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Abstract—The deletion channel is the simplest point-to-point
communication channel that models lack of synchronization
Despite significant effort, little is known about its capaciy, and
even less about optimal coding schemes. In this paper we iidte a
new systematic approach to this problem, by demonstratinghat
capacity can be computed in a series expansion for small deéien
probability. We compute two leading terms of this expansionand
show that capacity is achieved, up to this order, by i.i.d. uiform
random distribution of the input.

We think that this strategy can be useful in a number of
capacity calculations.

c(d)

I. INTRODUCTION

The (binary) deletion channel accepts bits as inputs, and d

deletes each transmitted bit independently with prohigbili _ _ o _
ig. 1. Comparison of the asymptotic formuld (1) (continsidime) with

d. Compqtlng or providing SySte,ma“C approxmayons to .Itgpper bounds from_[6] (stars) and lower bounds from_[5] (squares). The
capacity is one of the outstanding problems in informatiaf(q3/2—<) term in [1) was simply dropped.

theory [1]. An important motivation comes from the need to

understand synchronization errors and optimal ways to cog§snnel parameter, and the corresponding optimal input dis
with th_em. tribution is unique and well characterized, it should besiue

In this paper we suggest a new approach. We demonstigl&:ompute an asymptotic expansion around that value. Here
that capacity can be computed in a series expansion for SMgll special channel is the perfect channel, i.e. the deletio
deletion probability, by computing the first two orders otBU channel with deletion probability = 0. The corresponding
an expansion. Our main result is the following. input distribution is the iid BernoulliL /2) process.

Theorem I.1. LetC(d) be the capacity of the deletion channe'IA Related work
with deletion probabilityd. Then, for smalld and anye > 0, '
Dobrushin [3] proved a coding theorem for the deletion
C(d) =1+ dlogd — Ay d + O(d*>~°), (1) channel, and other channels with synchronization erroes. H
where 4, = log(2¢) — 32, 2~ 11logl. Further, the iid showett):i thhat the .ma>iimum rlalte]c of rel?able cotr)pmun(ijcation (ijs
Bernoulli(1/2) process achieves capacity up to corrections (ﬁllvenh_yt € rrl;axmf]\_ mu(;ua;] n orhmat|0n(§)er I, ;n pr(;ve
order O(d%/2-<). at this can be achieved through a random coding scheme.
This characterization has so far found limited use in prgvin
Logarithms here (and in the rest of the paper) are understamhcrete estimates. An important exception is providechiey t
to be in base€. The constantd; can be easily evaluated towork of Kirsch and Drineal[4] who use Dobrushin coding
yield A; ~ 1.154163765. While one might be skeptical abouttheorem to prove lower bounds on the capacity of channels
the concrete meaning of asymptotic expansions of the typéth deletions and duplications. We will also use Dobrushin
(@), they often prove surprisingly accurate. For instartd®)® theorem in a crucial way, although most of our effort will be
deletion probability, Eq[{1) is off the best lower boundyed devoted to proving upper bounds on the capacity.
in [5] by about0.010 bits. More importantly they provide Several capacity bounds have been developed over the last
useful design insight. For instance, the above result shioats few years, following alternative approaches, and are y@de
Bernoulli(1/2) is an excellent starting point for the optimalin [I]. In particular, it has been proved that(d) = ©(1 — d)
input distribution. Next terms in expansion indicate how tasd — 1. However determining the asymptotic behavior in
systematically modify the input distribution far> 0 [2]. this limit (i.e. finding a constanB; such thatC(d) = B1(1—
We think the strategy adopted here might be useful in othéy+ o(1 — d)) is an open problem. When applied to the small
information theory problems. The underlying philosophy id regime, none of the known upper bounds actually captures
that whenever capacity is known for a specific value of thbe correct behaviof11). As we show in the present papex, thi
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behavior can be controlled exactly. Proof: Take any stationaryX, and let I, =
When this paper was nearing submission, a preprint ByX";Y(X")). Notice that Y(X}) — X7 — X" —

Kalai, Mitzenmacher and Sudé&n [7] was posted online, pg)viry(XQj_r?l) form a Markov chain. Deﬁnef/(xnﬂn) as
a statement analogous to Theorni I.1. The resultbf [7]ji$ the proof of Theorem[1l]l1. As before we have
however not the same as in Theorlen I.1: onlydhegd term 7, =~ < [(X"t™ y(X"tm)) < I(X™Y(X™) +
of the series is proved in[7]. Further, the two proofs araaUasI(Xgﬂ;y(Xgﬂ)) = I,, + I,. (the last identity follows
on very different approaches. by stationarity ofX). Thus I,,1, < I, + I, and the limit

Il. PRELIMINARIES lim,, I /n exists by Fekete’s lemma, and is equal to

For the reader’s convenience, we restate here some knol\]/av%21 In/n. . .
learly,I,, < C,, for all n. Fix anye > 0. We will construct

results that we will use extensively, along with with some
definitions and auxiliary lemmas. a processt such that
Consider a sequence of channe{lﬁ/n}nzl,_ \{vhere W, INn/N>C—¢ VY N > Ny(e), (5)
allows exactlyn inputs bits, and deletes each bit independently
with probabilityd. The output ofW,, for input X is a binary thus proving our claim.
vector denoted by (X™). The length ofy (X™) is a binomial ~ Fix n such thaiC;, > C —e/2. ConstructX with iid blocks
random variable. We want to find maximum rate at whicAf length n with common distributionp(n) that achieves
we can send information over this sequence of channels wift¢ supremum in the definition @f,,. In order to make this
vanishingly small error probability. process stationary, we make the first complete block to the
The following characterization follows from[3]. right of the position0 start at positiors uniformly random in
{1,2,...,n}. We call the positiors the offset. The resulting

Theorem II.1. Let process is clearly stationary and ergodic.

C, = 1 max (X" Y(X™)). (2) Now considerN = kn + r for somek € N and

N pxn r€{0,1,...,n—1}. The vectorX}" contains at least — 1

Then, the following limit exists complete blocks of size, call themX (1), X (2),..., X (k—1)
C = lim C, = inf C,,, (3) With X (i) ~ p*(n). The blockX (1) starts at positios. There

n—oo n>1 will be furtherr +n — s + 1 bits at the end, so thax{¥ =
and is equal to the capacity of the deletion channel. (X1 X(1),X(2),. .., X (k—1),X2X,,). Abusing notation,

we write Y (i) for Y/(X(i)). Given the output’, we define
Y= (XY QY@L Y (E=DY(XN ), by
introducing k£ synchronization symbols There are at most
(n+1)* possibilities fory givenY (corresponding to potential
placements of synchronization symbols). Therefore we have

Proof: This is just a reformulation of Theorem 1 in/[3],
to which we add the remark’ = inf,>; C,, which is of
independent interest. In order to prove this fact, consider
channelW,, ., and letxX™" = (X{", X""1") be its input.
The channelV,,, ., can be realized as follows. First the inpu
isdpasseéd thlroughha chanriél,,, ., thatdintrofucesddeletions H(Y)=H(Y)-HY|Y)
independently in the two string&}" and X'/ and outputs ~ &
~ . > —

V(X7 = (Y(XP), |, Y (X)) where| is a marker. = H(Y) —log((n + 1))
Then the marker is removed. > (k=1)H(Y (1)) — klog(n+1),

This construction proves thél,,.,. is physically degraded \ore we used the fact that tha (i), Y (i))'s are iid. Further
with respect toW,,, .., whence _
- N N
(M +10)Cmin < max I(X™ V(X)) HY[X™) <HY[XT) < (k-1H(Y(1)[X(1)) +2n,

Pxm+tn

< mC,, +nCy.

where the last term accounts for bits outside the blocks. We

N conclude that
Here the last inequality follows from the fact th#t,, ., is

the product of two independent channels, and hence the inutua Z(X™:Y (X)) = H(Y) — H(Y|X")

information is maximized by a product input distribution. > (k—1)nC,, — klog(n+1) —2n
Therefore the sequenda.C,, },,>1 is sub-additive, and the > N(Cp —£/2),
claim follows from Fekete’s lemma. [ ]
A last useful remark is that, in computing capacity, we caprovidedlog(n + 1)/n < /10, N > No = 10n/e. Since
assume(Xy,..., X,,) to be n consecutive coordinates of aC, > C — /2, this in turn implies Eq.L(5). u

stationary ergodic process.
y er9 P Ill. PROOF OF THE MAIN THEOREM OUTLINE

Lemma 11.2. LetX = {X,},cz be a stationary and ergodic

Frocess, ij'th;((;_t?/k'g?nvahej;zg{ghz}' Then the limit7(X) = defer the proof of several technical lemmas to the nextmecti

o0 7 (X7 Y(X™) The first step consists in proving achievability by estimgti
C= max I(X). (4) I(X) for the iid Bernoull{1/2) process.

X stat. erg.

In this section we provide the proof of TheorémlI.1. We



Lemma Ill.1. LetX* be the iidBernoulli(1/2) process. For let L; be the length of the-th run to the right of position
anye > 0, we have 0. Let pr x denote the limit of the empirical distribution of
. e Li,Lsy,...,Lg, as K — oo. By ergodicity pr x is a well
I(X") = 1+dlogd — Ayd + O(d*™). ) gefined probability distribution ofl. We callp;, x the block-

Lemma[Il.2 allows us to restrict our attention to stationarerspectiverun length distribution for obvious reasons, and
ergodic processes in proving the converse. In light of Lemmige L to denote a random variable drawn according .
Il we can further restrict consideration to procesdgs It is not hard to see that, for arly> 1,
satisfyingI(X) > 1+2dlogd and hence? (X) > 1+2dlogd ! )

(here and below, for a proces§, we denote byH (X) its P(Ly=1)= PLXV) 9
entropy rat8. E[L]

Given a (possibly infinite) binary sequencerua of 0's (of  |n other wordsL is distributed according to the size biased
1's) is a maximal subsequence of consecutX® (1's), i.e. version ofp; x. We call this thebit perspectiverun length
an subsequence d@fs bordered byl’s (respectively, ofl’s distribution, and shall often drop the subscriptwhen clear
bordered by's). Denote byS the set of all stationary ergodicfrom the context. Notice that sinck, is a well defined and
processes and b, the set of stationary ergodic processegimost surely finite, we havB[L] < co. It follows that the
such that, with probability one, no run has length largentha empirical distribution of run lengths iX} also converges to

The next lemma shows that we don't lose much by restricting x almost surely, since the first and last run do not matter
ourselves taSy - for large enoughl*. in the limit.

+ . n .
Lemma Ill.2. For anye > 0 there existsly = dy(¢) > 0 such It Lg, L, 'vﬁK are the run lengths in the blocky, it
that the following happens for all < do. For anyX € S such 1S clear that (X¢) <1+ H(Ls, ..., Lk, , Ky,) (where one

that H(X) > 1 + 2dlogd and for anyL* > log(1/d), there bit is needed to remove the, 1 ambiguity). By ergodicity
existsX ;- € Sy such that K, /n — 1/E[L] almost surely as — oo. This also implies

H(K,)/n — 0. Further,limsup,,_,., H(L1,...,Lk,)/n <
I(X) < I(Xpe)+d"?(L*) og L™ . (™) lim, .o H(L)K,,/n = H(L)/E[L]. If H(X) is the entropy

We are left with the problem of boundingX) from above rate of the pracesk, by taking then — oo limit, it is easy
to deduce that

for all X € Sz-. The next lemma establishes such a bound.

Lemma II.3. For anye > 0 there existsly = dy(e¢) > 0 such H(X) < % , (10)
that the following happens. For any* € N and anyX € Sp- [L]
if d < do(e), then with equality if and only ifX consists of iid runs with common

distributionpy,.
For convenience of notation, defipn¢X) = E[L]. We know
Proof of Theoreri Tl1:Lemma[ll.1 shows achievability. that givenE[L] = u, the probability distribution with largest
The converse follows from Lemmas1ll.2 ahd 1l1.3 wifli = possible entropyd (L) is geometric with meap, i.e.p. (1) =

I(X) < 14dlogd — Ayd +d?~ (1 +d*/2L*).  (8)

|1/d). B (1-1/p)'1/uforalll>1, leading to
IV. PROOFS OF THELEMMAS H(L 1 1 1 1
. . . . LS—(l——)log(l——)——log—Eh(l/u)
In Sectior IV-A we characterize any stationary ergddim E[L] 7 weooopu T
terms of its ‘bit perspective’ and ‘block perspective’ rlamgth (11)
distributions, and show that these distributions must bsecl Here we introduced the notatioh(p) = —plogp — (1 —

to the distributions obtained for the iid Bernoyllf2) process.
In Sectior IV-B we construct a modified deletion process th : .
P In light of LemmdTIL.] we can restrict ourselves #(X) >

allows accurate estimation df (Y| X™) in the smalld limit. . ; .
Finally, in Section(IV-C we present proofs of the Lemma% + 2dlogd. Using this, we are able to obtain sharp bounds

quoted in Sectiofi 1]l using the tools developed. on pr, and p(X).
We will often write X! for the random vector Lemma IV.1. There existsl, > 0 such that, for anyX € S
(Xas Xat1,...,Xp) where theX;’s are distributed according with H(X) > 1 + 2dlogd,

to the proces.
|u(X) — 2] < 4/100 dlog(1/d). (12)

210g(1 — p) for the binary entropy function.

A. Characterization in terms of runs
Consider a stationary ergodic process Without loss of for all d < do.

generality we can assume that almost surely all runs hate fini ~ p5of: By Egs. [I0) and[{11), we havi(1/p) > 1 +
length (by ergodicity and stationarity this only excludés t 2dlog d. By Pinsker’s inequalityi(p) < 1_(1_2p)2/(2_1n 2),
constant) and constant processes). Let, be the length of 4 thereforell — (2/p)|? < (41n2)dlog(1/d). The claim

the run containing positiof in X. Let L, be the length of first ¢, 10ws from simple calculus. -
run to occur to the right of positiofi in X and, in general,



Lemma IV.2. There existsX’ < co anddy > 0 such that, for and therefore summing Eq$§.(23) andl(22)
any X € § with H(X) > 1+ 2dlogd, and anyd < d,

Ipr(
= , Z\ U | <20k + o) VAR /AP . (24)
> o) — 5| < K'\/dlog(1/d) . 13) o
=1 We know thatP(Ly = 1) = Ipr(1)/u(X). The proof is
Proof: Let pj (1) = 1/2!, 1 > 1 and recall thai(X) = completed by using Eq[(24) and boundipgX) with the
E[L] =351 pr(1)l. An explicit calculation yields Lemma[lV.]1. u
H(pr) = p(X) — D(pL|lp1) - (14) B. A modified deletion process
Now, by Pinsker’s inequality, We define an auxiliary sequence of channBfs whose
output —denoted b)Y(X")— is obtained by modifying the
D(pcllpr) = 2||pL Pillry - (15) deletion channel output in the following way. If an ‘extedde

n’' (i.e. a runR along with one additional bit at each end

of R) undergoes more than one deletion under the deletion

channel, therR will experience no deletion in channBI’n,

Lemma IV.3. There existsK” < oo anddy > 0 such that, i.e. the corresponding bits apesentin Y (X™). Note that

for anyX € S with H(X) > 1 + 2dlogd, and anyd < dj, (deletions in) the additional bits at the ends are not adfibct

oo ! Formally, we construct this sequence of channels as follows

Z ST < K"+/d(log(1/d))3. (16) when the input is a stationary proceXs Let D be an iid

=1 Bernoulli(d) process, independent &f, with D} being the
Proof: Let Iy = |—log(K’'\/dlog(1/d))]. It follows

from Lemma1V.2 that

Combining LemmalTVll, and Eq4.(10), {14) afd](15), we ge
the desired result.

P(Lo=1)—

n-bit vector that contains & if and only if the correspondlng
bit in X™ is deleted by the channél,,. We defmdD)(ID) X) to
be the process containing a subset of thén ID. The process

lo

p D is obtained by deterministically flipping some of thein D
; prll) = 57| < K'y/dlog(1/d), (17) as described above, simultaneously for all runs. The owtput
L T the channeW is simply defined by deleting fronX™ those
which in turn implies bits whose positions correspond 1s in D.
0 b=l Notice that(X,DD, D) are jointly stationary. The sequence
ZZPL(Z) > Z o (18)  of channelslV,, are defined byD, and the coupled sequence
=0 of channelsiV,, are defined b)D We emphasize thdd is a
Summing the geometric series, we find that there existsfumnction of (X, D). LetZ = D@D (where® is componentwise
constantK; < oo such that sum modul@®). The proces. is stationary withP(Z, = 1) =
2z =E[d — d(1 — d)F°t1] < 2d?E[L]. Note thatz = O(d?)
Z 5 =Uo+1) 21l < Ky \/d(log(1/d))3 . (19) for E[Lo] = O(1).
I1=lo The following lemma shows the utility of the modified
Using the identity";°, 127! = 2, together with Eqs[{18) deletion process.
and [19), we get Lemma IV.4. Consider anyX € S such thatE[Lg log Lo] <
lo oco. Then
3
Zlm(” 22— Kyy/d(log(1/d))°. (20) lim ~H(D"|X", V") = dE[log Lo] — 6,  (25)

n—oo n

Combining th|s result with Lemma_ V.1, we conclude (evenynereo < § = §(d,X) < 2d?E[Lg log Lo).
tually enlarging the constarit’;)
Proof: Fix a channel input:™ and any possible output

Z Ipp(l) < 2K1+/d(log(1/d))3 . (21) y= y( ") (i.e. an output that occurs with positive probability
I=lg+1 B under W, ). The proof consists in estimating (the logarithm

. . . of) the number of realizations ab" that might lead to the
Using this result together with Ed.(19), we get input/ouput pair(z™, y), and then taking the expectation over

Z llpr(1) — %| < 4K;+/d(log(1/d))3. (22) (", 7).

Proceeding from left to right, and using the constraint on

I=lott D, we can map unambiguously each rungitio one or more

From a direct application of Lemnfa1V.2 it follows thatyyng iny», that gave rise to it through the deletion process.
there exists a constar{, < oo, such that Consider a run of lengthi in 3. If there is a unique ‘parent’
lo run, it must have length or ¢+ 1. If the length of the parent

l
E Ipr(l) — ﬁ‘ < Kay/d(log(1/d))3. (23) run is ¢, then no deletion occurred in this run, and hence
=1 the contribution toH (D" |z™,y) of such runs vanishes. If the




length of the parent run i6+ 1, one bit was deleted bW" Y, with a1 wherever the corresponding bit .- is flipped
and each of thé + 1 possibilities is equally likely, leading to relative toY’, and0s elsewhere. The expected fractionlcg
a contributionlog(¢ + 1) to H(D"|z", 7). in F' is at mosta. Therefore

Finally, if there are multiple parent runs of lengths
l1,1s,...,1k, they must be separated by single bits of taking H(F) < n(1 = d)h(a) +log(n +1). (26)
the opposne value ", all of which were deleted. It also Notice thatY” is a deterministic function ofYz-, F') andYy, -
must be the case thil 1 li = ¢ i.e. there is no ambiguity is a deterministic function ofY, F'), whence
in D™. This also implied; < /.

Notice that the three cases described corresponds to three [H(Y) = H(Y1-)| < H(F). (27)
different lengths for the run i. This allows us to sequentially Further X —Xp- — X7, — Y7« form a Markov chain, an&,-,
associate runs ig with runs inz", as claimed. X7. are deterministic functions &f. Hence H (Y- | X}.) =

By the above argumenti(D"|z",y") = >, cplog(ly) H(Yr-|X). Similarly, H(Y|X™) = H(Y|X). Therefore (the
whereD is the set of runs on which deletions did occur, ansecond step is analogous to Eg.1(27))
¢, are their lengths. Using the definition &f, the sum can " o
be expressed 5., D; log(£(;), with £(;) the length of the [H (Y- |XE-) = HYIX™)| = (28)
run containing the-th bit. Using the definition oD, we get = [H(Y1-[X) - HY[X)| < H(F).

P(D; = 1) = d(1—d)*@ " € (d— (£ +1)d?, d) (exceptfor It follows from Lemmal[lV3 andL* > log(1/d) that
the last and first block in™, that can be disregarded). Takingy < 2K, /d(log(1/d))3/L* for sufficiently smalld. Hence,
expectation and letting — oo we get the claim. B ) < dl/ZfelogL*/(gL*) for d < do(e), for some
> 0. The result follows by combining Eqd._(26). {27)

Corollary IV.5. Under the assumptions of the last Lemma{‘l0

and [28) to bound!(X) — I(Xy+)|. [
and denoting b the binary entropy function, we have
9 byi(p) y by Proof of LemmﬂB If H(X) < 1+ 2dlogd, we
lim lH(Y(Xn”Xn) = h(d) — dE[log Lo] + 6 , are done. Else we proceed as follows. We know %iaX ")
n—oo N contains Binomidin, 1 — d) bits, leading immediately to

where—2h(z) < § = §(d, X) < 2d*E[Lg log Lo] + 2h(z) and
2 =d—E[d(1 — d)Lot1].

Proof: By definition, D" is independent o ™. We have,

H(Y)<n(l-d)+log(n+1). (29)

We use the lower bound aif (Y| X™) from Corollary{TV.8. We
havez < 2d%E[Ly]. It follows from LemmdIV.3 thaft[L] <

ory = Y Ki(1 + +/d(log(1/d))3L*), leading toh(z) < .5d>~<(1 +
HY|X™) = H(D"|X™) — H(D" X", Y) (1/2)d"/>L*) for all d < do, wheredy = do(e) > 0. Thus,
= nh(d) — H(D"|X™,Y) + ndy, we have the bound

1 n —€ *
with |61 (d, X)| < 2H(Z™)/n < 2h(z). In the second equality ;X5 hm H(Y|X ) > h(d) — dE[log Lo] — d*~“(1 + .5d"/?L")

we used the fact that the pait¢X",Y, D"), (X", Y, D")) WA 00 o—i—1 _
and((X™,Y), (X", Y)) are both of the forn{A4, B) such that Using Lemm , we haviEllog Lol -3, 27 U log | =

(1/2)—e¢ *
A is a function of(B, Z™) and B is a function of(A, Z™), old log L”). The result follows. "
= |H(A) — H(B)| < H(Z"). B Acknowledgments. Y. Kanoria is supported by a 3Com
C. Proofs of Lemmas T 112 and M3 Corporation Stanford Graduate Fellowship. Y. Kanoria and A

. Montanari were supported by NSF, grants CCF-0743978 and
Proof of LemmalILL: Clearly, X* has run length ccr 0915145, and a Terman fellowship.
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