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Abstract—We study coding for binary channels in which out of
any two consecutive transmitted bits at most one can be affected
by errors. We consider a set of basic coding problems for such
channels, deriving estimates on the size of optimal codes and
providing some constructions. We also study a generalization to
errors separated by at least s = 2, 3, . . . error-free channel uses.
Finally, we define a probabilistic model of a binary channel with
non-adjacent errors and find the capacity of this channel.

Index Terms—Non-adjacent errors, bounds on codes, list
decoding, channel capacity, linear codes

I. INTRODUCTION

Constrained systems, in particular, channels with data-
dependent noise and channels with memory play an important
role in the analysis of performance of magnetic recording
devices and other storage systems [6]. Recent works [4], [7]
considered a model of errors for a high-density magnetic
recording channel, in which the action of errors on the
recorded data depends on the contents of the memory cells.
Under this model, errors can occur in a cell (bit) only if its
contents is different from the contents of the previous cell.
Another feature of this model, imposed by the nature of the
read/write process in memory, is that errors never occur in
adjacent cells. In this paper we assume the last property as
a definition of the error process and analyze the problem of
coding against errors in the combinatorial and probabilistic
contexts.

II. CODES CORRECTING NON-ADJACENT ERRORS

The following general definition characterizes codes cor-
recting a given set of errors.

Definition 2.1: A code C ⊂ {0, 1}n is said to correct errors
from a set E ⊂ {0, 1}n if for all x 6= x′ ∈ C and for any
e, e′ ∈ E,

x + e 6= x′ + e′,

where the addition is modulo 2. Vectors from the set E are
called correctable errors for C.

A vector e = (e1, . . . , en) ∈ {0, 1}n will be called a non-
adjacent error vector if for all 1 ≤ i < n, ei = 1 implies
ei+1 = 0. As usual, the weight (multiplicity) of error wH(e)
is equal to the number of ones in e.
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Let En,t = {e ∈ {0, 1}n : wH(e) ≤ t} and let En,t ⊂ En,t
be the set of all non-adjacent error vectors of weight less
than or equal to t. We say that a code code C is t-non-
adjacent error-correcting if in definition 2.1, E = En,t. In
the standard scenario of coding theory, a t-error-correcting
code corresponds to choosing E = En,t, i.e., all the errors
of multiplicity not exceeding some t > 0.

We begin with computing the cardinality of the set En,t. The
next proposition forms a particular case of Prop. 3.1 below.

Proposition 2.2: For any t, 0 ≤ t ≤ dn+1
2 e and any n ≥ 1

|En,t| =
t∑
i=0

(
n− i+ 1

i

)
. (1)

Remark: Although slightly less obvious, the following is
also true: if t = dn+1

2 e then |En,t| is the (n + 2)nd term in
the sequence of Fibonacci numbers {1, 1, 2, 3, 5, 8, 13, . . . }.

Let h(z) = −z log2 z − (1 − z) log2(1 − z) be the binary
entropy function. Observe that

lim
n→∞

1
n

log |En,τn| = (1− τ) h
( τ

1− τ

)
, (2)

for τ ≤ 1
2 −

√
5

10 ≈ 0.2764. This asymptotic formula
follows from the observation that

(
n−i+1

i

)
increases with i

for i ≤ 1
10 (5n + 2 −

√
5n2 + 20n+ 24). Thus, as long

as t/n ≤ 1
2 −

√
5

10 , the asymptotics of the summation∑t
i=0

(
n−i+1

i

)
is determined by the term

(
n−t+1

t

)
, and (2)

follows by standard estimates of binomial coefficients (for
example, see [5, p. 310]).

A. Bounds on non-adjacent error correcting codes. Clearly
a t-error-correcting code is t-non-adjacent error-correcting.
Somewhat surprisingly, the converse is also true.

Proposition 2.3: A code C is t-non-adjacent error-
correcting if and only if it is t-error-correcting.

Proof: Observe that En,t+En,t = {x+y : x,y ∈ En,t} =
En,2t, or in other words, any vector of weight ≤ 2t can be
written as a sum of two non-adjacent errors of weight ≤ t. At
the same time. also En,t + En,t = En,2t.

Suppose that a code C is t-non-adjacent error-correcting, but
there exist uncorrectable errors e, e′ ∈ En,t, i.e., for a pair of
distinct codewords x,x′ we have x+e = x′+e′. This implies
that x = x′+(e′+e) = x′+z, where z ∈ En,2t Then write
z = e′1 + e1, where e′1, e1 ∈ En,t. This implies the equality
x + e1 = x′ + e′1, which is a contradiction.

It would seem that the problem of correcting t non-adjacent
errors is equivalent to correcting arbitrary t errors. The follow-
ing theorem proves that this is not the case.



Theorem 2.4: There exists a linear code C of rate

lim inf
n→∞

1
n

log |C| ≥ 1
2
(1− h(2τ))

that can correct any t = τn non-adjacent errors with a
polynomial time decoding algorithm.

Proof: We will only consider the case of n even (the case
of odd n is established in a similar way). Let C′ be a linear
[n/2, k, t+1] code1. Construct a code C from C′ by repeating
each coordinate in C′ twice: namely, for each codeword x′ =
(x′1, . . . , x

′
n/2) ∈ C

′, form the vector x ∈ (x1, . . . , xn) ∈ C
by putting x2i = x2i−1 = x′i for 1 ≤ i ≤ n/2. Clearly, the
code C is linear and |C| = |C′|.

The code C is decoded by the following two-step procedure.
Suppose that a vector z = (z1, . . . , zn) ∈ {0, 1}n is received
from the channel. In the first step, we construct a vector z′ =
(z′1, . . . , z

′
n/2) ∈ {0, 1, ε}

n/2 from z; here ε is the erasure
symbol. For 1 ≤ i ≤ n/2, we set z′i = z2i if z2i = z2i−1, or
otherwise we set zi = ε.

If there are at most t non-adjacent errors then z′ will
contain at most t erasure symbols. The code C′ will then be
used to correct them which is possible by a polynomial-time
procedure.

To estimate the cardinality of the code C, take a linear code
C′ of distance t+ 1 that attains the Gilbert-Varshamov lower
bound. Then

|C′| ≥ 2n/2∑t
i=0

(
n/2−1
i

) .
The estimate of the theorem is obtained by using a standard
asymptotic estimate for the sum of binomial coefficients.
This theorem justifies the claim made before its statement:
for τ = 1/4(1 − θ), where θ is small, the estimate of rate
established in it behaves as θ2(log2 e)/4 while the rate of
the best known polynomial-time decodable τn-error-correcting
codes approaches 0 as a constant multiple of θ3.

B. List decoding. The gap between error correcting codes
and non-adjacent error correcting codes becomes even more
pronounced if we consider decoding into a list. Formally,
a code C is list-of-L t-non-adjacent-error-correcting ((L, t)-
NAECC) if for any vector x ∈ {0, 1}n,

|{c ∈ C : x + c ∈ En,t}| ≤ L.

In words, for any received vector x ∈ {0, 1}n, there are at
most L codewords that could be transformed to x by the action
of an error e ∈ En,t.

As usual, let M(n, t;L) be maximum size of an (L, t)-
NAECC of length n. For 0 ≤ τ ≤ 1/2 define

R(τ ;L) = lim inf
n→∞

(1/n) log2M(n, bnτc;L)

and

R(τ ;L) = lim sup
n→∞

(1/n) log2M(n, bnτc;L).

1Throughout the paper we write use the notation C[n, k, d] to refer to a
linear binary code of length n, dimension k and minimum Hamming distance
d.

The following theorem contains elementary upper and lower
bounds on the size of list codes.

Theorem 2.5:

2
nL

L+1∑t
i=0

(
n−i+1

i

) ≤M(n, t;L) ≤ L2n∑t
i=0

(
n−i+1

i

) .
Proof: We begin with the lower bound. Let us construct

the code by choosing M codewords randomly and uniformly
with replacement from {0, 1}n. For a fixed vector y ∈ {0, 1}n,
call the choice of any L+ 1 codewords c1, . . . , cL+1 ‘bad’ if
c1, . . . , cL+1 ∈ {y + e : e ∈ En,t}. Clearly, the expected
number of bad choices for a random code C is less than or
equal to

2n
(

M

L+ 1

)(
|En,t|
2n

)L+1

<
(
M

t∑
i=0

(
n− i+ 1

i

))L+1

2−nL,

where we have used Eq. (1). Take M =
2nL/(L+1)/

∑t
i=0

(
n−i+1

i

)
, then the ensemble-average

number of bad (L + 1)-tuples is less than 1. Therefore there
exists a code of size M in which all the (L + 1)-tuples
of codewords are good. This implies the lower bound on
M(n, t;L).

For the upper bound on M(n, t;L) we again use the
probabilistic method. Let C be an (L, t)-NAECC and let y
be a vector randomly and uniformly chosen from {0, 1}n. For
a fixed codeword c ∈ C, the probability,

Pr(c + y ∈ En,t) =
|En,t|
2n

.

Therefore,

E(|{c ∈ C : c + y ∈ En,t}|) =
|C||En,t|

2n
.

This implies that there exists at least one vector y ∈ {0, 1}n
such that

L ≥ |{c ∈ C : c + y ∈ En,t}| >
|C||En,t|

2n
.

This proves the upper bound on M(n, t;L).
The above theorem along with (2) implies that whenever

τ ≤ 1
2 −

√
5

10 ,

1− (1− τ) h
( τ

1− τ

)
− 1
L+ 1

≤ R(τ ;L) ≤ R(τ ;L)

≤ 1− (1− τ) h
( τ

1− τ

)
+ lim
n→∞

logL
n

. (3)

An equivalent result for list decoding of ordinary binary
code is well known (it is present in some form in [2]): the
estimates (3) are valid for list-of-L t-error-correcting codes if
(1 − τ) h

(
τ

1−τ
)

is replaced by h(τ). Concavity implies that

(1 − τ)h
(

τ
1−τ

)
< h(τ), so we have proved that there exist

codes of higher rates for list decoding in the case of non-
adjacent errors than in the case of usual errors of the same
multiplicity. Thus, non-adjacent errors are less adversarial than
unrestricted errors (as should be expected), so codes of higher
rates are possible. Later in the paper we will see that this claim
also holds true for probabilistic error correction.



III. BIGGER GAPS: INTERMITTENT ERRORS

In this section we consider the case when the gap between
two errors is at least s = 2, 3, . . . bits. Let Esn,t be the set of
all binary vectors of length n and weight t, where between
any two ones, there are at least s zeros. Codes correcting t
intermittent errors satisfy Definition 2.1 with E = Esn,t and
will be called (s, t) intermittent-error correcting.

Proposition 3.1: Let n ≥ (s+ 1)(t− 1) + 1. Then

|Esn,t| =
t∑
i=0

(
n− (i− 1)s

i

)
. (4)

Proof: Let us count the number of binary vectors of
weight i which any two ones are separated by at least s
zeros ((s,∞) patterns in the language of constrained systems).
Trying to place i ones in n cells so that every two are separated
by ≥ s empty cells leaves n − (i − 1)s cells for the ones
themselves. Any placement of ones in these cells gives rise to
a valid vector, which implies the claimed count.

As shown earlier in Prop. 2.3, (1, t)-intermittent error cor-
recting code (non-adjacent error-correcting code) is equivalent
to t-error-correcting code. As s increases from one, we expect
to be able to construct codes of much higher rates for inter-
mittent errors than for usual errors. Let Ms(n, t) be the size
of the largest possible (s, t) intermittent-error correcting code
of length n.

Theorem 3.2: Let n ≥ (s+ 1)(t− 1) + 1. Then

2n

N
≤Ms(n, t) ≤

2n∑t
l=0

(
n−(l−1)s

l

) ,
where

N =
2∑
l=0

(
n

l

)
+ s

(
n− s+ 1

3

)

+
2t∑
l=4

(
s+ 1

2

)l−3(
n− (l − 3)(s− 1)

l

)
.

Proof: The upper bound follows by an elementary
“sphere-packing” argument, while the lower bound is similar
to the Gilbert bound on error-correcting codes. Namely, sup-
pose that c1, c2 ∈ C are two codewords that can be confused
by the decoder. Then there exist e1, e2 ∈ Esn,t such that
c1 = c2 + e, where e = e1 + e2. Let

D = Esn,t + Esn,t = {e1 + e2 : e1, e2 ∈ Esn,t},

then we obtain that Ms(n, t) ≥ 2n/|D|. It remains to show
that |D| ≤ N. Any vector e ∈ D of weight l ≥ 4 must satisfy
the following two properties:

1) 0 ≤ l ≤ 2t,
2) If the positions of the ones in e are j1 < j2 <
· · · < jl, then for all 1 ≤ i ≤ l − 3, the vector
(eji , eji+1, . . . , eji+3) must contain at least s− 1 zeros

To verify the second condition, consider that e = e1 +e2, and
observe that the smallest number of zeros is obtained when
eji , eji+2 are coming from e1, say, and eji+1 , eji+3 from e2,
and when ji+1 = ji + 1 and ji+3 = ji+2 + 1.

Let us count the number of vectors that satisfy property 2.
A vector of weight l contains l− 3 quadruples of consecutive
ones, and we would like that each of these quadruples have
the form (10 . . . 010 . . . 010 . . . 1) with no fewer than s − 1
zeros. As in (4), there are

(
n−(l−3)(s−1)

l

)
possible ways of

placing l ones in n− (l− 3)(s− 1) cells. After that, we place
s − 1 zeros within each quadruple. For one quadruple, there
are

(
s+1
s−1

)
ways of doing this. Overcounting, we assume that

this is true for every quadruple. Taking account of the fact that
0 ≤ l ≤ 2t, we obtain the final estimate.

The cases of l ≤ 3 are easier to handle, and are treated
separately.

Observe that for s = 1 we recover the standard Gilbert-
Varshamov bound from the above theorem, as is to be expected
(recall that correcting t non-adjacent errors is equivalent to
correcting t arbitrary errors). Note also that the calculations
for list decoding of Thm. 2.5 can be generalized to the case
s > 2 without difficulty.

A. Constructions

In this section we make brief remarks on constructing (s, t)-
intermittent error-correcting codes.

Construction 1: Let s = 2m − 1 for some integer m, and
suppose that s divides n. The construction can be extended
without much effort for general s.

Consider a Hamming code H with parameters [s, s−m, 3].
Consider a direct concatenation of n/s copies of H,

C = {(c1|c2| . . . |cn
s
) : ci ∈ H, 1 ≤ i ≤ n/s}.

The rate of the code C is equal to

2m −m− 1
2m − 1

= 1− log (s+ 1)
s

.

The code C is an (s, t)-intermittent error-correcting for any
t ≥ 0. This is because each Hamming sub-block of a codeword
of C has to correct at most one error.

In the next section we consider a probabilistic model of
the channel with intermittent errors. The above construction
establishes that the zero-error capacity for such a channel is
at least 1− log (s+ 1)/s.

Construction 2: The construction of Theorem 2.4 can be
viewed as a concatenation of a binary code A of length
n/2 and a [2, 1, 2] repetition code B. Taking instead a Reed-
Solomon code A of length q = 2s−1 and distance t+ 1 over
Fq and a [s, s − 1, 2] binary single parity-check code B, we
construct a concatenated code C that corrects t intermittent
errors. This is because every block of s symbols will include
at most one error which will be detected by the code B. The set
of ≤ t erasures resulting from inner decoding will be corrected
by the code A. Here the rate of the inner code B is s−1

s , and
the rate of the outer code A is 2s−1−t

2s−1 . The code C will have
length n = s2s−1 and rate R =

(
1 − 1

s

)(
1 − t

2s−1

)
. It is

possible to have more constructions using code concatenation
techniques.



In conclusion, note that both constructions presented here
have polynomial-time encoding and decoding procedures.

IV. CHANNEL CAPACITY

In this section we define a probabilistic channel that cor-
responds to the combinatorial model of non-adjacent errors
studied above. This is a binary-output channel that can make
an error only at positions that are at least s + 1 bits away.
Our goal is to estimate the Shannon-theoretic capacity for this
channel model.

We begin with a set of general definitions pertaining to
finite-state channels and their capacity. A stationary binary
finite state channel (BFSC) [3] is a channel with binary input
x = x1, x2, x3, . . ., binary output y = y1, y2, y3, . . ., and a
state sequence σ = σ1, σ2, σ3, . . .. where each state σn takes
values in a finite set of states S . We assume that the initial state
σ0 also takes values in S. The channel is described statistically
by conditional probabilities P (yiσi|xiσi−1), i ≥ 1, where the
probability distribution does not depend on i.

Let Q(xn) be a probability distribution on the channel input
xn = (x1, . . . , xn). Define the lower and upper capacities of
BFSC by

C = lim
n→∞

Cn, C = lim
n→∞

Cn

where

Cn = n−1 max
Qn(xn)

min
σ0∈S

I(xn; yn | σ0)

Cn = n−1 max
Qn(xn)

max
σ0∈S

I(xn; yn | σ0).

The limits in the above definitions are known to exist. A more
detailed discussion of the upper and lower capacities is found
in [3].

Clearly, Cn ≤ Cn for all n, and thus, C ≤ C. We are in-
terested in the situation when this relation holds with equality.
In particular, this is the case if the channel is indecomposable.
Informally this means that the influence of the initial state
diminishes with time. To give a formal definition, let

q(σn|xn, σ0) =
∑
yn

P (yn, σn|xn, σ0).

A BFSC is called indecomposable if for every ε > 0 there
exists n0 such that for every n ≥ n0

|q(σn|xn, σ0)− q(σn|xn, σ0)| ≤ ε

for all σn,xn, σ0 and σ′0 [3, p.106]. A necessary and sufficient
condition for a BFSC to be indecomposable is given in
Theorem 4.6.3 of [3]: this holds true if for some fixed n and
each xn, there exists a choice for σn (which may depend on
xn) such that

min
σ0

q(σn | xn, σ0) > 0. (5)

The common value of C and C, denoted by C, is called the
capacity of the BFSC. If we assign a probability distribution

to the initial state, so that σ0 becomes a random variable, then
C = limn→∞ Cn, where

Cn =
1
n

max
Qn(xn)

I(xn; yn | σ0). (6)

Clearly, Cn ≤ Cn ≤ Cn for all n, so that C, as defined above,
is indeed the common value of C and C. Note that this is
independent of the choice of the probability distribution on
σ0.

Let us specialize these definitions for a channel model with
intermittent errors. We consider a binary-input binary-output
channel similar to the binary symmetric channel, except that
errors must be separated. Formally, this is a channel with
binary input x = x1, x2, x3, . . . and binary output y =
y1, y2, y3, . . . . The input-output relationship is determined by
a binary sequence u = u1, u2, u3, . . ., which is a Markov
chain, independent of the input sequence x, with transition
probabilities P (ui|ui−1, ui−2, . . . , ui−s) defined as follows:

ui = 0 ui = 1
ui−l = 0, ∀1 ≤ l ≤ s 1− p p

ui−l = 1 for some 1 ≤ l ≤ s 1 0.
(7)

For any i the output of the channel is connected to the input
by the equation

yi = xi + ui.

We call this channel the binary-input intermittent
(BINInter(s, p)) channel.

It is easy to see that the BINInter channel is a BFSC, where
the nth state σn is a number i ∈ {0, 1, 2, . . . , s} , S. Suppose
that ` ≥ 0 is the smallest number such that un−` = 1. If no
such ` exists, then set ` =∞. Whenever ` ≤ s, we set σn = `.
For ` > s, we set σn = s. For completeness, we introduce
an initial state σ0 that takes values in S. When n < s, σn =
min(n+ σ0, `, s).

A related model of a binary-input channel with nonadjacent
erasures was considered in [7].

Let us check that the BINInter channel is indecomposable,
so its capacity is well-defined. The case p = 1 will require
special handling.

Lemma 4.1: The BINInter(s, p) channel is indecomposable
for p < 1.

Proof: We must check that the condition in (5) holds.
Take n = s and σn = s, then minσ0 q(σn | xn, σ0) = (1 −
p)s > 0.

Lemma 4.2: For the BINInter(s, p) channel with parameter
p = 1, we have C = C = C(1) = 1.

Proof: It suffices to prove that C ≥ 1. Since p = 1,
once the initial state σ0 is fixed, the output y of the BINInter
channel becomes a deterministic function of the input x (i.e.
the u sequence is fixed with probability 1). Therefore, for any
fixed a ∈ S, we have H(yn | xn, σ0 = a) = 0, and hence,
I(xn; yn | σ0 = a) = H(yn | σ0 = a). If xn is a sequence of
i.i.d. Bernoulli(1/2) random variables, then H(yn | σ0 = a) =
n for all a ∈ S. It follows that Cn ≥ 1, so that C ≥ 1.



The last two lemmas are very similar to the analogous results
in [7] which considered a BFSC with a data-dependent noise
process described by a two-state Markov chain.

The main result of this section is the following theorem.
Theorem 4.3: For the BINInter(s, p) channel with parame-

ter p ∈ [0, 1], we have C = C = C(p) , 1− h(p)
1+sp .

Proof: We assume that p < 1, so the channel is indecom-
posable and its capacity is defined by (6).

The state sequence σ = σ0, σ1, . . . ;σi ∈ S = {0, 1, . . . , s}
forms a first-order Markov chain whose (nonzero) transition
probabilities are given by

Pr(σn = i+ 1 | σn−1 = i) = 1, 0 ≤ i ≤ s− 1
Pr(σn = 0 | σn−1 = s) = p,

Pr((σn = s | σn−1 = s) = 1− p

All other transition probabilities are zero. The stationary
distribution of this Markov chain is the following:

Pr(σn = s) =
1

1 + sp

Pr(σn = i) =
p

1 + sp
, 0 ≤ i ≤ s− 1.

We assume that the initial state σ0 follows this distribution as
well.

We have

I(xn; yn | σ0) = H(yn | σ0)−H(yn | xn, σ0)
(a)
= H(yn | σ0)−H(un | xn, σ0)
(b)
= H(yn | σ0)−H(σn | σ0),

where (a) is due to the fact that, given xn, the sequences yn

and un uniquely determine each other, and (b) follows because
un is independent of xn. Also given σ0, the sequences u
and σ completely determine each other. Further, since σ is a
stationary first-order Markov process, we have

H(σn | σ0) =
n∑
n=1

H(σn | σn−1) = nH(σ1 | σ0) = n
h(p)

1 + ps
.

Hence,

Cn = n−1 max
Qn(xn)

H(yn | σ0)−
h(p)

1 + ps
. (8)

Clearly, H(yn | σ0) ≤ n. However, if xn is a sequence of
i.i.d. Bernoulli(1/2) random variables, then H(yn | σ0) = n.
Therefore,

lim
n→∞

Cn = 1− h(p)
1 + ps

.

As our final result, we show that capacity of the
BINInter(s, p) can be achieved by binary linear codes.

Theorem 4.4: Let C = 1 − h(p)
1+ps . There exists a sequence

of binary linear codes of growing length n with the following
properties. For every choice of ε, δ > 0, there exists n0 such
that for all codes in the sequence of length n ≥ n0, the code

rate satisfies R ≥ C−ε, and the error probability of maximum
likelihood decoding on the BINInter(s, p) is less than δ.

Proof: (outline) We will prove the theorem by construct-
ing a sequence of linear codes for which the set of “typical
errors” that occur in the channel is formed of vectors with
distinct syndromes.

Let R = C − ε and let n be an integer (the code length).
Consider the ensemble of linear codes defined by random
parity-check matrices of dimensions (1 − R)n × n with
Bernoulli(1/2) independent entries. The rate of any code in
the ensemble is at least R. The probability that two vectors
x 6= y ∈ {0, 1}n have the same syndrome equals

Pr(Hx = Hy) = Pr(H(x + y) = 0) =
1

2n−Rn
.

If such an event occurs, the errors x,y contribute to the
decoding error event. Now let E be an (unspecified) set of
error vectors. By the Lovász Local Lemma (see [1]), if

2e|E|
2n−Rn

≤ 1,

then there exists a matrix H with no two errors in the set
E colliding. The code with this parity-check matrix will have
low error probability of decoding if errors outside E have a
small probability of occurring in the channel.

Now consider the set of vectors of length n (errors) gener-
ated by the random process described in (7). We claim that the
set of typical vectors generated by this process has cardinality

|E| ≤ 1
2e

2n(
h(p)
1+ps +ε) =

1
2e

2n−Rn

(estimating the cardinality is a standard but tedious calculation
which will be omitted). Concluding, there exists a linear code
of rate R = C − ε for which these errors will be decoded
correctly, and thus the overall decoding error probability will
be arbitrarily small.

Acknowledgment. The authors are grateful to Navin Kashyap
and Gilles Zémor for useful discussions of this work.

REFERENCES

[1] N. Alon and J. Spencer, The Probabilistic Method, J. Wiley & Sons,
2000.

[2] P. Elias, “Error-correcting codes for list decoding,” IEEE Trans. Infor-
mation Theory, vol. 37, no. 1, pp. 5–12, Jan. 1991.

[3] R. G. Gallager, Information Theory and Reliable Communication, John
Wiley and Sons, 1968.

[4] A. R. Iyengar, P. H. Siegel, and J. K. Wolf, “Write channel model
for bit-patterned media recording,” in Proc. 21st Magnetic Recording
Conference (TMRC 2010), La Jolla, CA, USA, Aug. 16–18, 2010.

[5] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error-Correcting
Codes, North-Holland, Amsterdam, 1977.

[6] B. H. Marcus, R. M. Roth, and P.H. Siegel, “Constrained systems and
coding for recording channels,” Handbook of Coding Theory, Vol. II,
pp. 1635–1764, North-Holland, Amsterdam, 1998

[7] A. Mazumdar, A. Barg, and N. Kashyap “Coding for high-density
recording on a 1-D granular magnetic medium,” IEEE Trans. Informa-
tion Theory, DOI 10.1109/TIT.2011.2158514 (also arXiv1012:1895).


