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ABSTRACT
Cryo-Electron Microscopy (Cryo-EM) is a Nobel prize-
winning technology for determining the 3D structure of
particles at near-atomic resolution. A fundamental step in
the recovering of the 3D single-particle structure is to align
its 2D projections; thus, the construction of a canonical
representation with a fixed rotation angle is required. Most
approaches use discrete clustering which fails to capture the
continuous nature of image rotation, others suffer from low-
quality image reconstruction. We propose a novel method that
leverages the recent development in the generative adversarial
networks. We introduce an encoder-decoder with a rotation
angle classifier. In addition, we utilize a discriminator on
the decoder output to minimize the reconstruction error. We
demonstrate our approach with the Cryo-EM 5HDB and the
rotated MNIST datasets showing substantial improvement
over recent methods.

Index Terms— Cryo-EM, 5HDB, Rotated MNIST, Deep
learning, Image synthesis, Generative adversarial networks

1. INTRODUCTION

Unsupervised feature learning algorithms have emerged as a
promising tool for learning representations from data [1, 2, 3].
Learning invariant image representation enables machine learn-
ing algorithms to achieve good generalization performance
while using a small number of labeled training examples. An
invariant representation is particularly valuable for the Cryo-
EM, where the goal is to determine the 3D electron density
of a particle from many noisy and randomly oriented 2D pro-
jections. Having a model that aligns the 2D particle pose to a
canonical predefined posture could significantly improved the
3D reconstruction of the particle [4].

Existing classic methods for the problem of determining
the 3D structure of a particle use a Gaussian mixture model to
group these 2D views. However, this assumes a discrete set of
projections where it is known that particle conformations are
continuous. To face this issue, more recent machine learning-
based disentanglement approaches do not impose a specific
structure on the learned latent representations [1]. These meth-
ods, however, use a variational autoencoder (VAE). Using VAE
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induces blurriness to the reconstructed image which might
eliminate key components in the particle structure.

In this work, we propose a different approach. We use an
encoder-decoder architecture and a discriminator. The discrim-
inator penalizes the decoder generated images with rotated
content. In this way, we ensure that the generated content has
a fixed orientation, which later can be utilized to reconstruct
the 3D shape of the particle. We demonstrate the effectiveness
of our method on Cryo-EM and rotated MNIST datasets [1].
We improve the current leading approach mean squared error
(MSE) by an order of magnitude on both the Cryo-EM 5HDB
and the rotated MNIST datasets [1].

2. RELATED WORK

In Cryo-EM, the main challenge is to determine the structure
of a protein or a particle. In this section, we describe related
work that tackles this problem.

Classic statistical methods assume that the many 2D pro-
jection observations of the particle arise from either a single
structure or from a discrete mixture of structures. Assuming
there are a finite number of possible projections, the particle
views are grouped into a discrete number of clusters [4]. These
conformations are confounded by orientation in the collected
images. Thus, their goal is to cluster each projection image
into one of the possible finite sets of projections.

Modern approaches tackle the problem of disentangling
latent variables in an unconstrained setting [5]. Others con-
strained the manifold of latent values to be homeomorphic to
some known underlying data manifold to capture useful latent
representations [6].

The recently suggested spatial-VAE [1] addresses this prob-
lem by formulating the generative model as a function of the
spatial coordinates. This makes the reconstruction error dif-
ferentiable with respect to latent rotation parameters which
creates a representation that is independent of the content pose.

A similar approach to ours was taken by the AttGAN [7].
It uses an encoder-decoder architecture for facial attribute
editing by conditioning the decoding of a given face latent
representation on the desired attributes. Notice that in our case
the rotation angle is a continuous variable as opposed to face
attributes and this imposes an additional challenge.
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Fig. 1: Our proposed scheme. We use encoder-decoder architecture with an angle classifier and a discriminator.

3. THE PROPOSED APPROACH

In this section, we describe our proposed method of disentan-
gling the image content from the object pose in order to obtain
a rotation-invariant image representation.

We employ an encoder-decoder architecture with a dis-
criminator. A block diagram of the proposed system in shown
in Figure 1. It contains the following stages: First, we apply a
random rotation θ on the input image and propagate it through
the encoder. We utilize one scalar from the latent vector to
represent the input image rotation. Denote θ̂ as the predicted
rotation (the latent variable value), we use the following loss
for the angle classifier model

Langle(θ, θ̂) = exp
{
|θ − θ̂|

}
− 1. (1)

When an accurate prediction is achieved, the exp value is 1
and the total loss is 0. Next, we decode the latent vector with a
decoder and compute the reconstruction loss with the original
unrotated image. Denote x and x̂ as the input image and the
reconstructed image respectively, the reconstruction loss is

Lrec(x, x̂) = ||x− x̂||2 + ||x− x̂||1. (2)

Finally, we use a discriminator that gets as input the recon-
structed images and the given dataset. We use the Wasserstein
loss [8]. Denote G as the generator (the decoder in our case),
D as the discriminator and z as the latent vector without the
rotation variable, the loss functions of the discriminator and of
the decoder are

Ladv-disc(x,D,G) = D(x)−D(G(z)),

Ladv-decoder(x,D,G) = D(G(z)).
(3)

The adversarial loss is

Ladv(D,G) = Ladv-disc(D,G) + Ladv-decoder(D,G). (4)

The final training loss function is the combination of the above
loss functions

L(θ, θ̂, x, x̂,D,G) = Langle(θ, θ̂) +Lrec(x, x̂) +Ladv(D,G).
(5)

In the following sections, we show that using our approach
we manage to better reconstruct the unrotated images.

4. DATASETS

In order to evaluate performance, we conducted experiments
using the following datasets.

5HDB dataset [1, 9]. A Cryo-EM dataset that contains
simulated 2D projections with random rotations and additive
random noise. The dataset includes 20K simulated projec-
tions of integrin α-IIb with integrin β-3. The image size is
40x40. We used 16K and 4K images for training and testing
respectively.

Rotated MNIST [1]. Each image from the MNIST dataset
is rotated by a random angle sampled fromN (0, π

2

16 ). Training
and testing sets consist of 60K and 10K images respectively.

For both datasets, we normalized the pixel values such that
their values is between 0 and 1. We did not pre-process these
datasets, besides the random rotation and normalization that
were mentioned.

5. EXPERIMENTS

In this section, we present experiments1 that test our proposed
encoder-decoder with a discriminator scheme as a method to
disentangle the image content from the pose. We compare our
approach and the spatial-VAE method, which is considered
a leading method in learning rotation-invariant features for
Cryo-EM datasets.

For both 5HDB and rotated MNIST datasets, we trained
our suggested model for 300 epochs with a learning rate value
of 10−4 with a decrease by 0.1 after 200 epochs. For every 4
steps of the decoder, the discriminator was updated once. We
used also a weight decay value that equals 10−5.

1Code is available in https://github.com/kobybibas/
CryoEM_rotation_invariant

https://github.com/kobybibas/CryoEM_rotation_invariant
https://github.com/kobybibas/CryoEM_rotation_invariant


Fig. 2: Proposed method results compared to baseline spatial-VAE for different rotation in the input. The first row is the ground
true. The second row presents the model inputs. The 3rd and 4th rows show the spatial-VAE and our method results respectively.

Table 1: Performance of our rotation invariant auto-encoder
(AE) and the spatial-VAE model on the test set

Dataset Method Average MSE Worst MSE

5HDB Spatial-VAE 2.1 3.29
Rotation invariant AE 0.3 0.81

MNIST Spatial-VAE 66.07 121.82
Rotation invariant AE 0.02 0.18

5.1. 5HDB dataset

In order to evaluate the performance of our method, we mea-
sured the MSE between the ground truth image and the decoder
output. The average MSE of the 5HDB test set is described
in Table 1. Our model outperforms the baseline in terms of
average MSE compared to the original unrotated image by an
order of magnitude.

In Figure 2 we present the outputs of the compared models.
One can see that the object rotation of our model outputs is sim-
ilar to the ground truth, where the rotation of the spatial-VAE
model is different and is also changed based on the protein ro-
tation in the input images: In the first, third, and fifth columns
the orientation of the protein using the spatial-VAE model is
flipped with respect to the ground truth.

We also evaluate the average MSE of the predicted angle
by our method |θ − θ̂|2 on the 5HDB dataset. The result is an

average MSE of 0.17 radians.
The worst-case image is the image with the highest MSE

between the ground truth image (the unrotated image with no
noise) and the output of the model. A visualization of the
worst-case 5HDB images of our model and the spatial-VAE
model is presented in Figure 3. The spatial-VAE suffers from
blurriness and did not reconstruct the image correctly. On the
contrary, our model worst-case image can be considered as a
successful reconstruction.

Fig. 3: 5HDB dataset worst case MSE image.



Fig. 4: Rotated MNIST dataset. The first and second rows are
the ground truth and the input images respectively. The 3rd
and 4th rows show the spatial-VAE and our method results.

5.2. Rotated MNIST dataset

We use the same metrics in the evaluation of the rotated
MNIST dataset as in the 5HDB dataset.

The average MSE of the rotated MNIST test set is shown
in Table 1. Our method attains an average MSE of 0.02 which
is two orders of magnitude better than the spatial-VAE which
has an average MSE of 66.07.

We show in Figure 4 qualitative results of the rotated
MNIST dataset. As shown in the second the fourth columns,
our method reconstructs the unrotated image with greater accu-
racy than the spatial-VAE method. In addition, the spatial-VAE
outputs are blurred which explains the high MSE values of
this method.

6. CONCLUSION

In this work, we suggested a novel encoder-decoder architec-
ture with a discriminator to produce a canonical representa-
tion of cryogenic electron microscopy images. Our suggested
method offers an improvement on the 5HDB single-particle
electron microscopy and rotated MNIST datasets. This is
evident in both the quantitative and qualitative results.

We are currently exploring additional variations to the
proposed architecture, and its generalization to additional at-
tributes. In the future, our method can be extended to addi-
tional modalities, such as CT and MRI imaging, and can help
generate canonical representations and invariant reconstruction
in various tasks.
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