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Abstract

Optical colonoscopy (OC), the most prevalent colon cancer screening tool, has a high miss rate 

due to a number of factors, including the geometry of the colon (haustral fold and sharp bends 

occlusions), endoscopist inexperience or fatigue, endoscope field of view. We present a framework 

to visualize the missed regions per-frame during OC, and provides a workable clinical solution. 

Specifically, we make use of 3D reconstructed virtual colonoscopy (VC) data and the insight 

that VC and OC share the same underlying geometry but differ in color, texture and specular 

reflections, embedded in the OC. A lossy unpaired image-to-image translation model is introduced 

with enforced shared latent space for OC and VC. This shared space captures the geometric 

information while deferring the color, texture, and specular information creation to additional 

Gaussian noise input. The latter can be utilized to generate one-to-many mappings from VC to 

OC and OC to OC. The code, data and trained models will be released via our Computational 

Endoscopy Platform at https://github.com/nadeemlab/CEP.
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1. INTRODUCTION

More than 15 million colonoscopies are performed in the US every year [1, 2]. During 

these procedures, 22-28% of polyps and 20-24% adenomas are missed [3]. There are no 

commercial or automated tools available to assist endoscopists in gauging the amount of 

colon surface missed during OC procedures. The main culprit in substandard coverage 

during OC are the sharp bends and haustral folds, as depicted in Fig. 1a. Even though 

the endoscope tip can be flexed to look behind folds and sharp bends, beginner or tired 

endoscopists do not use this option wisely and may have a high miss rate. This miss rate 

can be reduced if endoscopists have a visualization tool to identify and investigate areas 

occluded by haustral folds.
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Recently, Ma et al. [5] and Freedman et al. [6] have presented approaches to quantify 

colon surface coverage. Ma et al. [5] reconstruct 3D mesh from contiguous chunk of 

colonoscopy video frames using training data generated from shape-from-motion. The 

missed surface is visualized as holes in the reconstructed mesh. The method, however, 

assumes cylindrical topology (endoluminal) views, smooth camera movements and masked

out specular reflection, making the method less practical in general colonoscopy scenarios. 

In contrast, Freedman et al. [6] have used a deep learning approach to estimate percentage 

coverage value directly for given colonoscopy video segments but do not provide any means 

for visualizing the missed colon surface.

In this paper, we present a deep learning model for realtime visualization of missed colon 

surfaces directly on the colonoscopy video frames without doing any prior offline 3D 

reconstruction using contiguous sets of frames. Specifically, we make use of prior 3D 

reconstructed virtual colonoscopy (VC) [7, 8] data, created from a computed tomography 

(CT) scan, to produce training data for missing surface visualization (Fig. 1b–d). This is 

used in conjunction with OC data for the same patient to drive an unpaired image-to-image 

translation with a modified lossy CycleGAN [4] and a new enforced shared OC and VC 

latent space representation. The lossy CycleGAN [4] by itself overfits due to the sparse 

training data for the missing surface task (most OC frames have no or few missing surface 

green pixels as opposed to the dense depth maps for which the lossy CycleGAN was 

originally proposed) and can easily hallucinate structures which do not exist, as shown in 

Fig. 1. Adding a shared latent space forces the network to preserve structures (and avoid 

hallucination) when translating between domains. With added Gaussian noise, we also show 

that the same framework with shared latent space representations can be used to generate 

realistic one-to-many mappings from VC to OC and OC to OC for augmenting OC datasets 

in computer-aided detection and classification pipelines.

In summary, the contributions of this paper are as follows:

• We are the first to present a model to visualize missing surface regions for 

individual colonoscopy frames in realtime.

• We introduce shared OC and VC latent space representations to get more 

consistent geometry for missing surface inference task.

• Using additional Gaussian noise input, the model can also generate realistic OC 

images (one-to-many mapping) with different specular reflections, lighting and 

texture for a given OC or VC frame.

2. DATA

The OC and VC datasets were acquired for 10 patients at Stony Brook University Hospital. 

2000 images from 5 patients were used for training, while 800 images from 2 patients were 

used for validation and 1200 images from 3 patients were used for testing. Even though VC 

and OC are captured for the same patient, there is no ground truth since the shape of the 

colon differs considerably between the two procedures. The borders in the OC images were 

cropped to exclude the fisheye lens artifacts. 3D meshes were reconstructed from CT scans 

in VC, using a pipeline similar to Nadeem and Kaufman [9].
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In order to create training data for per-frame missing surface visualization, the opacity of the 

3D colon mesh is lowered such that the more opaque regions indicate the missed surfaces, 

which are colored green in Fig. 1c. The per-frame missing surface data is generated through 

Blender and example videos are provided1. Fig. 1 shows a typical colon anatomy along with 

the haustral folds and the pictorial representation of a missed surface for a certain endoscope 

camera position. To aid the model with the image-to-image domain translation task, we 

added the missing surface information in green channel on top of the VC rendering of the 

colon (Fig. 1d).

3. METHOD

The presented approach focuses on training two generator networks, Goc and Gvc and two 

discriminator networks. To train these networks, an objective function ℒ composed of three 

parts is used. The first part, ℒtrans focuses on learning a proper image-to-image translation. 

ℒadv produces realistic images, and ℒnoise helps the network utilize noise input for OC 

image generation:

ℒ = ℒtrans + ℒadv + ℒnoise (1)

In order to learn the image-to-image translation, a cycle consistency loss, ℒcyc, and an 

extended cycle consistency loss, ℒexcyc [4] are used. ℒexcyc allows for a one-to-many 

translation by making comparisons in a common domain. The common domain between OC 

and VC is VC, since OC has additional textures, lighting and specular reflections. The cycle 

consistency and extended cycle consistency losses are as follows:

ℒcyc Ga, Gb, A = Ey ∼ p A y − Ga Gb y 1 (2)

ℒexcyc Ga, Gb, A = Ey ∼ p A Gb y − Gb Ga Gb y 1 (3)

where y ~ p(A) is the data distribution of domain A and ‖·‖1 represents the L1 norm.

To make the translation more robust, we add a shared latent space loss. Each generator, GA, 

is composed of an encoder, EnA, and decoder, DeA.

The encoder brings the input image into latent space, while the decoder takes the latent 

space into the image domain. We propose that OC and VC share the same latent space, as 

the latent space stores geometric information which should be consistent between the two 

domains. This is depicted in Fig. 2 and the following equation:

ℒSLS EnB, GB, EnA, A = Ey ∼ p A EnB y − EnA GB y 1, (4)

1Supplementary Video: https://youtu.be/x1-wwCiYeC0
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Lastly, we add an identity loss, as described by Zhu et al. [10], in order to ensure consistent 

shading, when translating between the two domains. This is not done in the OC domain as it 

restricts the network from using the noise input properly.

ℒtrans = λc ℒexcyc Goc, Gvc, Ioc + ℒcyc Gvc, Goc, Ivc
+ λSLS ℒSLS Enoc, Goc, Envc, Ivc
+ ℒSLS Envc, Gvc, Enoc, Ioc
+ λidenℒiden Ivc ,

(5)

In our experiments, we set λc as 10, λSLS as 1, and λiden as 1.

Adversarial losses have shown success in producing realistic images. Specifically, we add a 

directional discriminator Ddir, to differentiate between the different directions of translation 

and an OC discriminator to restrain Goc(Gvc(Ioc)), as described by [4].

ℒdir Ga, Gb, D, A, B = Ey ∼ p A log D y, Gb y
+ Ex ∼ p B log 1 − D Ga x , x (6)

ℒGAN G, D, A, B = Ey ∼ p A log D y + Ex ∼ p B log 1 − D G x (7)

These two losses compose the adversarial losses:

ℒadv = ℒdir Goc, Gvc, Ddir, Ioc, Ivc + ℒGAN Goc, Doc, Ioc, Goc Gvc Ioc (8)

We note that OC and VC share the same underlying geometric information, while OC 

has additional color, texture, and specular reflections. In order to reflect this additional 

information, we add a noise input to Deoc to drive the one-to-many mapping between VC 

and OC. ℒnoise is used to ensure a minimum distance between images with different noises, 

otherwise the noise vector is ignored:

ℒnoise De, N, L = Ez1, z2 ∼ p N , l ∼ p L max 0, De l, z1 − De l, z2 − α , (9)

L is a latent space domain, N is a noise domain, and α is a variable to determine how much 

the images should differ. We set α to 0.1 in our experiments and draw our noise input from a 

normal distribution.

With Lnoise, we can take a latent space variable along with various samples from the noise 

domain to produce OC images with different specular reflections, lighting, and texture. The 

latent space can be produced from both OC and VC images. With the addition of the noise 

input, we create a one-to-many mapping between VC-to-OC and OC-to-OC (Fig. 4).

We follow the same generator architecture described in CycleGAN [10] but instead of using 

9 ResNet blocks, we use 10, 5 dedicated to encoder and the remaining 5 for decoder.
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4. RESULTS

In Fig. 3, we show our results on OC frames from Ma et al. [5]. Ma et al. can produce 

3D meshes from given OC video segments and can visualize the missing surfaces as holes 

in the reconstructed mesh. We highlight some holes in their reconstructed mesh that are 

detected by our model. Our results are similar for neighboring frames, without the use of any 

temporal connections for smoothing.

There is no ground truth for missed surfaces in OC data. To make a quantitative analysis, 

we texture a VC colon to create ground truth missed surface data. This is done by taking 

texture from OC frames, and mapping them on the VC colon mesh. Our method achieved 

an average per-pixel accuracy score of 81% and a Dice coefficient of .667 for the textured 

VC frames, despite the fact that surface area occluded by deep folds is difficult to predict in 

a single frame without additional information such as colon topology. Per-pixel accuracy is 

computed after converting the images into binary images based areas classified as missed:

Acc = TP + TN
d , (10)

where TP and TN are the number of true positive and true negative pixels and d is the 

number of pixels in the image. The textured VC results are shown in the last three rows of 

Fig. 3. Complete videos are included in the supplement2.

We added a noise loss to our model to generate realistic OC images from given OC or VC 

images. The generated images have the same underlying geometry as the input image but 

vary in lighting, specular reflections and texture, as shown in Fig. 4. The first two rows show 

VC to OC images. The last two rows show results for our OC to OC mapping. Just like the 

OC input, the model generates different lighting, specular reflections and texture. Note that 

the texture changes are more subtle than the changes in specular reflection and lighting. This 

will be addressed in future work.

5. LIMITATIONS AND FUTURE WORK

The missed polyps and anomalies are mostly occluded by the haustral folds. Even though 

our model in general works well for deep as well as shallow haustral folds, there are 

instances where only a partial missed surface area is highlighted for deep folds. This is 

understandable given the fact that we are not taking into account additional information, 

such as the overall colon topology. In the future, we will incorporate this information by 

inferring the colon centerline to improve the overall performance.

The current OC image generation creates a rather sparse distribution of images, especially 

in the texture space. To improve this, we will split texture, specular reflection, and lighting 

into three separate noise vectors which will provide finer control over these aspects and can 

potentially force the model to generate a more diverse set of OC images.

2Supplementary Video: https://youtu.be/x1-wwCiYeC0
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENT

We Dr. Sarah McGill (UNC Chapel Hill) for OC videos and to Ruibin Ma for comparisons. This research 
was funded in part by NIH/NCI Cancer Center Support Grant P30 CA008748 and NSF grants CNS1650499, 
OAC1919752, and ICER1940302.

8. REFERENCES

[1]. Joseph DA, Meester RGS, Zauber AG, Manninen DL, Winges L, Dong FB, Peaker B, and van 
Ballegooijen M, “Colorectal cancer screening: estimated future colonoscopy need and current 
volume and capacity,” Cancer, vol. 122, no. 16, pp. 2479–2486, 2016. [PubMed: 27200481] 

[2]. Seeff LC, Richards TB, Shapiro JA, Nadel MR, Manninen DL, Given LS, Dong FB, Winges 
LD, and McKenna MT, “How many endoscopies are performed for colorectal cancer screening? 
results from cdc’s survey of endoscopic capacity,” Gastroenterology, vol. 127, no. 6, pp. 1670–
1677, 2004. [PubMed: 15578503] 

[3]. Leufkens AM, Van Oijen MGH, Vleggaar FP, and Siersema PD, “Factors influencing the miss rate 
of polyps in a back-to-back colonoscopy study,” Endoscopy, vol. 44, no. 05, pp. 470–475, 2012. 
[PubMed: 22441756] 

[4]. Mathew S, Nadeem S, Kumari S, and Kaufman A, “Augmenting colonoscopy using extended and 
directional cyclegan for lossy image translation,” arXiv preprint arXiv:2003.12473, 2020.

[5]. Ma R, Wang R, Pizer S, Rosenman J, McGill SK, and Frahm J-M, “Real-time 3D reconstruction 
of colonoscopic surfaces for determining missing regions,” Med Image Comput Comput Assist 
Interv, pp. 573–582, 2019. [PubMed: 34113926] 

[6]. Freedman D, Blau Yo, Katzir L, Aides A, Shimshoni I, Veikherman D, Golany T, Gordon A, 
Corrado G, Matias Y, and Rivlin E, “Detecting deficient coverage in colonoscopies,” arXiv 
preprint arXiv:2001.08589, 2020.

[7]. Hong L, Muraki S, Kaufman A, Bartz D, and He T, “Virtual voyage: Interactive navigation in the 
human colon,” 24th Conf Comput Gr & Interact Tech, pp. 27–34, 1997.

[8]. Pickhardt PJ, Choi JR, Hwang Inku, Butler JA, Puckett ML, Hildebrandt HA, Wong RK, Nugent 
PA, Mysliwiec PA, and Schindler WR, “Computed tomographic virtual colonoscopy to screen for 
colorectal neoplasia in asymptomatic adults,” N Engl J Med, vol. 349, no. 23, pp. 2191–2200, 
2003. [PubMed: 14657426] 

[9]. Nadeem S and Kaufman A, “Computer-aided detection of polyps in optical colonoscopy images,” 
SPIE Medical Imaging, vol. 9785, pp. 978525, 2016.

[10]. Zhu J-Y, Park T, Isola P, and Efros AA, “Unpaired image-to-image translation using cycle
consistent adversarial networks,” IEEE Int Conf Computer Vision, pp. 2223–2232, 2017.

Mathew et al. Page 6

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
(a) Pictorial representation of a colon illustrating missed colon surface (green outline) when 

the endoscope (black line) traverses from rectum (R) to cecum (C) and back. (b) A VC 

rendering for a mesh reconstructed from a CT scan. (c) The missing surfaces (green regions) 

can be rendered by casting rays from virtual camera positions and marking mesh faces 

not directly intersecting the rays. (d) Missing colon surface visualization with a virtual 

colonoscopy rendering is used for training the model. At the bottom are examples of 

XDCycleGAN [4], proposed for scale-consistent depth map inference across colonoscopy 

video frames, overfitting for missing surface inference task due to sparse training data, as 

shown with the red bounding box and the predicted missed structures (bottom) when the 

camera is occluded.
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Fig. 2. 
A VC image, Ivc, is brought into latent space with Enoc, and brought to the OC domain 

through Deoc. The OC image, Ioc returns to latent space through Envc. The latent vector 

produced by Enoc and Envc should be the same, since it stores the same geometric 

information. This is enforced by ℒSLS. To generate different OC images, Deoc takes noise 

input, Z, to create the additional OC information. In order to ensure the network uses the 

noise, we apply a loss, ℒN, between OC images with different noise vectors.
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Fig. 3. 
The top portion shows results on video sequences from Ma et al. [5]. We indicate the 

missing regions predicted by our model on the meshes reconstructed by their pipeline using 

blue and yellow arrows. The missing regions are visualized as holes on the reconstructed 

meshes. The bottom portion shows our results on textured VC input along with the ground 

truth.
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Fig. 4. 
The first column is input for generating OC images with different lighting, specular 

reflections, and textures. The first two rows show VC to OC translation. The last two rows 

show our model results for OC to OC.
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