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Abstract—This paper considers the joint-decoding problem
for finite-state channels (FSCs) and low-density parity-chck
(LDPC) codes. In the first part, the linear-programming (LP)
decoder for binary linear codes is extended to joint-decodig
of binary-input FSCs. In particular, we provide a rigorous
definition of LP joint-decoding pseudo-codewords (JD-PCWg
that enables evaluation of the pairwise error probability be-
tween codewords and JD-PCWs in AWGN. This leads naturally
to a provable upper bound on decoder failure probability. If
the channel is a finite-state intersymbol interference chamel,
then the joint LP decoder also has the maximum-likelihood
(ML) certificate property and all integer-valued solutions are
codewords. In this case, the performance loss relative to ML
decoding can be explained completely by fractional-valued
JD-PCWs. After deriving these results, we discovered some
elements were equivalent to earlier work by Flanagan on linar-
programming receivers.

In the second part, we develop an efficient iterative solveror
the joint LP decoder discussed in the first part. In particular,
we extend the approach of iterative approximate LP decoding
proposed by Vontobel and Koetter and analyzed by Burshtein,
to this problem. By taking advantage of the dual-domain
structure of the joint-decoding LP, we obtain a convergent
iterative algorithm for joint LP decoding whose structure is
similar to BCJR-based turbo equalization (TE). The result 5 a
joint iterative decoder whose per-iteration complexity issimilar
to that of TE but whose performance is similar to that of
joint LP decoding. The main advantage of this decoder is that
it appears to provide the predictability of joint LP decoding
and superior performance with the computational complexiy
of TE. One expected application is coding for magnetic storge
where the required block-error rate is extremely low and sysem
performance is difficult to verify by simulation.

a convolutional code (instead of two convolutional codes)
was introduced by Douillard et al. asirbo equalization
(TE) and this enabled the joint-decoding of the channel
and the code by iterating between these two decodérs [1].
Before this, one typically separated channel decoding, (i.e
estimating the channel inputs from the channel outputshfro
the decoding of the error-correcting code (i.e., estingatire
transmitted codeword from estimates of the channel inputs)
[2][8]. This breakthrough received immediate interestniro
the magnetic recording community, and TE was applied to
magnetic recording channels by a variety of authors (e.g.,
[4], [&], [6], [7]). TE was later combined with turbo codes
and also extended to low-density parity-check (LDPC) codes
(and calledoint iterative decodinyjby constructing one large
graph representing the constraints of both the channelrend t
code (e.g.,[I8],19]).

In the magnetic storage industry, error correction based
on Reed-Solomon codes with hard-decision decoding has
prevailed for the last 25 years. Recently, LDPC codes have
attracted a lot of attention and some hard-disk drives (HDDs
have started using iterative decoding (e.g.] [10]] [112])1
Despite progress in the area of reduced-complexity detecti
and decoding algorithms, there has been some resistance
to the deployment of TE structures (with iterative detec-
tors/decoders) in magnetic recording systems becauseof er
floors and the difficulty of accurately predicting performan
at very low error rates. Furthermore, some of the spectacula
gains of iterative coding schemes have been observed only in

Index Terms—BCJR algorithm, finite-state channels, joint-simulations with block-error rates abov@=%. The challenge

decoding, LDPC codes, linear-programming decoding turbo
equalization

|. INTRODUCTION
A. Motivation and Problem Statement

of predicting the onset of error floors and the performance
at very low error rates, such as those that constitute the
operating point of HDDs (the current requirement of an
overall block error rate of0~'2), remains an open problem.
The presence of error floors and the lack of analytical tools
to predict performance at very low error rates are current

Iterative decoding of error-correcting codes, while intrampediments to the application of iterative coding schemes
duced by Gallager in his 1960 Ph.D. thesis, was largely magnetic recording systems.
forgotten until the 1993 discovery of turbo codes by Berrbu e In the last five years, linear programming (LP) decoding
al. Since then, message-passing iterative decoding hassbebas been a popular topic in coding theory and has given

very popular decoding algorithm in research and practite.

hew insight into the analysis of iterative decoding aldoris

1995, the turbo decoding of a finite-state channel (FSC) aadd their modes of failuré [13][14][15]. In particular, ia&
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been observed that LP decoding sometimes performs better
than iterative (e.g., sum-product) decoding in the ermmo#fl
region. We believe this stems from the fact that the LP
decoder always converges to a well-defined LP optimum
point and either detects decoding failure or outputs an ML
codeword. For both decoders, fractional vectors, known as
pseudo-codewords (PCWSs), play an important role in the
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performance characterization of these decodérs [[14][1@ppears to be slightly inferior to belief-propagation diing.

This is in contrast to classical coding theory where thdnlike the iterative decoder, however, the LP decoder eithe

performance of most decoding algorithms (e.g., maximurdetects a failure or outputs a codeword which is guaranteed

likelihood (ML) decoding) is completely characterized bgt to be the ML codeword.

set of codewords. Let C C {O,l}N be the lengthV binary linear code
While TE-based joint iterative decoding provides goodefined by a parity-check matrix antl= (¢q,...,cn) be

performance close to capacity, it typically has some treubh codeword. Let be the set whose elements are the sets of

reaching the low error rates required by magnetic recordiingdices involved in each parity check, or

and optical communication. To combat this, we extend the _ )

LP decoding to the joint-decoding of a binary-input FSC L={NG {1,....N}jeT}.

and an outer LDPC cod_e. During the revigw process of Othen, we can define the set of codewords to be

conference paper on this toplc [17], we discovered that this

LP formulation is mathematically equivalent to Flanagan’s o

general formulation of linear-programming receivers] [18] Z ¢i =0 mod2, VL e L} ‘

[19]. Since our main focus was different than Flanagan’s, el

our main results and extensions differ somewhat from hishecodeword polytopés the convex hull of’. This polytope

In particular, our main motivation is that critical storagé&an be quite complicated to describe though, so instead one

applications (e.g., HDDs) require block error rates that afonstructs a simpler polytope using local constraints.hEac

too low to be easily verifiable by simulation. For these agrarity-checkL € £ defines a local constraint equivalent to

plications,an efficient iterative solver for the joint-decodinghe extreme points of a polytope , 1]".

LP would have favorable properties: error floors predidablﬁefinition 1. The local codeword polytopd CP(L) asso-
by pseudo-codeword analysis and convergence based Offlaq with a parity check is the convex hull of the bit

well-defined optimization problem. Therefore, we introelucsequenceS that satisfy the check. It is given explicitly by
a novel iterative solver for the joint LP decoding problem

C= {CE {0, 1}V

whose per-iteration complexity (e.g., memory and time) is N N
similar to that of TE but whose performance appears to peCP(L) = ﬂ [0, 1] Zci N Z ¢ <[S]=1p.
superior at high SNR[17][20]. |S§|go§d €S ieL—S

We use the notatio?(H) to denote the simpler polytope

B. Notation . . . .
. corresponding to the intersection of local check constsain
Throughout the paper we borrow notation fromI[14]. Lethe formal definition follows.

Z=A{1,...,N}andJ = {1, ..., M} be sets of indices
for the variable and parity-check nodes of a binary line&€finition 2. Therelaxed polytope”(H) is the intersection
code. A variable nodé € 7 is connected to the sgt'(i) of 0f the LCPs over all checks and

neighboring parity-check nodes. Abusing notation, we also A

let N'(7) be the neighboring variable nodes of a parity-check P(H) = ﬂ LCP(L).

nodej € J when it is clear from the context. For the trellis Les
associated with a FSC, we & = {1, ..., O} index the set ~ The LP decoder and its ML certificate property is charac-
of trellis edges associated with one trellis sectiSnbe the terized by the following theorem.

set of possible states, aml be the possible set of noiseles

N
output symbols. For each e%ez € E7, in the lengthV symmetric channePr (Y = y|C = ¢). If a uniform random

i ; . N . N
trellis, the functionst : % — {1,...,N}, s : E¥ = S, codeword is transmitted ang = (y1,...,yn) IS received,

. N . N . N
§ BV = S w: BV = {01}, anda : BN = AMap yhen the LP decoder outpufs= (f1, ..., fv) given by
this edge to its respective time index, initial state, firtates,
PriY; =y:|Ci = 0)
P )

input bit, and noiseless output symbol. Finally, the set of
Y=y |Ci=1)

STheorem 3 ([13]). Consider N consecutive uses of a

N
edges in the trellis section associated with tifnis defined ?Y%DHEHZ filn
to be7; = {e € BN |i(e) = i}. €PH) =1

which is the ML solution iff is integral (i.e.,f € {0, 1}N).

C. Background: LP Decoding and Finite-State Channels _
From simple LP-based arguments, one can see that LP

In [L3][14], Feldman et al. introduced a linearyecoder may also output nonintegral solutions.
programming (LP) decoder for binary linear codes, and

applied it specifically to both LDPC and turbo codes. It i®efinition 4. An LP decoding pseudo-codewor(LPD-
based on solving an LP relaxation of an integer prograRCW) of a code defined by the parity-check matfix is
that is equivalent to maximum-likelihood (ML) decoding.rFoany nonintegralvertex of the relaxed (fundamental) polytope
long codes and/or low SNR, the performance of LP decodiff ).

Lin this paper,e is used to denote a trellis edge white denotes the We also define the fm'te'sf[ate_ channel, Wh'f:h can be
universal constant that satisfiasse = 1. seen as a model for communication systems with memory



D. Outline of the Paper

The remainder of the paper is organized as follows. In
Section[dl, we introduce the joint LP decoder, define joint-
decoding pseudo-codewords (JD-PCWSs), and describe the
appropriate generalized Euclidean distance for this prabl
Then, we discuss the decoder performance analysis using the
Figure 1: State diagrams for noiseless dicode channel without (letfnion bound (via pairwise error probability) over JD-PCWs.

and with precoding (right). The edges are labeled by ti@ectiorill is devoted to developing the iterative solvertfee
input/output pair. joint LP decoder, i.e., iterative joint LP decoder and iteqdr
of convergence. Finally, Sectidn ]IV presents the decoder

simulation results and Sectigd V gives some conclusions.
where each output depends only on the current input and the
previous channel state instead of the entire past.

I1. JOINT LP DECODER
Definition 5. A finite-state channe{FSC) defines a proba- Feldman et al. introduced the LP decoder for binary linear

bilistic mapping from a sequence of inputs to a sequengg .« in [LB][T4]. It is is based on an LP relaxation of an
of outpu_ts. Each outpul; € dep?”ds only on the integer program that is equivalent to ML decoding. Later,
current mpu_t X; € A and th_e previous chgnnel Statepis method was extended to codes over larger alphabéts [23]
Si-1 € & instead of th? entire h|Sto_ry of Imputs Aan nd to the simplified decoding of intersymbol interference
channel states.l Mathematically, we defifie(y, s'|,s) = (ISI) [24]. In particular, this section describes an exiens
Pr(yi:y’si:S!Xi:x’%—lzs) for all 4, and use the o 4o | p decoder to the joint-decoding of binary-input
shorthand notatiot (s) = Pr(So = s) and FSCs and defines LP joint-decoding pseudo-codewords (JD-
PCWs) [17]. This extension is natural because Feldman’s LP
N formulation of a trellis decoder is general enough to allow
:H P (ys, 51|25, 511) optimal (Viterbi style) decoding of FSCs, and the constisain
Lo vt s associated with the outer LDPC code can be included in the
a same LP. This type of extension has been considered as a
where the notation Y/ denotes the subvectorchallenging open problem in prior works [13][25] and was
(Yi,Yis1,...,Y). first given by Flanagan [18][19], but was discovered inde-
) ) o pendently by us and reported inJ17]. In particular, Flamaga
~ An important subclass of FSCs is the set of finite-stalg,o\ed that any communication system which admits a sum-
intersymbol interference channels which includes all 'deteproduct (SP) receiver also admits a corresponding linear-
ministic finite-s’_[ate mappings of the inputs corrupted erogramming (LP) receiver. Since Flanagan's approach is
memoryless noise. more general, it is also somewhat more complicated; the

Definition 6. A finite-state intersymbol interference channgieSulting LPs are mathematically equivalent though. Ome be

(FSISIC) is a FSC whose next state is a determinist@fit of restricting our attention to FSCs is that our desaipt
function, 5(z, s), of the current state and inputz. Mathe- of the LP is based on finding a path through a trellis, which

P(yl', st o7 50) £Pr(Y =y, S7'=s7'|X{'= a7, So =s50)

matically, this implies that is somewhat more natural for the joint-decoding problem.
These LP decoders provide a natural definition of PCWs
, 1 ifn(z,s)=s for joint-decoding, and they allow new insight into the jBin
ZP(y,s |z, 5) = 0 otherwise decoding problem. Joint-decoding pseudo-codewords (JD-
yey

PCWs) are defined and the decoder error-rate is upper

Though our derivations are general, we use the followirRPunded by a union bound sum over JD-PCWs. This leads

FSISIC examples throughout the paper to illustrate coscep@turally to a provable upper bound (e.g., a union bound)
and perform simulations. on the probability of LP decoding failure as a sum over all

codewords and JD-PCWSs. Moreover, we can show that all
Definition 7. The dicode channe(DIC) is a binary-input integer solutions are indeed codewords and that this joint
FSISIC with an impulse response 6f(z) = 1 — 2! and LP decoder also has an ML certificate property. Therefore,
additive Gaussian noisé_[21]. If the input bits are differall decoder failures can be explained by (fractional) JD-
entially encoded prior to transmission, then the resultirgCWs. It is worth noting that this property is not guaranteed
channel is called therecoded dicode channgbDIC) [21]. by other convex relaxations of the same problem (e.g.,
The state diagrams of these two channels are shown in Fdge Wadayama’s approach based on quadratic programming
[. For the trellis associated with a DIC and pDIC, we lgR5]).
E ={1,2,3,4},8 = {0,1} and A = {-1,0,1}. Also,  Our primary motivation is the prediction of the error rate
the class-II Partial ResponsgPR2) channel is a binary-inputfor joint-decoding at high SNR. The basic idea is to run
FSISIC with an impulse response @{z) = 1+2z"'+2"2 simulations at low SNR and keep track of all observed
and additive Gaussian noide [21][22]. codeword and pseudo-codeword errors. An estimate of the



error rate at high SNR is computed using a truncated uni@efinition 10. Let the code-space projecti@d, be the map-

bound formed by summing over all observed error patternsgging from g to the input vectof = (fi,..., fx) € [0,1]¥

low SNR. Computing this bound is complicated by the faatefined byf = Q (g) with

that the loss of channel symmetry implies that the dominant

PCWs may depend on the transmitted sequence. Still, this fi= Z Gie-

technique provides a new tool to analyze the error rate of e€Ti:zm(e)=1

joint decoders for FSCs and low-density parity-check (LDDPC

codes. Thus, novel prediction results are given in Seg€dn | For the trellis polytopeT, Pr(H) is the set of vectors
whose projection lies inside the relaxed codeword polytope

A. Joint LP Decoding Derivation P(H).

Now, we describethe joint LP decodeiin terms of the Definition 11. The trellis-wise relaxed polytop@y(H) for
trellis of the FSC and the checks in the binary linear BodeP (H) is given by
Let N be the length of the code and= (y1,v2,...,yN)
be t_he rec_:elved sequence. The trellis canISt(sZ\bf-l— 1)|S] Pr(H) 2 {geT|Q(g) € P(H)}.
vertices (i.e., one for each state and time) and a set of at

most 2N'|S|* edges (i.e., one edge for each input-labeled The polytopePs(H) has integral vertices which are in

state transition and time). The LP formulation requires onghe.to-one correspondence with the set of trelliswise code
indicator variable for each edgec 7;, and we denote that \yqds.

variable byg; .. So,g; . is equal to 1 if the candidate path
goes through the edge in 7;. Likewise, the LP decoder Definition 12. The set of trellis-wise codewords for C is
requires one cost variable for each edge and we associéined by

the branch metrié; . with the edgee given by

b A —lnP(yt(e),s'(e)|x(e),s(e)) if t(e)>1
Y = [P (yeey, ' (€)|2(e), s(e)) Po (s(e))] ift(e)=1. Finally, the joint LP decoder and its ML certificate prop-
erty are characterized by the following theorem.

or 2 {gePr()|g e {0,1)"°}.

First, we define the trellis polytop& formally below.

Definition 8. The trellis polytope7 enforces the flow con- Theorem 13. The LP joint decoder computes

servation constraints for channel decoder. The flow coimstra . b 1
for statek at timei is given by arg Z Z ieJise @)
g€PT(H) icT ceT;
Fin2{lgelovxo Z Gie = Z Gitie b and outputs a joint ML edge-path gf is integral.
e’ (e)=k ess(e)=k Proof: Let V be the set of valid input/state sequence
Using this, thetrellis polytope7 is given by pairs. For a giveny, the ML edge-path decoder finds the

most likely path, through the channel trellis, whose input

N-—1 . . .
sequence is a codeword. Mathematically, it computes
TE£<ge ﬂ ﬂ}},k E gpe =1, for anyp € 7 g y P
=1 hes T argmax P(yy', sy |21, s0) P (s(e))

From simple flow-based arguments, it is known that ML 50 )€Y

edge path on trellis can be found by solving a minimum-cost= arg max P, (s(e)) H H P (ys(e), s'(e)|z(e), s(e))
LP applied to the trellis polytop@. gelr €T e€Tit gie=1

Theorem 9 ([13, p. 94]) Finding the ML edge-path through = arg minz Z bie

a weighted trellis is equivalent to solving the minimum+cos 8SCT €T eeTitgi, =1
flow LP . = arg minz Z bi.cYi,e,
arg mlnz Z bi.cGie 8ECT  eT ecT:

8€T eI ceT:

_ ) ) where ties are resolved in a systematic mannertandhas
and the optimumg must be integral (i.e.g € {0,1} the extra term-1In P, (s(e)) for the initial state probability.
unless there are ties. By relaxingCr into P (H), we obtain the desired resul.

The indicator variableg; . are used to define the LP andcqgjiary 14. For a FSISI, the LP joint decoder outputs
the code constraints are introduced by defining an auxnlaéyjoim ML codeword ifg is integral.

variable f; for each code bit.

N><O)

3In fact, this holds more generally for the restricted clabE®Cs used in
2|t is straightforward to extend this joint LP decoder to rwnary linear [26], which are now called unifilar FSCs because they geizersthe unifilar
codes based on [23]. Markov sources defined i [27].
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similar set of pseudo-codewords also affect messagergassi
decoders, and that they are essentially fractional cod#svor
that cannot be distinguished from codewords using only
0/ -1 0/ =1 local constraints[[16]. The joint-decoding pseudo-codewo
(JD-PCW), defined below, can be used to characterize code

©

11 11

U0 U o @ performance at low error rates.
Definition 16. If g;. € {0, 1} for all e, then the output

D) 0/0 (D) 0/0 @ of the LP joint decoder is drellis-wise codeword TCW).
Otherwisey; . € (0, 1) for somee and the solution is called

11 1 a joint-decoding trellis-wise pseudo-codewqi@D-TPCW);
0/—-1 0/ -1 in this case, the decoder outputs “failure” (see Eig. 2 for an

example of this definition).

OO0

Definition 17. For any TCWg, the projectionf = O (g) is
Figure 2: lllustration of joint LP decoder outputs for the sin-Ccalled asymbol-wise codeworBCW). Likewise, for any JD-
gle parity-check code SPC(3,2) over DIC (starts iMPCW g, the projectiorf = Q (g) is called gjoint-decoding

zerlo s_tate).LFl?ydordgring the trellis edgis app_rl_ogrisymbolwise pseudo-codewof@D-SPCW) (see Fid2 for a
ately, joint ecoder converges to either a . P . ...
(0100;0001;.0010) (top dashed blue path) or a JD- raphical depiction of this definition).

g;ﬁ;’;’ L(J(?silngatg%irijgé:{ir?éiw %égﬁgmwgii?aeﬂ tLeed Remark18. For FSISICs, the LP joint decoder has thi
corresponding SCWL, 1,0) and JD-SP(':V\(L 5,0). certificateproperty; if the decoder outputs a SCW, then it is
guaranteed to be the ML codeword (see Corollady 14).

Definition 19. If g is a JD-TPCW, therp = (p4, ...,
Proof: The joint ML decoder for codewords computes,yith & P = (P PN)

arg max Z Py, sz, 50) Py (s(e)) Di = Z giea (€),
' €C  NcoN eeT;
1
= argmax Z HP(yi,Si+1|£vi,Si)Po (s(e)) is called ajoint-decoding symbol-wise signal-space pseudo-
o €C Neswier codeword(JD-SSPCW). Likewise, if is a TCW, thenp is
(@) called asymbol-wise signal-space codewd®SCW).
= argmaxH P (yi, n(zi, 8;) ’xi, sl) Py (s(e))
I{VEC i€l
®) arg minz Z bioGie, C. Union Bound for Joint LP Decoding
8€CT T ecT: Now that we have defined the relevant pseudo-codewords,

we consider how much a particular pseudo-codeword affects
Féformance; the idea is to quantify pairwise error probabi
ities. In fact, we will use the insights gained in the preou
section to obtain a union bound on the decoder’s word-error
] _ probability and to analyze the performance of the proposed
Remark15. If the channel is not a FSISIC (e.g., if it is &jgint Lp decoder. Toward this end, let's consider the paiewi

finite-state fading channel), then integer valued sol&®ioh o1or event between a SSCWand a JD-SSPCV first.
the LP joint-decoder are ML edge-paths but not necessarily

ML codewords. This occurs because the joint LP decod&heorem 20. A necessary and sufficient condition for the
does not sum the probability of the multiple edge-pathirwise decoding error between a SS€\ahd a JD-SSPCW
associated with the same codeword (e.g., when multigheis

distinct edge-paths are associated with the same inpusjabe Z Z biegie < Z Z bi.cGies 2)
Instead, it simply gives the probability of the most-likelgige i€T e€T; i€T e€T;

path associated that codeword.

where (a) follows from Definition[® and(b) holds because
each input sequence defines a unique edge-path. Theref
the LP joint-decoder outputs an ML codeword gf is
integral.

whereg € Pr(H) andg € Cy are the LP variables fop
and c respectively.

B. Joint LP Decoding Pseudo-codewords Proof: By definiti he joint LP decodef)(1 f
Pseudo-codewords have been observed and given nalgl\(;grCrﬁoahdyonﬁ,lslg;hggsjomt ecodeti) pre eﬁs

by a number of au_th.o_rs (e.g.l:ﬂ28]:ﬂ. 29].130]), but the For the moment, lekc be the SSCW of FSISIC to an
simplest general definition was provided by Feldman et .
. . . WGN channel whose output sequenceyis- ¢ + v, where
in the context of LP decoding of parity-check codes|[14]. : - . )

= (v1,...,vy) IS an i.i.d. Gaussian sequence with méan

One nice property of the LP decoder is that it alwayg d variance?. Then, the joint LP decoder can be simplified

. : : n
returns either an integral codeword or a fractional pseud%- . i
codeword. Vontobel and Koetter have shown that a ve'?lyS stated in the Theorem 21,



Theorem 21. Let y be the output of a FSISIC with zero-where (a) follows from the fact that) ", y; (¢; — p;) has a
mean AWGN whose variance i8> per output. Then, the Gaussian distribution with mean, ¢;(¢; — p;) and variance

joint LP decoder is equivalent to >i(e; — pi)?, and(b) follows from Definition[Z2. ]
. ) The performance degradation of LP decoding relative
argmmz Z (yi —a(€)” gie- to ML decoding can be explained by pseudo-codewords

8P (M) ieT ceT, and their contribution to the error rate, which depends on

Proof: For each edgee, the outputy; is Gaus- dgen (c, P). Indeed, by defining<y,,, (c) as the number of

sian with meana(e) and variances?, so we have codewords and JD-PCWs at distantg, from ¢ andg(c)
P (ys(e), 8'(e)|z(e),s(e)) ~ N (a(e), a?). Therefore, the 8s the set of generalized Euclidean distances, we can write

joint LP decoder computes the union bound on word error rate (WER) as

. . d en
arg min Z Z bi egi,e = argmin Z Z (yi —a (e))ng. Pyl < Z Ka,.,(c)@ (5—) . 3)
g€PT(H) je7 ceT; e€Pr(H) icT ceT; dgen€G(c) 7

B  Of course, we need the set of JD-TPCWs to compute
We will show that each pairwise probability has a simpler(c — p) with the Theoreni 23. There are two complica-

closed-form expression that depends only on a generalizishs with this approach. One is that, like the original penb
squared Euclidean distaneg,,, (c, p) and the noise vari- [13], no general method is known yet for computing the
ancec”. One might notice that this result is very similargeneralized Euclidean distance spectrum efficiently. Aeot
to the pairwise error probability derived i [31]. The mains, unlike original problem, the constraint polytope may
difference is the trellis-based approach that allows one @t be symmetric under codeword exchange. Therefore the
obtain this result for FSCs. Therefore, the next definitiod a decoder performance may not be symmetric under codeword
theorem can be seen as a generalization of [31]. exchange. Hence, the decoder performance may depend on

Definition 22. Let ¢ be a SSCW angh a JD-SSPCW. Then the transmitted codeword. In this case, the pseudo-codiswor
the generalized squared Euclidean distarmweenc andp will also depend on the transmitted sequence.

can be defined in terms of their trellis-wise descriptions by
I1l. | TERATIVE SOLVER FOR THEJOINT LP DECODER

9 N (Hd”2 + 0127) In the past, the primary value of linear programming (LP)
dgen (¢, P) = W decoding was as an analytical tool that allowed one to better
understand iterative decoding and its modes of failures Thi
where is because LP decoding based on standard LP solvers is

quite impractical and has a superlinear complexity in the
d|i?a i —pi)?, o2 A i oa?(e) — 2 block length. This motivated several authors to propose low
I Z( P ; Zg, (© sz complexity algorithms for LP decoding of LDPC codes in the
last five years (e.g.[ [25][32][33]._[34].185].[36]._[B7

Theorem 23. The pairwise error probability between ayany of these have their roots in the iterative Gauss-Seidel

€T eeT; €T

SSCWc and a JD-SSPCW is approach proposed by Vontobel and Koetter for approximate
dgen (¢, P) LP decoding[[3R]. This approach was also analyzed further
Pric - p)=@Q (T) ) by Burshtein|[[36]. Smoothed Lagrangian relaxation methods

have also been proposed to solve intractable optimal infer-
whereQ (z) = ﬁ fmoo e t2/2 4. ence and estimation for more general graphs (e.gl, [38]).
o - In this section, we consider the natural extension of
Proof: The pairwise error probability Re — p) that  37)36] to the joint-decoding LP formulation developed in
the LP joint-decoder will choose the pseudo-codewpaver  gectio]). We argue that, by taking advantage of the special
c can be written as dual-domain structure of the joint LP problem and replacing
minima in the formulation with soft-minima, we can obtain
an efficient method that solves the joint LP. While there

are many ways to iteratively solve the joint LP, our main
—Pr{zzgi,e(yi—a(e)f SZ(%—CZ')Q} y way y J

Pr(c — p)

Pl P goal was to derive one as the natural analogue of turbo
: equalization (TE). This should lead to an efficient method

=Pr{ Xivilei —p) < 5 (Xief = Xi X giea® (€)) } for joint LP decoding whose performance is similar to that of
(@) Soicilei—pi) — 5 (i — 25 2 giea® (e)) joint LP and whose per-iteration complexity similar to that
=0 > of TE. Indeed, the solution we provide is a fast, iterative,
g i (ci —pi) and provably convergent form of TE whose update rules
o ”de + o2 dyen (¢, D) are tigh_tly cqnnec_ted to BCJR—bgsed TE This demon_strates
=Q <Wd|p> =Q ( g % ) , that an iterative joint LP solver with a similar computatibn
complexity as TE is feasible (see Remark 27). In practice,



H0,0 ”1,0

92,1

92,2

92,3

N s (e;) < —Ni—1,s(es) + Fi,e

only equality constraints involving the indicator varief
o T nna a1 R duality holds because the primal problem is feasible and

consider Problem-D1, where the code and trellis consgaint

Figure 3: lllustration of primal variablesg and w defined for dual problem (Problem-D2) in Tablellll, observes that for-
flow normalization constraint in Problem-P only at one time

the joint LP decoder, due to convergence issues (discussed

(and TE by association) in order to discuss its convergence

on constrained ML estimation. This results of this section = "

step, given by the primal problem (Problem-P) in Talle I,
we reformulate the original LP[(1) in Theorelm]13 using
g andw. The second step, given by the 1st formulation of
the dual problem (Problem-D1) in Tablg IlI, follows from
= standard convex analysis (e.g., séel [42, p. 224]). Strong
g ={Yiclicr cers bounded. Therefore, the Lagrangian dual of Problem-P is
equivalent to Problem-D1 and the minimum of Problem-P
is equal to the maximum of Problem-D1. From now on, we
S separate into two terms in the objective function. See [Big. 3
for a diagram of the variables involved.
[ ]w={wisdsee The third step, given by the 2nd formulation of the
Problem-P and dual variables and m defined for ward/backward recursions can be used to perform the op-
Problem-D1 on the same example given by Hig. 2imization overn and remove one of the dual variable
SPC(3,2) with DIC forN = 3. vectors. This splitting is enabled by imposing the trellis
] ] o ) instantp € Z. This detail givesN different ways to write
the complexity reduction of this iterative decoder comes gle same LP and is an important part of obtaining update
the expense of some performance loss, when Comparede&bations similar to those of TE.
in Section TI=B). Lemma 24. Problem-D1 is equivalent to Problem-D2.
Previously, a number of authors have attempted to reverse pyqof: By rewriting the inequality constraint in Problem-
engineer an objective function targeted by turbo decodigy 55
and optimality [39], [40], [[41]. For example| [39] uses a . _
duality link between two optimality formulations of TE: oneWe obtain the recursive upper bound for p — 1 as
based on Bethe free energy optimization and the other based,
establish a new connection between iterative decoding and~"p-2.s(ep-1) +tlp1e
optimization for the joint-decoding problem that can alg b < —Mp_3 s(ep_s) Tp—2.e
extended to turbo decoding.

s'(ep1)=k

+ FP7176|5’(6V1):k

s/ (ep2)=s(ep1)

A. lterative Joint LP Decoding Derivation p—l

. - . < — ;
In Sectionl, joint LP decoder is presented as an LDPC= n1=5(62)+;F1’e
code constrained shortest-path problem on the channig trel =
In this section, we develop the iterative solver for the §oin  47c yaiid patterns; £ {5 C N () | |B] is ever} for each parity-check
decoding LP. There are few key steps in deriving iterativee 7 allow us to define the indicator variables; 5 (for j € J and

solution for the joint LP decoding problem. For the firsE € &;) which equal 1 if the codeword satisfies parity-chegkusing
configurationB € &;.

s'(ep1)=k,s' (ep2)=s(ep-1),....s" (e1)=s(e2).

Table | Primal Problem (Problem-P)

min E E bi,egi,e
g,w

Table 1l Dual Problem 1st Formulation (Problem-D1)

subject to i€ e€T; . .
: max ) min lZ M |10 [Ty e =Tyt a0y 7,00
Z wjs=1, VjeJ, Z gpe=1,foranyp e 7 7€ i€B
BEE; e€Ty subject to
Z wjB = Z Gie, Vi€TL,jeN(i) Lie >Ni—15(e) = Nis'(e), Vi€ L\p,e€T;
Be&;,B3i e:x(e)=1 and
) n07k:nN,k:O, VkES,
Z Jie = Z gisle, VieI\N,keS where
eis’(e)=k eis(e)=k Tie £ bie — 0p(e)=1 Z Mi,j-

wjp >0, VieJ, Be&j, gie>0, Yie ecT,. JEN (i)




~Too =0 il a0 T30 =0 {mpj'}jen(p)- These equations have a unique solution

0 /o\ /0\ @ given by
) a1 1—1pj
My jr = My jr + —, M, = — In ——>-
PsJ pJ Kl p,J Kl 1+lp,j/
for j' € N(p) where
: O—0C0—=0 P
_WUJ =0 —71,1 Wgyl ﬁg’] =0 lp.,j’ AL H tanh < 5 2, > ,
Figure 4: lllustration of Viterbi updates in Problem-D2 on the same EN (GNP
example given by Fid.12: DIC foiV = 3 with forward Ko (Tp=T 1.5+ 57 are
ﬁ> and backwardﬁ‘ ~ A In ZeeTp:m(e):Oe 2( p—1,s(e) pys (,))
b S et o1 e K (Tp=Tp1 a0y 77 5.0(0))
e p.ZIJ e)=
This upper bound-n, < —7/,_1 is achieved by the Proof: See AppendifA. u
forward Viterbi update in Problem-D2 far=1, ..., p—1. Lemma 26. Equations [(5) and[{6) are equivalent to the
Again, by expressing the same constraint as BCJR-based forward and backward recursion given[by (7),

@), and [9).

) ) o Proof: By letting, «; (k) esz,k7 Nitle =

we get a recursive upper bound for= p + 1. Similar e~ KaTirie andg; (k) o« e K 7ix we obtain the desired
reasoning shows this upper boungl, < %, is achieved g it by normalization. -

by the backward Viterbi update in Problem-D2 for = Now, we have all the pieces to complete the algorithm. As
N—-1,N-2, ..., p. See Figlh for a graphical depictionye |5t step, we combine the results of Lenima 25[@hd 26 to

of this. B obtain the iterative solver for the joint-decoding LP, whis

The fourth step, given by the softened dual probley,mmarized by the iterative joint LP decoding in Algorithm
(Problem-DS) in Tablé 1V, is formulated by replacing they (see Fig[h for a graphical depiction).
minimum operator in Problem-D2 with the soft-minimu

operation

Mi—1,s(es) < Fi,e + g s (eq)

rT}?emarl<27. While Algorithm[d always has a bit-node update
rule different from standard belief propagation (BP), weéeno
i 1 i~ that setting/K; = 1 in the inner loop gives the exact BP
min(z1, 22, ..., Tm) ~ —Elnze E check-node update and settidg, = 1 in the outer loop
=1 gives the exact BCJR channel update. In fact, one surprising

This smooth approximation converges to the minimum fungesult of this work is that such a small change to the BCJR-
tion as K increases[[32]. Since the soft-minimum functiomased TE update provides an iterative solver for the LP whose
is used in two different ways, we use different constantger-iteration complexity similar to TE. It is also possitite
K, and K>, for the code and trellis terms. The smoothnegsrove the convergence of a slightly modified iterative solve
of Problem-DS allows one to to take derivative ¢fi (4)hat is based on a less efficient update schedule.
(giving the Karush—Kuhn—Tucker (KKT) equations, derived

in Lemmal25), and represeriil (5) aid (6) using BCJIR-lil -
forward/backward recursions (given by Lemma 26). Table IV_Softened Dual Problem (Problem-DS)

Lemma 25. Consider the KKT equations associated with 5% _LE :ln E ( o EK{Zien() miils(i)} (4)
performing the minimization in[{4) only over the variables jel  Beg;

1 —KodT, =Ty 1 s+ o
—Eane 2{ P p—1,s(e) P, ()}

Table 1l Dual Problem 2nd Formulation (Problem-D2) e€Ty
where 1z (7) is the indicator function of the sé, ﬁiyk is
i iy in[T).—7 O defined fori=1,...,p—1b
mrng;ggg l;m gt genTI;[ pe— Mpi,s(e)T Nps (6)] ) 1 P y
i — o —Kod =1 (e +Fic}

_ i — __1 2{ i—1,s(e;) s , 5
where 7/, is defined fori=1,... ,p—1 by ik K nﬂg;(k)e ©)
Tk T ey T st tlie, VhES and %7, ;. is defined fori= N —1,N —2, ..., p by
and ¥, ;. is defined fori= N —1,N —2, ..., p by = b In Z e—Kz{‘EH,S/(%HWFHLS} ©6)

Fip= min R
kS My i) T Litie, VE€S eir1€s7" (k)
starting from starting from

b4 fﬁ _
nok = N,k—07 Vk € S.
ok = ;ﬁN,k = O, Vk € S.




Algorithm 1 lIterative Joint Linear-Programming Decoding ™

« Step 1. Initializem, ; = 0 for i € Z, j € N (i) and
£ =0.
o Step 2. Update Outer Loop: Fore Z,
— (i) Compute bit-to-trellis message
)\i,e - e_K2Fi’e
where

Fi,e = - m(e

E M-

jGN (i)
— (ii) Compute forward/backward trellis messages

Dees—1(k) Qi (5(€)) - Aigre
Dok Dees—1(k) i (5(€)) - Aige
ZeEs*l(k) Bi(s'(e)) - Aie
ok Zees*l(k) Bi(s'(€)) - Aie’
wherefSy (k) = ag (k) =1/|S| for all k € S.
— (iii) Compute trellis-to-bit message;
DceTia(e)—0 Qi1 (5(€)) Ai.efi (5'(e))
D eeTia(e)=1 i1 (5(€)) Ai.efi (s'(€))
« Step 3. Update Inner Loop fdf,,errounds: Fori € 7,
— (i) Compute bit-to-check msgu_j for j € N (7)

i1 (k)= (7)

Bi-1 (k)= (8)

vi=In 9

mi; = M; j + — K1
— (ii) Compute check-to-bit ms@/; ; for j € N (4)
1 1-1;;
M; ;i =—1 bJ 10
4K, 141 (10)
where
Klmr. j
L. = \J
i H tanh ( 5 ) (11)
reN(G)\i
o Step 4. Compute hard decisions and stopping rule
— (i) Fori e Z,
" 10, otherwise

) =5 a; (0)

a (1) =5 (1)

1,1 Mma1 g1
m. » M3,
U " My o N\Ma|| My

lllustration of Algorithm[1 steps foi = 2 on the same
example given by Fig]2: outer loop update (left) and
inner loop update (right).

Figure 5:

whose value is arbitrarily close to the optimal value of
Problem-P.

The modified update rule for Algorithrill 1 consists of
cyclically, for eachp = 1,..., N, computing the quantity
vp (via step 2 of Algorithm[il) and then updating,, ;
for all 5 € N(p) (based on step 3 of Algorithial 1). The
drawback of this approach is that one BCJR update is
required for each bit update, rather than férbit updates.
This modification allows us to interpret Algorithid 1 as a
Gauss-Seidel-type algorithm. We believe that, at the esgpen
of a longer argument, the convergence proof can be extended
to a decoder which uses windowed BCJR updates (e.g., see
[43]) to achieve convergence guarantees with much lower
complexity. Regardless, the next few lemmas and theorems
can be seen as a natural generalization[of [32][36] to the
joint-decoding problem.

Lemma 28. Assume that all the rows off have Hamming
weight at least 3. Then, the modified Algorithii 1 converges
to the maximum of the Problem-DS.

Proof: See AppendiXB. [

Next, we introduce the softened primal problem (Problem-
PS) in Table'V, using the definitions; £ {w;, B} pee, and

£ {gp, e}eeT Using standard convex analysis (e.g., see
[IE p. 254, EX. 5. 5]), one can show that Problem-PS is the

— (i) If f satisfies all parity checks or the maximum_agrangian dual of Problem-DS and that the minimum of
outer iteration number,gyter is reached, stop and proplem-PS is equal to the maximum of Problem-DS. In

outputf. Otherwise increment and go to Step 2.

B. Convergence Analysis

particular, Problem-PS can be seen as a maximum-entropy
regularization of Problem-DS that was derived by smoothing
dual problem given by Problem-D2. Thus, our Algorithin 1
is dually-related to an interior-point method for solvirttet

This section considers the convergence properties of /JKI-P relaxation of joint ML decoding on trellis-wise polytope

gorithm[d. Although simulations have not shown any con-
vergence problems with Algorithia] 1 in its current form,
our proof requires a modified update schedule that is lesgble V Softened Primal Problem (Problem-PS)

computationally efficient. Following Vontobel's approaich

[32], which is based on general properties of Gauss-Seidel-
type algorithms for convex minimization, we show that the &w

mlnz Z bzegze -

i€ e€T;

ZHwJ

jGJ

H(gp)

modified version Algorithn{]l is guaranteed to converge. bi h bi
Moreover, a feasible solution to Problem-P can be obtaingH ject to the same constraints as Problem-P.




10

using the entropy function (far in the standard simplex) can be made arbitrarily close t8*. Therefore, the joint

a iterative LP decoder provides an approximate solution to
H(z) = _in Inz; (12)  problem-P whose value is governed by the upper bound

‘ in Theorem[3R. Algorithni]1 can be further modified to
as a barrier function (e.g., see [38, p. 126]) for the polgtopbe of Gauss-Southwell type so that the complexity analysis
Remark29. By taking sufficiently largek; and K, the in [36] can be extended to this case. Still, the analysis
primal LP of joint LP decoder in Problem-P, emerges as th@ [36], although a valid upper bound, does not capture
“zero temperature” limit of the approximate LP relaxationthe true complexity of decoding because one must choose

given by Problem-PS$ [32][38]. Also, Problem-PS can be seén= o (+;) to guarantee that the iterative LP solver finds
as a convex free-energy minimization problém][38]. the true minimum. Therefore, the exact convergence rate and

Next, we develop a relaxation bourgiven by Lemma30 complexity analysis of Algorithral1 is left for future studn
and Lemm&31 to quantify the performance loss of Algorith eneral, the convergence rate of coordinate-descent oetho
I (when it converges) in relation to the joint LP decoder. (€-9- Gauss-Seidel and Gauss-Southwell type algoritfons)

convex problems without strict convexity is an open problem
Lemma 30. Let P* be the minimum value of Problem-P and

P be the minimum value of Problem-PS. Then IV. ERRORRATE PREDICTION AND VALIDATION
0< P — P*<§N In this section, we validate the proposed joint-decoding
N - solution and discuss some implementation issues. Then,
where N (i we present simulation results and compare with other ap-
N2 ZJEJ' (J)|’ R&21-— M proaches. In particular, we compare the performance of
N N the joint LP decoder and joint iterative LP decoder with
and _ the joint iterative message-passing decoder on two finite-
52 (1-R+N)n2 Lo state intersymbol interference channels (FSISCs) destiib
K KyN Definition[. For preliminary studies, we uséa 5)-regular
Proof: See AppendifLC. m binary LDPC code on the precoded dicode channel (pDIC)

. , with length 155 and 455. For a more practical scenario, we
Lemma 31. Fpr anye > 0, the modified AIgonthmI:ll also consider &3, 27)-regular binary LDPC code with length
returns a feasible solution for Problem-DS that satisfies ta923 and rate 8/9 on the class-Il Partial Response (PR2)
KKT conditions within e. With this, one can construct acpanne| ysed as a partial-response target for perpendicula
feasible solutiorig., w.) for Problem-PS that has the (nearly,,netic recording. All parity-check matrices were chosen
optimal) valueP.. For small enougl, one finds that randomly except that double-edges and four-cycles were
0<P.—P<6N avoided. Since the performance depends on the transmitted
B - codeword, the WER results were obtained for a few chosen
where codewords of fixed weight. The weight was chosen to be
_ V roughly half the block length, giving weights 74, 226, and
5= a R;;N) L <%ZZ b1, | + C’) : 2462 respectively.
1 .
I€TeET, The performance of the three algorithms was assessed
Proof: See AppendiXD. m based on the following implementation details.
Lastly, we obtain the desired conclusion, which is stated Joint LP Decoder:Joint LP decoding is performed in
as Theoreni32. the dual domain because this is much faster than the primal
) - domain when using MATLAB. Due to the slow speed of LP
Theorem 32. For anyé > 0, there exists a sufficiently small go|yer simulations were completed up to a WER of roughly
¢ > 0 and sufficiently largek’; and K, such that finitely 10— on the three different non-zero LDPC codes with block
many iterations of the modified Algorithid 1 can be usefngihs 155 and 455 each. To extrapolate the error rates to
to construct a feasiblég., w.) for Problem-PS that is also pjgh SNR (well beyond the limits of our simulation), we
nearly optimal. The value of this solution is denot€dand se a simulation-based semi-analytic method with a treacat

satisfies _ . union bound (sed13)) as discussed in Sedfion Il. The idea
0 < P.—P* <éN, is to run a simulation at low SNR and keep track of all
where observed codeword and pseudo-codeword (PCW) errors and

_ a truncated union bound is computed by summing over all
5 (1-R+N)n2 n In O Yo EZZ lbre| +C observed errors. The truncated union bound is obtained by
K, KoyN NleIeeT - " computing the generalized Euclidean distances associated
o L with all decoding errors that occurred at some low SNR
Proof: Combining results of LemnfaP8, Lemiia 30, andoints (e.g., WER of roughly tham0—!) until we observe
Lemmal31, we obtain the desired error bound. B 3 stationary generalized Euclidean distance spectruns It i
Remark33. The modified (i.e., cyclic schedule) Algorithmquite easy, in fact, to store these error events in a list lvhic
[0 is guaranteed to converge to a solution whose valigfinally pruned to avoid overcounting. Of course, low SNR
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Regular (3,5) code of length 155 Regular (3,5) code of length 450

0

10 10 : . . T T
€ 107" |
1 107 1
. _3, o
% o 10
w
2 ,
1 F 1
10"° -=+- Joint Iterative MP Decoding 10" === Joint Iterative MP Decoding | “iee N\
—e—Joint Iterative LP Decoding —e—Joint Iterative LP Decoding
10°%L| == Joint LP Decoding ; 1075L| —=—Joint LP Decoding
- = -Joint LP Decoding Union Bound ) -m-Joint LP Decoding Union Bound ;~
1077 i i i il il i L] \‘ 10_7 L L L L L L L L hd
35 4 4.5 5 5.5 6 6.5 7 36 38 4 42 44 46 48 5 52 54
SNR(dB) SNR(dB)

Figure 6: Comparisons between the joint LP decoding, joint iteratifedecoding, and joint iterative message-passing (MP) diago
on the pDIC with AWGN for random (3,5) regular LDPC codes aidth N = 155 (left) and N = 450 (right). The joint LP
decoding experiments were repeated for three differentzeoa codewords and depicted in three different curves. deshed
curves are computed using the union bound in Equafibn (dbas JD-PCWs observed at 3.46 dB (left) 2.67 dB (right).
Note that SNR is defined as channel output power dividedhy

allows the decoder to discover PCWs more rapidly thamhere sgriz) is the usual sign function. Alsd.J(9) should be
high SNR and it is well-known that the truncated bounomplemented using

should give a good estimate at high SNR if all dominant B _ _

joint decoding PCWs have been found (elg.] [44]] [45]). One _max {ai—1 (s(e)) + i +Bi (s'(e)) }

nontrivial open question is the feasibility and effectiees of _ < =

enumerating error events for long codes. In particular, we d B 667’11:1:1;&()6():1 {aFl (s(€)) + Aie + Bi (s (e))}

not address how many instances must be simulated to have r
high confidence that all the important error events are found + log Z ai—1(s(€)) + Aie + Bi (s'(e)) —

so there are no surprises at high SNR. | ceTiate)=0

Joint Iterative LP Decoder:Joint iterative decoding is - - _
performed based on the Algorittirh 1 on all three LDPC codes ee%{lfé)zo {@i-1 (s(e)) + Aie + Bi (s (e))}]
of different lengths. For block lengths 155 and 455, we chose -
the codeword which shows the worst performance for the _ 3 =

P —log | Y @i (s(e) + Aie + B ('(e)) —

joint LP decoder experiments. We used a simple scheduling

update scheme: variables are updated according to Algorith Le€Tie(e)=1
[ with cyclically_with linner = 2 inner loop iterations fo.r max {541'—1 (s(€)) + i + B (S/(e))}] ’
each outer iteration. The maximum number of outer iteration e€Tiw(e)=1

is Louter= 100, so the total iteration countoutefinner 1S where a; (k) 2 Inoy (k), B; (k) 2 InB; (k) and Ao 2

at most 200. The choice of parameters &g = 1000 and e ’

K3 =100 on the LDPC codes with block lengths 155 and j5in¢ jterative Message-Passing Decoddaint iterative

455. For the LDPC code with length 492R;; is reduced message decoding is performed based on the state-based
to 10. To prevent possible underflow or overflow, a fe"é’llgorithm described in[[23] on all three LDPC codes of

expressions must be implemented carefully. When different lengths. To make a fair comparison with the Joint
Iterative LP Decoder, the same maximum iteration count and
Ky min  m, > 35, the same codewords are used.
reN(j)\i ’
A. Results

a well-behaved approximation df (10) ard(11) is given by Fig.[8 compares the results of all three decoders and the
error-rate estimate given by the union bound method dis-
cussed in Section]ll. The solid lines represent the simaati

iln 949 Z oK1 (Il —mingcx i mr.) curves while the _dashed lines represent a truncate.d.union
bound for three different non-zero codewords. Surprising|
we find that joint LP decoder outperforms joint iterative

— min  m,;|sgn(l;), message passing decoder by about 0.5 dB at WER)of.

reN()\i We also observe that that joint iterative LP decoder loses

1 rEN (N
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0 Regular (3,27) LDPC code of length 4923 (LDPC) codes and finite-state channels (FSCs). First, we

-=-SOVA-based TE Decoding present an LP formulation of joint-decoding for LDPC codes
o ~=+=Joint Iterative MP Decoding on FSCs that offers decoding performance improvements
10 % —e—Joint Iterative LP Decoding f L . . .
, s over joint iterative message-passing decoding at moderate
107 \,‘/ = - | SNR. Then, joint-decoding pseudo-codewords (JD-PCWSs)
by . are defined and the decoder error rate is upper bounded by a
&0 LS union bound over JD-PCWs that is evaluated for determinis-
S . m tic ISI channels with AWGN. Next, we propose a simulation-
1070 “\n based semi-analytic method for estimating the error rate of
LDPC codes on finite-state intersymbol interference chinne
107l (FSISIC) at high SNR using only simulations at low SNR.
Finally, we present a novel iterative solver for the joint LP
I S S S S S N S S S decoding problem. This greatly reduces the computational
88 9 92 94 96 98 10 102104106108 11 complexity of the joint LP solver by exploiting the LP dual

SNR(dE) problem structure. Its main advantage is that it provides

Figure 7: Comparisons between the joint iterative LP decodinghe predictability of LP decoding and significant gains over

joint iterative MP decoding and soft-output Viterbi algo- ot ; ; g ;
rithm (SOVA)-based TE decoding (taken frof [22]) Onturbo equalization (TE) especially in the error-floor with a

the PR2 channel with AWGN for random (3,27) regulafOMputational complexity similar to TE.
LDPC codes of lengthV = 4923. Note that SNR is
defined as channel output power divided &3

APPENDIX

about 0.1 dB at low SNR. This may be caused by usifyy Proof of Lemm&25s

finite values fork, and K. At high SNR, however, this  Restricting the minimization in[{4) to the variables
gap disappears and the curve converges towards the CURL, i }iren(p) GiVES

rate predicted for joint LP decoding. This shows that joint

LP decoding outperforms belief-propagation decoding for

short length code at moderate SNR with the predictability-  min 1 Z In Z e K1 Zien( miils()
of LP decoding. Of course, this can be achieved with a{mrsbiever | 51 57, beg,
computational complexity similar to turbo equalization.

One complication that must be discussed is the dependencel In Z e Ke(Tpe=Tp1 0+ 7, 00) | (13)

on the transmitted codeword. Computing the bound is com- K>
plicated by the fact that the loss of channel symmetry ingplie
that the dominant PCWs may depend on the transmitt¢fle solution to [II3) can be obtained by solving the KKT
sequence. It is known that long LDPC codes with joint itelequations. Fop € Z, we take the first derivative with respect
ative decoding experience a concentration phenomenon [‘ﬂ@]{mpu’/}j'emp) and set it to zero; this yields

whereby the error probability of a randomly chosen codeword
is very close, with high probability, to the average error
probability over all codewords. This effect starts to appea
even at the short block lengths used in this example. More
research is required to understand this effect at moderate ZBGQMBape
block lengths and to verify the same effect for joint LP

e€Ty

—K; Z 7 m; 1 ]lg(i)
e PEN(G)\p Vg
ZB€£j/,p¢B Kim, ./

P,y =

—K1 ZiEN(j/)\p my 15(7)

—
ZeET 2(e)=0 efK2 (prff n P*l,s(e)+%p,s’(e))
pt =

decoding. — (14)
Fig.[@ compares the joint iterative LP decoder and joint ZeeTp:m(e):l e K2 (Toe =T p1) H 7 p00(0)
iterative message-passing decoder in a practical scenario
Again, we find that the joint iterative LP decoder provideBy defining—K, M, ;; as
gains over the joint iterative message-passing decodeglat h ‘
SNR. The slope difference between the curves also suggests 2Bee, piB e F1 Xiew g Mg 1s i) (15)
n

that the performance gains of joint iterative LP decoder
will increase with SNR. This shows that joint iterative
LP decoding can provide performance gains at high SNR

7Klzi€/\/’ v M37~/]lg(i)
ZBGEj/,BBP e @OAe T

[Licninp L+ Vi) + Tiengny (1 —vigr)

with a computational complexity similar to that of turbo =i HiEN(j/)\p(l +v, ) — HieN(j/)\p(l — ;)
equalization. 1—1 .
=—In—2
1+ lp,j’

V. CONCLUSIONS

In this paper, we consider the problem of lineawherev; ;; = e~ 51™ii' we can rewrite[(4) to obtain the
programming (LP) decoding of low-density parity-checklesired result.
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B. Proof of Lemm&a 28 Using the properties of log-sum-exp functions (e.g., 5&& [4
To characterize the convergence of the iterative joift /2)): One can verify thaf is continuously differentiable

LP decoder, we consider the modification of Algorithiin £1d convex. The minimum ove, for all i € Z is uniquely

with cyclic updates. The analysis follows [32] and uses t%tained because of the unique KKT splution in Lemma
proposition aboutonvergence of block coordinate descerft= Therefore, we can apply the Proposition 34 to achieve

methodsfrom [48, p. 247]. the desired convergence resylt under the mod?fied update
schedule. It is worth mentioning that the Hamming weight
Proposition 34. Consider the problem condition prevents degeneracy of Problem-DS based on the
. fact that, otherwise, some pairs of bits must always be equal
min f ()
xT€

where X = X} x Xy x --- x X, and eachX; is a C. Proof of Lemm& 30
closed convex subset d&™. The vectorx is partitioned

S0z = (21, Ta, ..., Tm) With z; € R™. Suppose thaff Denote the optimum solution of Problem-P gy andw*
is continuously differentiable and conver X' and that, for and the optimum solution of Problem-PS gyandw. Since
everyz € X and everyi = 1,...,m, the problem g* and w* are the optimal with respect to the Problem-P
we have
min f(l‘l,...,xi_l,fi,fﬂi_,_l,...,l'm) B
EiEX; p* — Z Z biegre < Z Z bicGie = P. (16)
has aunique minimumNow, consider the sequeneét! = i€ ecT; i€ e€Ti
(xft? zkF1) defined by - , ,
L On the other handg andw are the optimal with respect to
wi_c+1 — argmin f (xllc-i—l’ L xffll, y xfﬂa L x;:n)’ the Problem-PSwve have
EiEX;
- 1 _ 1 -
for i = 1,...,m. Then, every limit point of this sequence S biedie - o > H(iy) - EH(Qp)
minimizes f over X. €7 e€T; JeJ .
* 1 * *
By using Proposition 34, we will show that the modified < Z Z bieGie — 7 Z H(w}) — —H(g,),
. ' ; K - Ko
Algorithm [T converges. Definen; = {miyj}jeN(i) and i€L €T jeJ
here H(-) is the entropy defined by (1.2). We rewrite this
f(m)2f(my, ..., my) \;VS ON py dei y (112) Wi !

B 1 -K1{>, ooy i 1(7)
—g i Y e By mate @y

jeJ  Beg; E E bi,eGie

N i€Z e€T;
1 1n§ e_Kz{FPve_npflxs(ﬁp)—‘r%p,sl(cp)}'

2 eeT, gZZbi,egie+Kil ZH(@j)—ZH(w;)

Let us consider cyclic coordinate decent algorithm which ~ €Z ¢€T: ied ieT
minimizes f cyclically with respect to the coordinate vari- 1 (H(g ) — H(g*))
able. Thuan; is changed first, them, and so forth through K P p

my. Then [3), [b), and{6) are equivalent to for each Z < e b NN S
with proper.x, as = ; e; biegie + e ;H(wﬂ) + K2H(gp)' a7)

The last inequality is due to nonnegativity of entropy. Wdsin

gﬁgﬁépf (my, ... mp_y, &, My, ..., My) Jensen’s inequality, we obtain
~ in i Zmz ele{Ep,le(j)(P)IB(i)Jir€§(j) mi,j]lB(i)} Z H(w;) < Z In €| = Z (NG| —1)In 2
T ex, Ky 4 e jeg jeT ies
e “N(1-R+N)?2 (18)
1
+E In Z exp § =Koz | bpe — Z £p.j0n(ey)=1 and
o jeNw H(g,) <1n 0. (19)

p—1 p—1
—K2{ M s(en)— 20 biet 2 D0 M i0u(es)=1
e =2

i=2 jEN (i)

By substituting [IB) and{19) t¢ (1L7), we have
_ N(1-R+AN)In2
B_p < ( +N)In L o

— i.e m; ]51. ) —
+In Z e K2{i:?+1 ’ i:%;rl je%(i) S 1} . Ky K2
{epstsmen’ Combining [16) and{20) gives the result.

+1n Z

{617...761)71}

N N

(20)
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D. Proof of Lemma& 31 From [36, p. 4841], it follows thak € P(H). Next, we show

For the coordinate-descent solution of Problem-DS, mirfat {/\iye € T Note that defining

mizing over thep-th block gives Ko{Tso—7 e )
e B2t ie T i-1,s(ey) i,s/(e;)

. )\i e é
_ min i Z In Z e_Kl{ZieN(J‘) mi,j]lB(l)} ) Z cT: e*Kz{Fi,cfﬁwl,s(ei)+<ﬁi’s/(‘fi)}
{mpd}jeN(p)Kl JEN(p) BEE; [ [ I
(21) implies that (by [(TH))
subject to .
, )
Tpe = p-ts(e) = Wp.s/(e) Ve € Tp. B

obviously satisfies foki € Z
The solution can be obtained by applying the KKT conditions

and this yields Aie 20, Ve €T, > Aie=1
Z A ecT;
ca(e)=1 TPE  _ (Ki(Mpj—mp;), (22) andforvi e Z\ N, k€ Sby (8) and [6)

1- Ze:z(e):l )\Pve

Z I e—Kz{Fi,e—7171,5(5i)+<ﬁi)5/(5i)}
Given a feasible solution of the modified AlgoritHh 1, we Z Aie = eis’ (€)=

i -K F'L e_%i— s(e; +%15 e
define eior @)k e e AT i tioten+ i e
R A T = 3
g 1,€ 1+ eKl(?TLi,j*Mi,j)’ e:s(e)=k
ex(e)
y A Furthermore,
1: =

)\J Nie
| ( ]E;(Z em%—l Zj\i’e = 1—66 Z/\ZB—‘,-GEZlE' 1,

with ecT; ecT; ecT;
= M s 1
| ;) S A = (-60 X Ao 3 o
e:s’(e)=k e:s’'(e)=k e:s’'(e)=k
and 1
= (1-6¢ Nit1.e + 6e —
€ 2 max max [N — \;|. ( ) _Z_ i .Z_ E|
i€ FEN(4) e:s(e)=k e:s(e)=k
. . 1 . - Z Xi~‘r1,87
Suppose we stop iterating when<  and define ook
Ai 2 (1—66)\ +6e Z 1 and by Definition[B,\ € P(H). Therefore, we conclude
e:z(e)=1 |E] that ;\i,e € Pr(H) is feasible in Problem-P. From [36,
= (1—-66)\ +3e= Z Nie, p. 4855], it follows that there exist feasiblé; vectors
e:x(e)=1 associated wnh{)\Z 6}
where Denote the minimum value of Problem- PSByThen by
5 2 (1— 66 Are + be the Lagrange duallty we can upper bouRd— P with
i,e 1,€ |E| . N ~
DD biehie— X ZH ; ——H(/\)
First, we claim that\ £ {/\1} € P(H). This is because €T €T JEJ
setting <D biehie — — Z H(w;) — —H(;\ )
. oK Sient mii1s(0) €T e€72 Ljer
e S e e K Riewi Ml () (23) + = Z In Z e Ki{Zieniy miils(@}
B'eE; Ljeg Beg,
obviously satisfies fo¥;j € J (@) 1 . 1 .
< o YU H(w)) = H(ioy)| - =H(,)
wis >0, VBEE, > wip=1 Lieg ?
BeE,
’ +e<3ZZ|bl,e|+CN>
and satisfies fowi € Z, j € N (i) IETeET;

oK1 Yien(y) ™t M , 3
Z o 2 pee; 53i © —\ <— E H(wj)+eN | — E E [brel +C ),
J) Es/efj e K1 2Xieni) mite M v N

BeE;,B3i Ljeg l€Te€eT;




Where(a) is given by rewriting [[2B) as

— Z In Z e Kl{ZweN(;) mi,; 15( l)}

<

JEJ Beé;

— ZH (w;) Z Z wj B Z my,; 1s(1)
JeJ JjET BEE; leN(j)

—ZH (W)=Y brediete[3Y D bl +CN|.
JGJ l€TecT; lETeeT;

The last step of this equation follows from

Z ZU)JB Z m17J115

JjET BEE; leN(j
=2 > W’
lET jeN (1)
>Z Z my /\1—6)
lET jeN (1)
ZZZ m(e) 1 Z mp g )\le Z Z |ml,J|
I€TecT; JEN(1) IEZFeN (1)
>3 biehie —€CN
I€T ecT,
> Z Z blje)A\lje - 362 Z |bl,e| —eCN
€T e€T; IET e€T;

In the above equation, the details of the last two ineqesliti

[11]
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[15]
[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

are not included due to space limitations, but they can be
derived using arguments very similar {0 [36, p. 4840- 4841]2
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