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ABSTRACT

Ultrasound volume projection imaging (VPI) has shown to be
appealing from a clinical perspective, because of its harmless-
ness, flexibility, and efficiency in scoliosis assessment. How-
ever, the limitations in hardware devices degrade the resultant
image content with strong structured noise. Owing to the un-
availability of reference data and the unpredictable degrada-
tion model, VPI image recovery is a challenging problem. In
this paper, we propose a novel framework to learn the struc-
tured noise removal from unpaired samples. We introduce the
attention mechanism into the generative adversarial network
to enhance the learning by focusing on the salient corrupted
patterns. We also present a dual adversarial strategy and inte-
grate the denoiser with a segmentation model to produce the
task-oriented noiseless estimation. Experimental results show
that the proposed method can greatly improve both the visual
quality and the segmentation accuracy on spine images.

Index Terms— Ultrasound image restoration, Spine seg-
mentation, Unpaired learning.

1. INTRODUCTION

In clinical scoliosis diagnosis, experts need to view hundreds
of frames in an ultrasound sequence of a whole spine col-
umn, which is time-consuming and tedious [1]. To simplify
the measurement, Volume Projection Imaging (VPI) was pro-
posed to synthesize coronal 2D images based on the intensity
of the voxels in the ultrasound sequence [2, 3]. However, ow-
ing to the fast movement of the probe and the noise in the col-
lected spatial information, ultrasound VPI images usually suf-
fer from a significant degradation by structured noise, which
not only affects the performance of automatic pathological
analysis, but also poses a challenge to doctors for accurate di-
agnosis. As presented in Fig. 1, structured noise, different
from random noise, shows high spatial correlation, and only
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Fig. 1. An example of structured noise removal in the ultra-
sound VPI. Left to right: the original observation, the recov-
ered image, and the upscaled details.

appears in some regions in the image. The existence of struc-
tured noise degrades the discriminative patterns in the ultra-
sound image, and consequently, confuses the deep network
when performing classification, detection, or segmentation.
VPI image restoration is an open problem, where the ground-
truth data is generally inaccessible. Moreover, the structured
noise varies with the ultrasound operators, probes, and empir-
ical imaging parameters, which makes the degradation hard to
model. Hence, it is also impractical to synthesize the paired
noisy and noiseless samples for learning.

Recently, reference-free image restoration has been widely
studied. NTGAN [4] was proposed to learn a deep denoiser
without clean reference. However, it requires the prior knowl-
edge of the degradation model, which limits its performance
on ultrasound images. N2V [5] and N2S [6] presented the
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Fig. 2. Overview of the proposed framework for enhanced spine segmentation from ultrasound volume projection images.

self-supervision strategy for image restoration. However,
they were shown to perform poorly on structured noise. On
the other hand, generative adversarial networks (GANs) pro-
vide an alternative to solving the restoration problem in a
weakly supervised manner. Hou et al. [7] proposed the cycle
adversarial learning to reconstruct the image appearance for
enhancing the segmentation on CT images. However, Liu
et al. [8] showed that GAN-based methods would create
artefacts in images. To address this issue, they presented a
wavelet correction transfer network (WaveCT) to eliminate
the appearance shift. However, the spectral-based supervi-
sion in [8] is not satisfactory for structured noise removal, and
other regularization-based methods, e.g., the total variation
penalty in [9], fail to preserve the segmentation details. To
tackle these problems, we propose the dual attentive gener-
ative adversarial network (DA-GAN) to learn the structured
noise removal without paired supervision. Specifically, we
introduce the spatial attention mechanism into both the gen-
erator and the discriminator to facilitate the framework in
localizing the corrupted patterns. By this means, the resultant
model can better retain the image content while recovering the
noisy regions. We also present the dual adversarial learning
strategy, which serves as an online augmentation approach
to learning the structured noise distributions. To achieve the
task-oriented restoration, we integrate DA-GAN with a seg-
mentation network, and form an end-to-end framework for
spine segmentation. The segmentation task introduces the
additional regularization to promote the restoration task. The
main contributions of this paper can be concluded as follows:
• We propose the dual-attentive generative adversarial net-

work, based on the spatial attention mechanism and the
dual adversarial strategy, to learn the VPI image restora-
tion under the unpaired supervision.

• We integrate the proposed DA-GAN with a segmentation
network to form an end-to-end framework for enhanced
spine segmentation.

• We conduct various experiments to evaluate DA-GAN on
both the visual quality and the segmentation accuracy.

2. METHODOLOGY

In this section, we introduce the proposed DA-GAN in detail.
Fig. 2 gives an overview of the proposed framework, includ-
ing a preprocessing module, a restoration processor (gener-
ator), and a segmentation head. The preprocessing step pre-
pares the unpaired image patches for learning. The main com-
ponent, i.e. the generator in DA-GAN, follows a simple UNet
design with spatial attention (SA) units to facilitate the learn-
ing of structured noise removal. The segmentation head intro-
duces additional supervision from the ground-truth segments
for the task-oriented restoration. It is worth noting that the
preprocessing module and the discriminator only affect
the training stage, and will be detached from the model in
inference, which bring no burden to the applications.

2.1. Patch splitting preprocessing

The preprocessing step aims to extract the patches from
the input observation, and automatically split them into two
groups, i.e. the corrupted domain and the noise-free domain,
for adversarial domain-transfer learning. To this end, we
employ an edge detector to divide the extracted patches into
the positive and the negative groups by their averaged vertical
variations, as follows:

f(x) =

{
0, if g(x) ≥ βn,
1, if g(x) ≤ βp,

with g(x) =
1

MN

M∑
i

N∑
j

|h(x)i,j |,
(1)

where x denotes the extracted observation patch. βn and βp
account for the negative and positive thresholds for select-
ing the corrupted and clean patches, respectively. h(·) repre-
sents the edge detector in the vertical direction. M and N are
height and width, respectively, of the image patches. By this
means, we synthesize the domain-transfer pairs from a single



Fig. 3. Illustration of the proposed dual adversarial learning.

observation, so that the restoration processor can effectively
penalize the detail leakage in learning.

2.2. Spatial attention unit

The attention mechanism plays an important role in the
restoration learning. As shown in Fig. 1, the structured
noisy degradation only exists in some regions of the cor-
rupted patches. Thus, both the generator and the discrimina-
tor need to focus on those salient areas, to better recover the
discriminative patterns and to provide higher confidence on
the real/fake prediction, respectively. For this purpose, we
introduce the spatial attention (SA) units into the framework
to facilitate the restoration learning. The detailed structure of
the spatial attention unit is presented in Fig. 2. Given a feature
map v ∈ Rc×h×w, the SA unit first compresses it by using the
average pooling and the max pooling in the channel dimen-
sion. The two compact representations, i.e. va ∈ R1×h×w

and vm ∈ R1×h×w, respectively, are then aggregated by the
channel concatenation. We employ a non-linear module with
the sigmoid activation to further compress the aggregated
representation and generate the heatmap H ∈ R1×h×w. We
utilize H to rescale the input signal along the spatial dimen-
sion to achieve spatial attention. The residual connection is
established to stabilize the training process.

2.3. Dual adversarial learning

As the amount of the corrupted patches and the clean patches
is highly imbalanced, we further propose the dual adversarial
learning strategy to serve as an online augmentation in learn-
ing the structured noise distribution. Given an observation x,
the generator G produces a noise-free estimation, denoted as
x̂ = G(x). We compute the residual between x and x̂ as
r = x− x̂, which represents the degradation pattern leading
to the prediction of the discriminator. Therefore, if we add
the residual back to another clean patch z, the discriminator
should predict the synthetic observation ẑ = z + r as a cor-
rupted sample. The illustration of this procedure is shown in
Fig. 3. We employ this strategy as the additional regulariza-
tion in learning the restoration, and thus the dual adversarial
loss Ladv is formulated as follows:

Ladv =Ez[logDcln(z)] + Ex̂[log(1−Dcln(x̂)]+

Ex[logDcrp(x)] + Eẑ[log(1−Dcrp(ẑ)],
(2)

where Dcln and Dcrp denote the discriminators for the clean
and corrupted domains, respectively. We also employ the re-
construction loss Lrec, defined by the pixel-wise distance be-
tween the input observation x and its output estimation x̂, to
preserve the image content as follows:

Lrec = ||x− x̂||22. (3)

The task-oriented supervision Lseg from the ground-truth seg-
ments is defined by the pixel-wise Cross Entropy loss, as fol-
lows:

Lseg = −
∑
#cls

ytruelog(ypred), (4)

where ytrue and ypred are the ground-truth and the predicted
label for the pixel, respectively. #cls refers to the number of
classes. Therefore, the overall objective function is formu-
lated as:

L = Ladv + λ1Lseg + λ2Lrec, (5)

where λ1 and λ2 are the hyperparameters, controlling the
trade-off between the loss terms.

3. EXPERIMENT

3.1. Dataset

The dataset used in this paper is collected from 3D ultrasound
scanning of the whole spine region. Then, the ultrasound VPI
technique is utilized to generate the projected 2D images. Ul-
trasound VPI images from 109 subjects, with different de-
grees of scoliosis, were selected. The bone features are la-
belled by medical experts to serve as the ground-truth seg-
mentation masks. We further divided the collected data into
a training set and a testing set with 80 and 29 samples, re-
spectively, based on the identity information. Since the size
of the ultrasound images varies with the patients, we resize
all the images to 256 × 1024 in the training set, and extract
the patches with a size of 96 × 96 from the images. Ran-
dom rotation and mirroring are applied to the patches for aug-
mentation. In preprocessing, the two thresholds, i.e. βn and
βp, are empirically set to 4 and 2, respectively. In the test-
ing phase, a query sample is first denoised and resized to the
same resolution, i.e. 256 × 1024, and then fed to the seg-
mentation model for predicting the segment masks, which are
then rescaled back to the original resolution.

3.2. Implementation details

We establish the proposed framework based on PyTorch [10]
and MMSegment [11]. In DA-GAN, all the convolutional
kernels are of size 3 × 3, with padding 1, except for those in
SA, where the kernel size is 1× 1 with padding 0. The num-
ber of convolutional filters is set to [64, 128, 256]. The seg-
mentation head is built using the default setting in [12]. Dur-
ing training, we build a mini-batch of 16 samples. We adopt



Fig. 4. Visualization of the DA-GAN restored image for the
quality and segmentation assessment.

Adam [13] to minimize the objective function defined in Eq.
(5), with λ1 and λ2 empirically set to 0.5 and 0.01, respec-
tively. We initialize the learning rate to 10−4, and employ the
cosine annealing strategy [14] to decrease it to 10−6 within
100 epochs. We train DA-GAN on a Nvidia GEFORCE GTX
2080 Ti GPU, and it takes about 5 hours to train up the model.

3.3. Results

As a segmentation-oriented restoration method, we evaluate
DA-GAN based on the visual quality of the produced VPI
images, as well as the comparison with the other state-of-the-
art segmentation algorithms.
Visualization: We first evaluate DA-GAN by visualizing the
restored images for both the quality and the segmentation as-
sessment. Fig. 4 reports an example. To make a fair com-
parison, we enlarge the kernel size and the network depth of
the comparing vanilla model (only FPN), to make its capac-
ity equal to, or larger than “DA-GAN + FPN”. Apparently,
DA-GAN provides a better visual quality, as the structured
noise are effectively reduced. In terms of segmentation, we
can clearly observe that our proposed algorithm accurately
locates the first lumbar by eliminating the confusing patterns
resulting from the structured noise, while the vanilla model
predicts a false alarm, and misses the last thoracic and rib.
Quantitative segmentation results: To validate the bene-
fit from DA-GAN for the spine segmentation, we compare
the results with the other state-of-the-art segmentation algo-
rithms, i.e. the vanilla FPN model, UNet [15], RSNU [9],
WaveCT [8], and PPMU [16] . We also replace DA-GAN
with the other weakly supervised denoisers, i.e. N2V [5],
N2S [6] and CycleGAN [7], to verify its superiority in im-
proving segmentation performance. The results are tabulated
in Table 1. All the comparing methods are based on the
same settings in Sec. 3.2, and are established with an equal,
or larger, model capacity. It can be seen that the proposed
DA-GAN outperforms the other weakly supervised denois-
ers by a large margin. In addition, the proposed method

Table 1. Quantitative segmentation results, where D: Dice
score(%), J: Jaccard index(%), and P: Pixel accuracy(%).

Methods Lumbar Thoracic Rib Ave.
D J P D J P D J P D J P

Cycle [7] 86.81 76.96 87.90 76.71 62.47 80.74 78.54 65.00 80.46 80.67 68.14 83.03
N2S [6] 80.46 76.97 88.75 76.60 62.32 80.28 77.96 64.21 81.29 80.46 67.84 83.44
N2V [5] 87.28 77.71 88.50 77.51 63.50 75.84 78.87 65.32 78.40 81.22 68.84 80.91
Vanilla 85.69 75.29 85.57 76.42 62.12 74.12 78.02 64.24 76.45 80.04 67.21 78.72

UNet [15] 82.21 70.26 83.28 74.70 59.94 72.39 77.37 63.46 76.37 78.09 64.56 77.35
RSNU [9] 85.85 75.52 88.24 77.45 63.39 77.30 79.26 65.92 80.28 80.86 68.28 81.94

WaveCT [8] 86.59 76.58 87.91 75.91 61.36 72.34 78.49 64.82 79.72 80.33 67.58 79.99
PPMU [16] 84.58 73.68 85.11 76.55 62.22 75.22 78.21 64.48 78.30 79.78 66.79 79.55
∼w/o SA 87.23 77.65 89.07 77.85 63.94 77.33 79.24 65.84 79.78 81.44 69.14 82.06
∼w/o DAL 87.44 77.97 89.32 77.98 64.11 77.28 79.11 65.64 78.97 81.51 69.24 81.86

Ours 87.72 78.46 88.73 77.81 63.90 77.70 79.68 66.42 79.54 81.73 69.59 81.99

also surpasses those state-of-the-art segmentation algorithms
(Vanilla–PPMU in Table 1) by about 1.5% in the three met-
rics. Among the competitors, RSNU [9] and WaveCT [8] are
the recently proposed methods that are especially designed
for appearance-corrupted segmentation. The proposed DA-
GAN achieves the Dice scores of about 87.7%, 77.8%, and
79.7% for Lumbar, Thoracic, and Rib, respectively, which
are much higher than the other comparing algorithms. Thus,
DA-GAN is desirable for the VPI image enhancement and
spine segmentation in clinical applications.
Ablation study: To investigate the effectiveness of the differ-
ent designs in DA-GAN, we perform the ablation study. As
listed in Table 1, we explore the effect of the SA units and the
dual adversarial learning (DAL). We also establish the com-
petitors with the same capacity as the proposed model. It is
obvious that both SA and DAL contribute greatly to the seg-
mentation, as the average performance is degraded by about
0.3%, if either of them is removed. Thus, the proposed strate-
gies are beneficial to spine segmentation.

More visual comparisons, runtime results, and ablation
studies can be found in the provided supplementary material.

4. CONCLUSION

In this paper, we have studied an enhanced method for spine
segmentation by recovering the structured noisy patterns
in ultrasound VPI images. We introduce the spatial atten-
tion mechanism into the GAN-based framework to force the
model to concentrate on the corrupted patterns for learning
the restoration in a weakly supervised manner. The dual ad-
versarial learning strategy is further proposed to facilitate the
memorization on the structured noise distribution. We aggre-
gate the recovering model with the segmentation network to
perform task-oriented restoration for improving the segmen-
tation on spine images. Extensive experiments have shown
that the proposed algorithm produces appealing results, in
terms of both visual quality and spine segmentation, which
makes it a potential solution to clinical applications.
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