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ABSTRACT
Traditional deep learning models implicity encode knowl-
edge limiting their transparency and ability to adapt to data
changes. Yet, this adaptability is vital for addressing user
data privacy concerns. We address this limitation by storing
embeddings of the underlying training data independently
of the model weights, enabling dynamic data modifications
without retraining. Specifically, our approach integrates the
k-Nearest Neighbor (k-NN) classifier with a vision-based
foundation model, pre-trained self-supervised on natural im-
ages, enhancing interpretability and adaptability. We share
open-source implementations of a previously unpublished
baseline method as well as our performance-improving
contributions. Quantitative experiments confirm improved
classification across established benchmark datasets and the
method’s applicability to distinct medical image classifica-
tion tasks. Additionally, we assess the method’s robustness in
continual learning and data removal scenarios. The approach
exhibits great promise for bridging the gap between founda-
tion models’ performance and challenges tied to data privacy.
The source code is available at github.com/TobArc.

Index Terms— k-NN classifier, continual learning, trans-
fer learning, few-shot classification, explainability

1. INTRODUCTION

Deep learning has exhibited significant success in diverse do-
mains, notably in natural language processing [1, 2] and im-
age classification [3, 4, 5], driven by the evolution of increas-
ingly sophisticated models. These models, empowered by
substantial computational resources, excel in capturing intri-
cate patterns and implicit representations within their param-
eters [6]. However, the inherent limitation of tying knowl-
edge exclusively to model weights introduces a significant
drawback. The opacity of this knowledge restricts efficient
information retrieval [7] and raises concerns about data usage
rights and privacy [8]. This challenge is accentuated by evolv-
ing regulations, such as the European Union’s right to erasure
(‘right to be forgotten’) (Article 17 of the General Data Pro-
tection Regulation (GDPR) [9]), empowering users to revoke
data usage rights promptly.

∗ These authors contributed equally to this work.

Updating knowledge in deep learning models, involving
tasks such as addition, deletion, or modification of informa-
tion, currently necessitates comprehensive retraining or fine-
tuning [10]. This process incurs substantial computational ex-
penses and proves cumbersome, particularly in sensitive sec-
tors like healthcare. The predominant paradigm of exclusive
data storage within model parameters lacks adaptability, es-
pecially when users exercise their right to update or delete
personal data. This leads to exponential costs and the risk of
catastrophic forgetting in continual learning scenarios [11],
rendering these models unpracticable at best, infeasible, or
irresponsible at worst.

In response to these challenges, our research is inspired
by Nakata et al.’s solution [7], which deviates from the con-
ventional approach of storing knowledge solely in model pa-
rameters. We advocate for storing comprehensive training
dataset knowledge, including image feature representations
and labels, in an external dynamic repository. This approach
enables seamless addition, deletion, or modification of data
without necessitating model retraining. Integrating the clas-
sical k-Nearest Neighbor (k-NN) classifier [12] with the ro-
bust and discriminative feature spaces of foundation models,
pre-trained in a self-supervised manner on natural images, en-
hances interpretability and adaptability. Our contributions en-
compass:

• Open-source implementation including an independent
performance validation of Nakata et al.’s work for which
there is currently no public implementation available.

• Advancing the method’s performance by incorporating re-
cent foundation models and a more flexible data storage
system, enabling few-shot adaptation for medical image
analysis.

• Quantitative confirmation that the method addresses data
privacy concerns by facilitating task-incremental learning
as well as allowing for data removal in sensitive healthcare
scenarios without compromising model performance.

2. RELATED WORK

Foundation models, exemplified by Transformer [13] and Vi-
sion Transformer [3], demand extensive training on large-
scale datasets to excel in tasks like natural language process-
ing [2] or image generation [14]. Self-supervised contrastive
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Fig. 1: During pretraining (1), the image encoder is trained to extract representative features. The knowledge-storing phase
(2) utilizes the pre-trained (now frozen) encoder to extract and store task-relevant knowledge from the training data. During
inference (3), that knowledge allows the classification of query images through majority voting on the top-k similar embeddings.

methods, such as CLIP [4] (on image-text pairs) and DINOv2
[15] (exclusively on image pairs), enable training without in-
tensive labeling, yet fine-tuning on annotated datasets is often
necessary to optimize results. However, fine-tuning poses a
risk of catastrophic forgetting in continual learning scenar-
ios. Model-based approaches like GEM [16], ER [17], and
iCaRL [18] mitigate this but lock all knowledge in the model’s
weights, limiting information retrieval and modification pos-
sibilities. In contrast, k-NN methods, previously employed
for representation learning evaluation [5] or noise reduction
[19], proved promising for enhancing knowledge retrieval as
shown by RETRO [20] in auto-regressive language models.

Nakata et al. [7] combine these foundations, employ-
ing a k-NN classifier in a three-phase methodology, which
involves pretraining on natural images, knowledge storage
through feature map extraction, and inference based on k-NN
retrieval. This eliminates the need for fine-tuning and ex-
hibits efficacy in continual learning scenarios. Our work ex-
tends this innovation by integrating the k-NN classifier with
recent vision-based foundation models. Specifically, we pro-
pose to extract image features with DINOv2 [15], preserv-
ing robustness and adaptability across diverse scenarios while
enhancing classification. Additionally, separating computa-
tion from storage ensures flexible knowledge management,
addressing data privacy concerns in particular. We further ex-
tend the method and quantitatively confirm its applicability to
the sensitive healthcare domain by demonstrating uncompro-
mised performance in challenging task-incremental learning
and seamless data removal scenarios.

3. METHOD

3.1. Overview

Our approach utilizes a three-phase structure as depicted in
Figure 1 and further outlined below:
Pretraining Phase Initially, a foundation model is pre-
trained on a large-scale dataset, accommodating unlabeled
or noisily labeled images to obviate upfront labeling costs.
The focus is on extracting generic, vision task-independent
features crucial for robust and reliable k-NN performance.
The choice of an image encoder trained on a diverse dataset
becomes imperative for effective segregation of feature em-
beddings, facilitating robust generalization across datasets.
Knowledge-Storing Phase In the knowledge-storing phase,
the pre-trained image encoder captures feature embeddings
from the training set (support set) which are subsequently
stored along with the corresponding labels in an external
database. This way, task-relevant knowledge is kept separate
from the encoder’s weights, adhering to continual learning
paradigms and privacy regulations. This design allows seam-
less addition, modification, and deletion of samples.
Inference Phase During inference, the pre-trained image
encoder generates a feature embedding for a given query im-
age. Top-k similar feature embeddings are retrieved from the
external database using cosine similarity as the distance met-
ric. We use cosine similarity due to its robustness in cap-
turing scale-invariant angular relationships between vectors,
making it particularly effective for measuring similarity in
multi-dimensional data representations [21]. Classification of



the query image is determined through a majority vote on the
labels associated with the top-k similar feature embeddings,
enabling efficient classification without encoder retraining.

3.2. Backbone architecture

Differing from Nakata et al. [7], we opt for the DINOv2
[15] backbone over CLIP [4] to enhance the robustness of our
method. DINOv2 employs self-supervised contrastive train-
ing on 142 million distinct images from curated and uncurated
data sources, emphasizing high-quality feature representation
by minimizing the distance of similar objects and maximiz-
ing the distance of distinct ones. We choose DINOv2 Large13

with 14× 14 patches and 1024-sized image embeddings over
its Base23 version, to increases model capacity and feature
representation (304M parameters vs. 87M parameters).

3.3. Knowledge storage

Nakata et al. [7] require loading both the image encoder
model and all stored feature embeddings into a singular pro-
cessing unit’s memory, resulting in significant computational
demands, especially for large support sets. This imposes
a continuous need for substantial computational resources.
To mitigate this challenge, our strategy involves the active
separation of storage from computational processes. Uti-
lizing Chroma [22], an open-source, in-memory embedding
database, we ensure efficient storage and retrieval of fea-
ture embeddings. It’s essential to note that alternative vector
database solutions could be employed including highly effi-
cient approximate nearest neighbor search algorithms.

4. EXPERIMENTS AND RESULTS

We first evaluate the choice of backbone in terms of our
method’s classification ability on natural images. We further
assess the adaptability of our approach to image classification
tasks in the medical domain including its ability for task-
incremental learning and its potential for seamless removal of
sensitive, task-relevant data without seriously compromising
performance. To this end, we utilize a comprehensive set of
distinct datasets comprising natural images, such as CIFAR-
10 [23], CIFAR-100 [23], and STL-10 [24], as well as two
datasets comprising medical images, namely the Pneumonia
Dataset [25], depicting pediatric chest X-ray images of pa-
tients with and without pneumonia, and the Melanoma Skin
Cancer Dataset of the 2018 ISIC challenge [26, 27], depicting
benign and different malignant melanoma images. Further
details are described in Table 1. To allow a fair comparison
with Nakata et al.’s method, we employ the same k (k = 10)
for the k-NN classifier throughout all our experiments.

1vit large patch14 dinov2.lvd142m
2vit base patch14 dinov2.lvd142m
3https://huggingface.co/timm

Table 1: Details of the selected datasets (∗ the reported reso-
lution represents the average resolution across all samples).

Dataset # C Resolution # Train / Test

CIFAR-10 10 3× 32× 32 50, 000 / 10, 000
CIFAR-100 100 3× 32× 32 50, 000 / 10, 000
STL-10 10 3× 96× 96 5, 0000 / 8, 000
Pneumonia∗ 2 1× 1328× 971 5, 232 / 624
Melanoma 7 3× 600× 450 10, 015 / 1, 513

Table 2: Classification accuracy of our k-NN approach for
different backbone choices.

Accuracy [%] CIFAR-10 CIFAR-100 STL-10

ResNet-101 87.3 63.6 98.1
CLIP ViT-B/16 92.4 68.0 98.5
CLIP ViT-L/14 95.5 74.2 99.4
DINOv2 ViT-B/14 98.0 87.2 99.4
DINOv2 ViT-L/14 98.5 88.3 99.5

4.1. Backbone choice for our method

To validate our backbone choice, we compare the classifica-
tion performance of our method with DINOv2 Large, to DI-
NOv2 Base, a WideResNet101 [28] pre-trained on ImageNet-
1k [29] as well as our own implementation of Nakata et al.’s
ViT-B/1634 and ViT-L/1435 image encoder models (both pre-
trained by CLIP). The results on CIFAR-10, CIFAR-100, and
STL-10 are presented in Table 2. The results demonstrate the
overall increased representative ability of models pre-trained
in a self-supervised fashion compared to supervised pretrain-
ing. Moreover, both DINOv2 models, in particular DINOv2
ViT-L/14, showcase superior classification prowess compared
to CLIP, endorsing the benefits of embracing self-supervised,
image-exclusive pre-training for image-specific tasks.

4.2. Adaptation for medical image analysis

To evaluate the applicability of our k-NN method in the med-
ical domain, we first assess its classification performance
on the Pneumonia and Melanoma dataset. We compare the
performance of our approach with state-of-the-art, fully su-
pervised benchmarks trained end-to-end. For Pneumonia,
we compare to CovXNet by Mahmud et al. [30] and for
Melanoma to Cassidy et al.’s EfficientNetB0 model [31]. The
results are displayed in Table 3. Despite the distinct, trans-
ferred behavior of this task, DINOv2 does not employ any
medical knowledge during training, our method demonstrates
high classification potential, even surpassing the supervised
state of the art for the Melanoma dataset.

4vit base patch16 clip 224.openai
5vit large patch14 clip 336.openai
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Table 3: Comparison of our approach’s strong transfer learn-
ing ability for medical image analysis. († refers to fully su-
pervised models, trained end-to-end.)

Accuracy [%] Pneumonia Melanoma

CovXNet† [30] 98.1 —
EfficientNetB0† [31] — 62.1
Ours (DINOv2 ViT-B/14) 88.1 68.5
Ours (DINOv2 ViT-L/14) 89.9 69.8
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Fig. 2: Visualization of the method’s ability for diverse con-
tinual learning tasks.

4.3. Continual learning and incremental forgetting

Nakata et al. [7] have shown that the k-NN approach promises
the potential to mitigate catastrophic forgetting in continual
learning scenarios for natural image datasets when incremen-
tally adding additional classes or samples of existing classes
to the support set. We first confirm this potential on CIFAR-
10 and STL-10, by incrementally adding entirely new classes
to the support and test set, as well as incrementally adding
additional feature embeddings to the support set and evaluat-
ing the classification performance. Figure 2 (a) and Figure 2
(b) present the results for each task, respectively, showcas-
ing the constant classification performance of our method for
the class incremental learning task as well as a remarkable
classification ability for the sample incremental learning task
already for only a few samples per class in the support set.
By using an adaptive k instead of our fixed k, this few-shot
classification capability could be improved even further.

Additionally, we evaluate the incremental learning capa-
bility of our method when transferring it to the medical do-
main. However, this time, we assess our method for incre-
mentally adding datasets of different anatomies and distribu-
tions, instead of sticking to the same domain by adding ad-
ditional classes of the same dataset. For this, we compare
the method’s exclusive performance on the Pneumonia and
Melanoma dataset (cf. Table 3) with its performance on a
combined version of both datasets, which comprises a diverse
distribution in a multi-class classification setting. Notably, the
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Fig. 3: Illustration of our method’s classification consistency
despite the continuous diminishing of the support set.

accuracy on the exclusive datasets is nearly consistent with
the accuracy on the combined version (89.9% vs. 89.9% for
Pneumonia and 69.8% vs. 69.0% for Melanoma).

Lastly, we investigate our approach’s ability to facilitate
the effortless removal of task-relevant data, ensuring mini-
mal impact on the model’s performance, particularly when
patients exercise their rights to revoke data usage and demand
the deletion of their information from the model. To this end,
we evaluate the impact on classification performance if we re-
move either random samples or if we remove the most valu-
able feature embedding (MVF) of each class from the support
set. One class’s MVF is that feature embedding of the support
set which the k-NN algorithm utilizes the most to correctly
classify query samples during inference on a fixed test set. In
other words, this feature embedding contributes the most to
the classification performance of the method. Figure 3 visu-
alizes this for the Pneumonia and the Melanoma dataset. The
results present that removing nearly all support set samples
poses only a slight, negative impact on the overall classifica-
tion performance, demonstrating the few-shot ability of our
model once again and thus demonstrating the overall poten-
tial of our method to remove any knowledge from our model
without severely impairing the classification performance.

5. DISCUSSION AND CONCLUSION

In this work, we present an open-source, improved version of
the k-NN integration with vision-based foundation models,
originally proposed by Nakata et al. [7] that was not made
publicly available by the authors before. Extensive experi-
ments present our method’s classification ability, apparent due
to its high classification accuracy on natural images. We af-
firm its suitability for continuous learning scenarios, prevent-
ing catastrophic forgetting. Moreover, we showcase its poten-
tial for application in the medical domain, owing to its robust
out-of-the-box performance and ability to seamlessly remove
task-relevant data with minimal impact on performance. Our
approach represents a significant step towards bridging the
gap between foundation models’ great performances and the
challenges of data accessibility, privacy, and adaptability.



6. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using hu-
man subject data made available in open access. Ethical ap-
proval was not required as confirmed by the license attached
with the open-access data.
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