the same for fair comparisons.

3.2. Qualitative Evaluation

We choose three representative low-dose CT images in the
test dataset as shown in Fig. 3(a) for qualitative evaluation.
The corresponding denoised images by CCADN, MCCAN
without local cycles, MCCAN without global cycles, and
MCCAN are shown in Fig. 3(b)- 3(e) respectively. Num-
bered areas are homogeneous regions, while areas with edges
between heterogeneous regions are zoomed for visibility in
Fig. 3. From the figures we can see that CCADN can success-
fully reduce noise in the original images. MCCAN without
local cycles completely fails to produce reasonable results. A
more closer examination of the images reveal that interest-
ingly the background and the substances are approximately
swapped compared with the original images. This is because
the high-level features of content distribution are still kept
even with such swap, and the discriminator cannot identify
the generated image as “fake” because of the structure diver-
sity in the training dataset. This aligns with our discussion
on the importance of local cycles in Section 2. On the other
hand, MCCAN without global cycles can successfully de-
noise the image and achieves similar quality compared with
CCADN. This is expected as MCCAN without global cycles
is essentially formed by two cascaded CCADNs. Finally,
with both local and global cycles, the complete MCCAN has
the smallest noise visually.

To further illustrate the efficacy of the MCCAN structure,
Fig. 4 shows how an image is transformed along a global cy-
cle (the path X→Z→Y→Z→X). From the figure we can see



Table 1. Mean and SD (normalized) of the selected areas in Fig. 3(a).

Method Area #1 Area #2 Area #3 Area #4 Area #5
Mean SD Mean SD Mean SD Mean SD Mean SD

Original 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
CCADN[11] 0.93 0.85 1.03 0.79 1.03 0.80 0.94 0.78 1.03 0.78

MCCAN w/o local cycles 0.02 0.38 0.24 1.02 0.11 0.71 0.02 0.42 0.28 1.31
MCCAN w/o global cycles 0.89 0.78 1.03 0.77 1.03 0.80 0.906 0.73 1.03 0.81

MCCAN 0.88 0.76 1.04 0.68 1.03 0.71 0.89 0.71 1.04 0.68

(a) Original noisy CT images

(b) Images denoised by CCADN[10]

(c) Images denoised by MCCAN without global cycles

(d) Images denoised by MCCAN without global cycles

(e) Images denoised by MCCAN
Fig. 3. Noisy and denoised images for qualitative evaluation.

Fig. 4. An image transformed through X→Z→Y→Z→X cy-
cle in Fig. 2. The noise level decreases along X→Z→Y and
increases along Y→Z→X, which conforms to our design.

that X → Z → Y is an effective two-step denoising process
while Y → Z → X incrementally adds noise back.

3.3. Quantitative Evaluation

Following existing works [7, 9, 12], we use the mean and stan-
dard deviation (SD) of pixels in homogeneous regions of in-
terest chosen by radiologists to quantitatively judge the qual-
ity of CT images. The mean value reflects substance informa-
tion. Although the closer to that in the origin image the better,
mean value can fluctuate within a range. On the other hand,
the standard deviation reflects the noise level. It should be as
low as possible, which is more sensitive than the mean value
in the denoising task.

Five homogeneous areas chosen by radiologist are used
for the quantitative evaluation, which are annotated by red
rectangles in Fig. 3 and numbered from 1 to 5. The normal-
ized quantitative results are shown in Table 1. CCADN can
reduce the standard deviation in the five areas by 15%, 21%,
21%, 22% , and 22% respectively, with resulting mean val-
ues close to those of the original images. Although MCCAN
without local cycles achieves smallest standard deviation in
Areas 1, 3 and 4, it leads to meaningless output with large
mean deviation from the original images, which corresponds
to the structure loss in Fig. 3(c). MCCAN without global cy-
cles has similar performance compared with CCADN. with
mean values close to original and standard deviation reduc-
tion by 22%, 23%, 20%, 27%, and 19% respectively. Finally,
the complete MCCAN behaves the best among all the meth-
ods: Within reasonable mean range, the standard deviations
are decreased the most by 24%, 32%, 29%, 29%, and 32%
from the original CT images respectively.

4. CONCLUSIONS

In this paper, we propose multi-cycle-consistent adversarial
network (MCCAN) for CT image denoising. MCCAN builds
intermediate domains and enforces both local and global
cycle-consistency. The global cycle-consistency couples all
generators together to model the whole denoising process,
while the local cycle-consistency imposes effective supervi-
sion on the denoising process between adjacent domains. Ex-
periments show that both local and global cycle-consistency
are important for the success of MCCAN and it outperforms
the state-of-the-art competitor.
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