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Abstract—The deletion channel is the simplest point-to-point
communication channel that models lack of synchronization.
Despite significant effort, little is known about its capacity, and
even less about optimal coding schemes. In this paper we initiate a
new systematic approach to this problem, by demonstrating that
capacity can be computed in a series expansion for small deletion
probability. We compute two leading terms of this expansion, and
show that capacity is achieved, up to this order, by i.i.d. uniform
random distribution of the input.

We think that this strategy can be useful in a number of
capacity calculations.

I. I NTRODUCTION

The (binary) deletion channel accepts bits as inputs, and
deletes each transmitted bit independently with probability
d. Computing or providing systematic approximations to its
capacity is one of the outstanding problems in information
theory [1]. An important motivation comes from the need to
understand synchronization errors and optimal ways to cope
with them.

In this paper we suggest a new approach. We demonstrate
that capacity can be computed in a series expansion for small
deletion probability, by computing the first two orders of such
an expansion. Our main result is the following.

Theorem I.1. LetC(d) be the capacity of the deletion channel
with deletion probabilityd. Then, for smalld and anyǫ > 0,

C(d) = 1 + d log d−A1 d+O(d3/2−ǫ) , (1)

where A1 ≡ log(2e) −
∑∞

l=1 2
−l−1l log l. Further, the iid

Bernoulli(1/2) process achieves capacity up to corrections of
order O(d3/2−ǫ).

Logarithms here (and in the rest of the paper) are understood
to be in base2. The constantA1 can be easily evaluated to
yield A1 ≈ 1.154163765. While one might be skeptical about
the concrete meaning of asymptotic expansions of the type
(1), they often prove surprisingly accurate. For instance at 10%
deletion probability, Eq. (1) is off the best lower bound proved
in [5] by about 0.010 bits. More importantly they provide
useful design insight. For instance, the above result showsthat
Bernoulli(1/2) is an excellent starting point for the optimal
input distribution. Next terms in expansion indicate how to
systematically modify the input distribution ford > 0 [2].

We think the strategy adopted here might be useful in other
information theory problems. The underlying philosophy is
that whenever capacity is known for a specific value of the
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Fig. 1. Comparison of the asymptotic formula (1) (continuous line) with
upper bounds from [6] (stars∗) and lower bounds from [5] (squares,�). The
O(d3/2−ǫ) term in (1) was simply dropped.

channel parameter, and the corresponding optimal input dis-
tribution is unique and well characterized, it should be possible
to compute an asymptotic expansion around that value. Here
the special channel is the perfect channel, i.e. the deletion
channel with deletion probabilityd = 0. The corresponding
input distribution is the iid Bernoulli(1/2) process.

A. Related work

Dobrushin [3] proved a coding theorem for the deletion
channel, and other channels with synchronization errors. He
showed that the maximum rate of reliable communication is
given by the maximal mutual information per bit, and proved
that this can be achieved through a random coding scheme.
This characterization has so far found limited use in proving
concrete estimates. An important exception is provided by the
work of Kirsch and Drinea [4] who use Dobrushin coding
theorem to prove lower bounds on the capacity of channels
with deletions and duplications. We will also use Dobrushin
theorem in a crucial way, although most of our effort will be
devoted to proving upper bounds on the capacity.

Several capacity bounds have been developed over the last
few years, following alternative approaches, and are surveyed
in [1]. In particular, it has been proved thatC(d) = Θ(1− d)
as d → 1. However determining the asymptotic behavior in
this limit (i.e. finding a constantB1 such thatC(d) = B1(1−
d)+ o(1− d)) is an open problem. When applied to the small
d regime, none of the known upper bounds actually captures
the correct behavior (1). As we show in the present paper, this
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behavior can be controlled exactly.
When this paper was nearing submission, a preprint by

Kalai, Mitzenmacher and Sudan [7] was posted online, proving
a statement analogous to Theorem I.1. The result of [7] is
however not the same as in Theorem I.1: only thed log d term
of the series is proved in [7]. Further, the two proofs are based
on very different approaches.

II. PRELIMINARIES

For the reader’s convenience, we restate here some known
results that we will use extensively, along with with some
definitions and auxiliary lemmas.

Consider a sequence of channels{Wn}n≥1, where Wn

allows exactlyn inputs bits, and deletes each bit independently
with probabilityd. The output ofWn for inputXn is a binary
vector denoted byY (Xn). The length ofY (Xn) is a binomial
random variable. We want to find maximum rate at which
we can send information over this sequence of channels with
vanishingly small error probability.

The following characterization follows from [3].

Theorem II.1. Let

Cn =
1

n
max
pXn

I(Xn;Y (Xn)) . (2)

Then, the following limit exists

C = lim
n→∞

Cn = inf
n≥1

Cn , (3)

and is equal to the capacity of the deletion channel.

Proof: This is just a reformulation of Theorem 1 in [3],
to which we add the remarkC = infn≥1 Cn, which is of
independent interest. In order to prove this fact, considerthe
channelWm+n, and letXm+n = (Xm

1 , Xm+n
m+1 ) be its input.

The channelWm+n can be realized as follows. First the input
is passed through a channel̃Wm+n that introduces deletions
independently in the two stringsXm

1 andXm+n
m+1 and outputs

Ỹ (Xm+n
1 ) ≡ (Y (Xm

1 ), |, Y (Xm+n
m+1 )) where | is a marker.

Then the marker is removed.
This construction proves thatWm+n is physically degraded

with respect tõWm+n, whence

(m+ n)Cm+n ≤ max
p
Xm+n

I(Xm+n; Ỹ (Xm+n
1 ))

≤ mCm + nCn .

Here the last inequality follows from the fact that̃Wm+n is
the product of two independent channels, and hence the mutual
information is maximized by a product input distribution.

Therefore the sequence{nCn}n≥1 is sub-additive, and the
claim follows from Fekete’s lemma.

A last useful remark is that, in computing capacity, we can
assume(X1, . . . , Xn) to be n consecutive coordinates of a
stationary ergodic process.

Lemma II.2. Let X = {Xi}i∈Z be a stationary and ergodic
process, withXi taking values in{0, 1}. Then the limitI(X) =
limn→∞

1
nI(X

n;Y (Xn)) exists and

C = max
X stat. erg.

I(X) . (4)

Proof: Take any stationaryX, and let In =
I(Xn;Y (Xn)). Notice that Y (Xn

1 ) − Xn
1 − Xn+m

n+1 −

Y (Xn+m
n+1 ) form a Markov chain. DefineỸ (Xn+m) as

in the proof of Theorem II.1. As before we have
In+m ≤ I(Xn+m, Ỹ (Xn+m)) ≤ I(Xm

1 ; Ỹ (Xm
1 )) +

I(Xm+n
m+1 ;Y (Xm+n

m+1 )) = Im + In. (the last identity follows
by stationarity ofX). Thus Im+n ≤ In + Im and the limit
limn→∞ In/n exists by Fekete’s lemma, and is equal to
infn≥1 In/n.

Clearly,In ≤ Cn for all n. Fix anyε > 0. We will construct
a processX such that

IN/N ≥ C − ε ∀ N > N0(ε) , (5)

thus proving our claim.
Fix n such thatCn ≥ C−ε/2. ConstructX with iid blocks

of length n with common distributionp∗(n) that achieves
the supremum in the definition ofCn. In order to make this
process stationary, we make the first complete block to the
right of the position0 start at positions uniformly random in
{1, 2, . . . , n}. We call the positions the offset. The resulting
process is clearly stationary and ergodic.

Now considerN = kn + r for some k ∈ N and
r ∈ {0, 1, . . . , n− 1}. The vectorXN

1 contains at leastk − 1
complete blocks of sizen, call themX(1), X(2), . . . , X(k−1)
with X(i) ∼ p∗(n). The blockX(1) starts at positions. There
will be further r + n − s + 1 bits at the end, so thatXN

1 =
(Xs−1

1 , X(1), X(2), . . . , X(k−1), XN
s+kn). Abusing notation,

we write Y (i) for Y (X(i)). Given the outputY , we define
Ỹ = (Y (Xs−1

1 )|Y (1)|Y (2)| . . . |Y (k− 1)|Y (XN
s+(k−1)n)), by

introducingk synchronization symbols|. There are at most
(n+1)k possibilities forỸ givenY (corresponding to potential
placements of synchronization symbols). Therefore we have

H(Y ) = H(Ỹ )−H(Ỹ |Y )

≥ H(Ỹ )− log((n+ 1)k)

≥ (k − 1)H(Y (1))− k log(n+ 1) ,

where we used the fact that the(X(i), Y (i))’s are iid. Further

H(Y |XN ) ≤ H(Ỹ |XN ) ≤ (k − 1)H(Y (1)|X(1)) + 2n ,

where the last term accounts for bits outside the blocks. We
conclude that

I(XN ;Y (XN )) = H(Y )−H(Y |XN )

≥ (k − 1)nCn − k log(n+ 1)− 2n

≥ N(Cn − ε/2) ,

provided log(n + 1)/n < ε/10, N > N0 ≡ 10n/ε. Since
Cn ≥ C − ε/2, this in turn implies Eq. (5).

III. PROOF OF THE MAIN THEOREM: OUTLINE

In this section we provide the proof of Theorem I.1. We
defer the proof of several technical lemmas to the next section.

The first step consists in proving achievability by estimating
I(X) for the iid Bernoulli(1/2) process.



Lemma III.1. Let X∗ be the iidBernoulli(1/2) process. For
any ǫ > 0, we have

I(X∗) = 1 + d log d−A1 d+O(d2−ǫ) . (6)

Lemma II.2 allows us to restrict our attention to stationary
ergodic processes in proving the converse. In light of Lemma
III.1, we can further restrict consideration to processesX

satisfyingI(X) > 1+2d log d and henceH(X) > 1+2d log d
(here and below, for a processX, we denote byH(X) its
entropy rate).

Given a (possibly infinite) binary sequence, arun of 0’s (of
1’s) is a maximal subsequence of consecutive0’s (1’s), i.e.
an subsequence of0’s bordered by1’s (respectively, of1’s
bordered by0’s). Denote byS the set of all stationary ergodic
processes and bySL the set of stationary ergodic processes
such that, with probability one, no run has length larger thanL.
The next lemma shows that we don’t lose much by restricting
ourselves toSL∗ for large enoughL∗.

Lemma III.2. For anyǫ > 0 there existsd0 = d0(ǫ) > 0 such
that the following happens for alld < d0. For anyX ∈ S such
that H(X) > 1 + 2d log d and for anyL∗ > log(1/d), there
existsXL∗ ∈ SL∗ such that

I(X) ≤ I(XL∗) + d1/2−ǫ(L∗)−1 logL∗ . (7)

We are left with the problem of boundingI(X) from above
for all X ∈ SL∗ . The next lemma establishes such a bound.

Lemma III.3. For anyǫ > 0 there existsd0 = d0(ǫ) > 0 such
that the following happens. For anyL∗ ∈ N and anyX ∈ SL∗

if d < d0(ǫ), then

I(X) ≤ 1 + d log d−A1d+ d2−ǫ(1 + d1/2L∗) . (8)

Proof of Theorem I.1:Lemma III.1 shows achievability.
The converse follows from Lemmas III.2 and III.3 withL∗ =
⌊1/d⌋.

IV. PROOFS OF THELEMMAS

In Section IV-A we characterize any stationary ergodicX in
terms of its ‘bit perspective’ and ‘block perspective’ run-length
distributions, and show that these distributions must be close
to the distributions obtained for the iid Bernoulli(1/2) process.
In Section IV-B we construct a modified deletion process that
allows accurate estimation ofH(Y |Xn) in the smalld limit.
Finally, in Section IV-C we present proofs of the Lemmas
quoted in Section III using the tools developed.

We will often write Xb
a for the random vector

(Xa, Xa+1, . . . , Xb) where theXi’s are distributed according
to the processX.

A. Characterization in terms of runs

Consider a stationary ergodic processX. Without loss of
generality we can assume that almost surely all runs have finite
length (by ergodicity and stationarity this only excludes the
constant0 and constant1 processes). LetL0 be the length of
the run containing position0 in X. LetL1 be the length of first
run to occur to the right of position0 in X and, in general,

let Li be the length of thei-th run to the right of position
0. Let pL,X denote the limit of the empirical distribution of
L1, L2, . . . , LK , as K → ∞. By ergodicity pL,X is a well
defined probability distribution onN. We callpL,X the block-
perspectiverun length distribution for obvious reasons, and
useL to denote a random variable drawn according topL,X.

It is not hard to see that, for anyl ≥ 1,

P(L0 = l) =
lpL,X(l)

E[L]
. (9)

In other wordsL0 is distributed according to the size biased
version of pL,X. We call this thebit perspectiverun length
distribution, and shall often drop the subscriptX when clear
from the context. Notice that sinceL0 is a well defined and
almost surely finite, we haveE[L] < ∞. It follows that the
empirical distribution of run lengths inXn

1 also converges to
pL,X almost surely, since the first and last run do not matter
in the limit.

If L+
0 , L1, . . . , LK are the run lengths in the blockXn

0 , it
is clear thatH(Xn

0 ) ≤ 1 +H(L1, . . . , LKn
,Kn) (where one

bit is needed to remove the0, 1 ambiguity). By ergodicity
Kn/n → 1/E[L] almost surely asn → ∞. This also implies
H(Kn)/n → 0. Further,lim supn→∞ H(L1, . . . , LKn

)/n ≤
limn→∞ H(L)Kn/n = H(L)/E[L]. If H(X) is the entropy
rate of the processX, by taking then → ∞ limit, it is easy
to deduce that

H(X) ≤
H(L)

E[L]
, (10)

with equality if and only ifX consists of iid runs with common
distributionpL.

For convenience of notation, defineµ(X) ≡ E[L]. We know
that givenE[L] = µ, the probability distribution with largest
possible entropyH(L) is geometric with meanµ, i.e.pL(l) =
(1− 1/µ)l−11/µ for all l ≥ 1, leading to

H(L)

E[L]
≤ −

(
1−

1

µ

)
log

(
1−

1

µ

)
−

1

µ
log

1

µ
≡ h(1/µ) .

(11)

Here we introduced the notationh(p) = −p log p − (1 −
p) log(1− p) for the binary entropy function.

In light of Lemma III.1 we can restrict ourselves toH(X) >
1 + 2 d log d. Using this, we are able to obtain sharp bounds
on pL andµ(X).

Lemma IV.1. There existsd0 > 0 such that, for anyX ∈ S
with H(X) > 1 + 2d log d,

|µ(X)− 2| ≤
√
100 d log(1/d) . (12)

for all d < d0.

Proof: By Eqs. (10) and (11), we haveh(1/µ) ≥ 1 +
2d log d. By Pinsker’s inequalityh(p) ≤ 1−(1−2p)2/(2 ln 2),
and therefore|1 − (2/µ)|2 ≤ (4 ln 2)d log(1/d). The claim
follows from simple calculus.



Lemma IV.2. There existsK ′ < ∞ andd0 > 0 such that, for
anyX ∈ S with H(X) > 1 + 2d log d, and anyd < d0,

∞∑

l=1

∣∣∣∣pL(l)−
1

2l

∣∣∣∣ ≤ K ′
√
d log(1/d) . (13)

Proof: Let p∗L(l) = 1/2l, l ≥ 1 and recall thatµ(X) =
E[L] =

∑
l≥1 pL(l)l. An explicit calculation yields

H(pL) = µ(X)−D(pL||p
∗
L) . (14)

Now, by Pinsker’s inequality,

D(pL||p
∗
L) ≥

2

ln 2
||pL − p∗L||

2
TV . (15)

Combining Lemma IV.1, and Eqs. (10), (14) and (15), we get
the desired result.

Lemma IV.3. There existsK ′′ < ∞ and d0 > 0 such that,
for anyX ∈ S with H(X) > 1 + 2d log d, and anyd < d0,

∞∑

l=1

∣∣∣∣P(L0 = l)−
l

2l+1

∣∣∣∣ ≤ K ′′
√
d(log(1/d))3 . (16)

Proof: Let l0 = ⌊− log(K ′
√
d log(1/d))⌋. It follows

from Lemma IV.2 that
l0∑

l=1

∣∣∣∣pL(l)−
1

2l

∣∣∣∣ ≤ K ′
√
d log(1/d) , (17)

which in turn implies

l0∑

l=0

lpL(l) ≥

l0−1∑

l=0

l

2l
. (18)

Summing the geometric series, we find that there exists a
constantK1 < ∞ such that

∞∑

l=l0

l

2l
= (l0 + 1)21−l0 ≤ K1

√
d(log(1/d))3 . (19)

Using the identity
∑∞

l=0 l 2
−l = 2, together with Eqs. (18)

and (19), we get

l0∑

l=0

lpL(l) ≥ 2−K1

√
d(log(1/d))3 . (20)

Combining this result with Lemma IV.1, we conclude (even-
tually enlarging the constantK1)

∞∑

l=l0+1

lpL(l) ≤ 2K1

√
d(log(1/d))3 . (21)

Using this result together with Eq. (19), we get
∞∑

l=l0+1

|lpL(l)−
l

2l
| ≤ 4K1

√
d(log(1/d))3 . (22)

From a direct application of Lemma IV.2 it follows that
there exists a constantK2 < ∞, such that

l0∑

l=1

∣∣∣lpL(l)−
l

2l

∣∣∣ ≤ K2

√
d(log(1/d))3 . (23)

and therefore summing Eqs. (23) and (22)
∞∑

l=1

∣∣∣ lpL(l)
2

−
l

2l+1

∣∣∣ ≤ 2(K1 +K2)
√
d(log(1/d))3 . (24)

We know thatP(L0 = l) = lpL(l)/µ(X). The proof is
completed by using Eq. (24) and boundingµ(X) with the
Lemma IV.1.

B. A modified deletion process

We define an auxiliary sequence of channelŝWn whose
output –denoted bŷY (Xn)– is obtained by modifying the
deletion channel output in the following way. If an ‘extended
run’ (i.e. a runR along with one additional bit at each end
of R) undergoes more than one deletion under the deletion
channel, thenR will experience no deletion in channel̂Wn,
i.e. the corresponding bits arepresentin Ŷ (Xn). Note that
(deletions in) the additional bits at the ends are not affected.

Formally, we construct this sequence of channels as follows
when the input is a stationary processX. Let D be an iid
Bernoulli(d) process, independent ofX, with Dn

1 being the
n-bit vector that contains a1 if and only if the corresponding
bit in Xn is deleted by the channelWn. We defineD̂(D,X) to
be the process containing a subset of the1s in D. The process
D̂ is obtained by deterministically flipping some of the1s inD

as described above, simultaneously for all runs. The outputof
the channel̂Wn is simply defined by deleting fromXn those
bits whose positions correspond to1s in D̂.

Notice that(X,D, D̂) are jointly stationary. The sequence
of channelsWn are defined byD, and the coupled sequence
of channelŝWn are defined bŷD. We emphasize that̂D is a
function of(X,D). LetZ ≡ D⊕D̂ (where⊕ is componentwise
sum modulo2). The processZ is stationary withP(Z0 = 1) ≡
z = E[d − d(1 − d)L0+1] ≤ 2 d2 E[L0]. Note thatz = O(d2)
for E[L0] = O(1).

The following lemma shows the utility of the modified
deletion process.

Lemma IV.4. Consider anyX ∈ S such thatE[L0 logL0] <
∞. Then

lim
n→∞

1

n
H(D̂n|Xn, Ŷ n) = dE[logL0]− δ , (25)

where0 ≤ δ = δ(d,X) ≤ 2d2E[L0 logL0].

Proof: Fix a channel inputxn and any possible output
ŷ = ŷ(xn) (i.e. an output that occurs with positive probability
under Ŵn). The proof consists in estimating (the logarithm
of) the number of realizations of̂Dn that might lead to the
input/ouput pair(xn, ŷ), and then taking the expectation over
(xn, ŷ).

Proceeding from left to right, and using the constraint on
D̂, we can map unambiguously each run inŷ to one or more
runs in xn, that gave rise to it through the deletion process.
Consider a run of lengthℓ in ŷ. If there is a unique ‘parent’
run, it must have lengthℓ or ℓ+1. If the length of the parent
run is ℓ, then no deletion occurred in this run, and hence
the contribution toH(D̂n|xn, ŷ) of such runs vanishes. If the



length of the parent run isℓ+ 1, one bit was deleted bŷWn

and each of theℓ+1 possibilities is equally likely, leading to
a contributionlog(ℓ + 1) to H(D̂n|xn, ŷ).

Finally, if there are multiple parent runs of lengths
l1, l2, . . . , lk, they must be separated by single bits of taking
the opposite value inxn, all of which were deleted. It also
must be the case that

∑k
i=1 li = ℓ i.e. there is no ambiguity

in D̂n. This also impliesl1 < ℓ.
Notice that the three cases described corresponds to three

different lengths for the run in̂y. This allows us to sequentially
associate runs in̂y with runs inxn, as claimed.

By the above argument,H(D̂n|xn, ŷn) =
∑

r∈D log(ℓr)
whereD is the set of runs on which deletions did occur, and
ℓr are their lengths. Using the definition of̂D, the sum can
be expressed as

∑n
i=1 D̂i log(ℓ(i)), with ℓ(i) the length of the

run containing thei-th bit. Using the definition of̂D, we get
P(D̂i = 1) = d(1−d)ℓ(i)+1 ∈ (d− (ℓ(i)+1)d2, d) (except for
the last and first block inxn, that can be disregarded). Taking
expectation and lettingn → ∞ we get the claim.

Corollary IV.5. Under the assumptions of the last Lemma,
and denoting byh(p) the binary entropy function, we have

lim
n→∞

1

n
H(Y (Xn)|Xn) = h(d)− dE[logL0] + δ ,

where−2h(z) ≤ δ = δ(d,X) ≤ 2d2E[L0 logL0] + 2h(z) and
z = d− E[d(1 − d)L0+1].

Proof: By definition,Dn is independent ofXn. We have,
for Y = Y (Xn),

H(Y |Xn) = H(Dn|Xn)−H(Dn|Xn, Y )

= nh(d)−H(D̂n|Xn, Ŷ ) + nδ1 ,

with |δ1(d,X)| ≤ 2H(Zn)/n ≤ 2h(z). In the second equality
we used the fact that the pairs((Xn, Y,Dn), (Xn, Ŷ , D̂n))
and((Xn, Y ), (Xn, Ŷ )) are both of the form(A,B) such that
A is a function of(B,Zn) andB is a function of(A,Zn),
⇒ |H(A)−H(B)| ≤ H(Zn).

C. Proofs of Lemmas III.1, III.2 and III.3

Proof of Lemma III.1: Clearly, X
∗ has run length

distribution pL(l) = 2−l, l ≥ 1. Moreover,Y (X∗,n) is also
a iid Bernoulli(1/2) string of length∼ Binomial(n, 1 − d).
Hence,H(Y ) = n(1−d)+O(log n). We now use the estimate
of H(Y |X∗,n) from Corollary IV.5. We havez = O(d2) and
E[L0 logL0] < ∞, leading to

H(Y |X∗,n) = n(h(d)− dE[logL0] +O(d2−ǫ)) + o(n) .

ComputingH(Y )−H(Y |X∗,n), we get the claim.
Proof of Lemma III.2: We constructXL∗ by flipping a

bit each time it is the(L∗ + 1)-th consecutive bit with the
same value (either0 or 1). The density of such bits inX
is upper bounded byα = P(L0 > L∗)/L∗. The expected
fraction of bits in the channel outputYL∗ = Y (Xn

L∗) that
have been flipped relative toY = Y (Xn) (output of the same
channel realization with different input) is also at mostα. Let
F = F (X,D) be the binary vector having the same length as

Y , with a 1 wherever the corresponding bit inYL∗ is flipped
relative toY , and0s elsewhere. The expected fraction of1’s
in F is at mostα. Therefore

H(F ) ≤ n(1− d)h(α) + log(n+ 1) . (26)

Notice thatY is a deterministic function of(YL∗ , F ) andYL∗

is a deterministic function of(Y, F ), whence

|H(Y )−H(YL∗)| ≤ H(F ) . (27)

Further,X−XL∗−Xn
L∗−YL∗ form a Markov chain, andXL∗ ,

Xn
L∗ are deterministic functions ofX. Hence,H(YL∗ |Xn

L∗) =
H(YL∗ |X). Similarly, H(Y |Xn) = H(Y |X). Therefore (the
second step is analogous to Eq. (27))

|H(YL∗ |Xn
L∗)−H(Y |Xn)| = (28)

= |H(YL∗ |X)−H(Y |X)| ≤ H(F ) .

It follows from Lemma IV.3 andL∗ > log(1/d) that
α ≤ 2K ′′

√
d(log(1/d))3/L∗ for sufficiently smalld. Hence,

h(α) ≤ d1/2−ǫ logL∗/(2L∗) for d < d0(ǫ), for some
d0(ǫ) > 0. The result follows by combining Eqs. (26), (27)
and (28) to bound|I(X)− I(XL∗)|.

Proof of Lemma III.3: If H(X) ≤ 1 + 2d log d, we
are done. Else we proceed as follows. We know thatY (Xn)
contains Binomial(n, 1− d) bits, leading immediately to

H(Y ) ≤ n(1− d) + log(n+ 1) . (29)

We use the lower bound onH(Y |Xn) from Corollary IV.5. We
havez ≤ 2d2E[L0]. It follows from Lemma IV.3 thatE[L0] ≤
K1(1 +

√
d(log(1/d))3L∗), leading toh(z) ≤ .5d2−ǫ(1 +

(1/2)d1/2L∗) for all d < d0, whered0 = d0(ǫ) > 0. Thus,
we have the bound

lim
n→∞

1

n
H(Y |Xn) ≥ h(d)− dE[logL0]− d2−ǫ(1 + .5d1/2L∗)

Using Lemma IV.3, we have|E[logL0]−
∑∞

l=1 2
−l−1l log l| =

o(d(1/2)−ǫ logL∗). The result follows.

Acknowledgments. Y. Kanoria is supported by a 3Com
Corporation Stanford Graduate Fellowship. Y. Kanoria and A.
Montanari were supported by NSF, grants CCF-0743978 and
CCF-0915145, and a Terman fellowship.

REFERENCES

[1] M. Mitzenmacher, “A survey of results for deletion channels and related
synchronization channels,” Probab. Surveys, 6 (2009), 1-33

[2] Y. Kanoria and A. Montanari, “Optimal coding for the deletion channel
with small deletion probability,” journal version in preparation (2010)

[3] R. L. Dobrushin, “Shannon’s Theorems for Channels with Synchroniza-
tion Errors,” Problemy Peredachi Informatsii, 3 (1967), 18-36

[4] A. Kirsch and E. Drinea, “Directly Lower Bounding the Information
Capacity for Channels with I.I.D. Deletions and Duplications,” Proc. of
2007 IEEE Intl. Symp. on Inform. Theory (ISIT) 2007

[5] E. Drinea and M. Mitzenmacher, “Improved lower bounds for the
capacity of i.i.d. deletion and duplication channels,” IEEE Trans. Inform.
Theory, 53 (2007) 2693-2714

[6] D. Fertonani and T.M. Duman, “Novel bounds on the capacity of binary
channels with deletions and substitutions,” Proc. of 2009 IEEE Intl.
Symp. on Inform. Theory (ISIT) 2009

[7] A. Kalai, M. Mitzenmacher and M. Sudan, “Tight Asymptotic Bounds
for the Deletion Channel with Small Deletion Probabilities”, preprint,
December 23, 2009


	I Introduction
	I-A Related work

	II Preliminaries
	III Proof of the main theorem: Outline
	IV Proofs of the Lemmas
	IV-A Characterization in terms of runs
	IV-B A modified deletion process
	IV-C Proofs of Lemmas III.1, III.2 and III.3

	References

