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Simplifying Wireless Social Caching
Mohammed Karmoose, Martina Cardone, and Christina Fragouli

Abstract—Social groups give the opportunity for a new form of caching. In this paper, we investigate how a social group of users can
jointly optimize bandwidth usage, by each caching parts of the data demand, and then opportunistically share these parts among
themselves upon meeting. We formulate this problem as a Linear Program (LP) with exponential complexity. Based on the optimal
solution, we propose a simple heuristic inspired by the bipartite set-cover problem that operates in polynomial time. Furthermore, we
prove a worst case gap between the heuristic and the LP solutions. Finally, we assess the performance of our algorithm using
real-world mobility traces from the MIT Reality Mining project dataset and two mobility traces that were synthesized using the SWIM
model. Our heuristic performs closely to the optimal in most cases, showing a better performance with respect to alternative solutions.

Index Terms—Social networks, wireless networks, cooperative caching, linear programming, set-cover problem, polynomial-time
heuristic.
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1 INTRODUCTION

TODAY, a considerable fraction of data requirements in
wireless networks comes from “social groups”. Mem-

bers of a social group share common interests/goals and
exhibit frequent and regular meeting patterns. Situations
may arise where accommodating the data requirements of
a social group through the wireless network is highly costly
and infeasible. Examples of such scenarios are: (1) a group
of students attending an online-course in an economically-
challenged country, where it is costly to download the
material that each student needs; (2) a group of tourists
interested in obtaining touristic advertising and videos in
a foreign country, where it is expensive to have cellular data
connection; (3) in the aftermath of catastrophic emergencies,
where the infrastructured networks are compromised and
it is infeasible to establish stable connections with citizens.
These examples highlight the critical importance of reducing
the dependence on infrastructured networks. By exploit-
ing social interactions among group members, it becomes
possible to distribute the downloading efforts among the
members who can then exchange data through local and
cost-free connections.

We consider a social group of N members who all wish
to acquire (within a time period of duration t) a set ofM files
on their smart wireless devices. These M files are stored on
a server to which theN users have access through a wireless
communication link. Examples of this type of scenarios
include co-workers downloading files needed before a meet-
ing, conference participants downloading presentations for
next sessions, students downloading class materials and
sport fans downloading videos during an event. We assume
that the group members have regular meeting patterns,
which are correlated with the group activity (e.g., work,
sport, entertainment); we model these meeting patterns as
random events. In particular, we assume that with some
probability, members meet each other (one or multiple
times) within the period of interest.

The authors are with the Electrical Engineering Department, Univer-
sity of California, Los Angeles (UCLA), CA 90095 USA (e-mail: mkar-
moose@ucla.edu, martina.cardone@ucla.edu, christina.fragouli@ucla.edu). M.
Karmoose was supported by NSF under Award #1423271. M. Cardone was
supported by NSF under Award #1321120.

In this work we seek to minimize the usage of the
bandwidth. As supported by almost all smart devices to-
day, we assume that users can connect either directly to
the server through a longhaul connection (e.g., cellular),
which is expensive in bandwidth, or to each other, when in
physical proximity, through a local and cost-free Device-to-
Device (D2D) connection (e.g., Bluetooth). At the beginning
of the period, each member downloads a certain amount
of the files through the longhaul (bandwidth expensive)
connection and locally caches this information. When two
(or more) users meet, they exchange what they have in
their caches using local (cost-free) connections. We consider
two variations: in the direct case, users share only the
data they themselves have downloaded (e.g., because of
liability/authentication reasons), while in the indirect case,
users share both the data they themselves have downloaded
as well as the data they have collected through previous
encounters with other members. At the end of the time
period of duration t, if a user has not received yet all
the files, she will download the missing amount of data
through the longhaul connection. The fundamental question
we seek to answer is the following: at the beginning of
the period, how much should each user download through
the longhaul connection, so that the expected total usage of
bandwidth within the period is minimized?

Related Work. Distributed and cooperative caching, as a
means of improving the system performance, has received
considerable attention lately as summarized next.

Work in the literature has considered the ultimate
information-theoretic performance [1], [2], [3]. The common
objective of these works is to find the optimal caching policy
in a scenario where different users have different demands,
where the demands may be uniform [1] or not [2], [3]. In
all these works the amount of caching is known and the
randomness lies in the users demands, while in our scenario
the randomness lies in the member encounters.

In a situation where a group of smartphone users, with
a common and simultaneous demand, are within proxim-
ity, cooperative caching is closely related to cooperative
downloading [4], [5], [6]. The key-ingredient of these works,
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similar to ours, is that each user downloads parts of the
content from the server (through a longhaul connection) and
then disseminates (through a Wi-Fi connection) these parts
to users in proximity. Distinct from these works, we do not
a priori assume that users within the same group will meet
and be able to exchange data within the prescribed period.

In a scenario where cooperative caching is allowed, a
natural question arises on how to create proper incentives
for the different users to cache previously downloaded con-
tent, which potentially is not any more useful. This problem
has been analyzed, e.g., in [7], [8], [9]. In our framework,
since users have a common demand, there is no rebate cost
on communication within a group and members are always
enticed to cache content, leading to distinct algorithms.

Cooperative caching has also been analyzed in the con-
text of delay tolerant networks. In [10], [11], the authors
derive the optimal caching policy that maximizes the social
welfare, i.e., the average system utility. This metric is a
function of other factors, e.g., users impatience and the pop-
ularity of the files. In [12], the authors aim to minimize the
average delay and/or the average consumed energy. This
is achieved by letting the server send random linear com-
binations of data packets to the users, and then - through
heuristic algorithms - determine a set of qualified users to
broadcast the transmissions to others. The differentiating
feature of our work, however, lies in the objective function
we optimize for: the number of downloads from the server.
This implies that in our scenario, even if the members
always have access to the longhaul link, they would anyway
wait until the end of the time period before downloading
from the server. In contrast, the incentive in [10], [11] would
cause the users to download from the server whenever they
have access, while the objective in [12] is to minimize the
average consumed energy and the average delay.

Our work is similar to data offloading in cellular delay-
tolerant networks: here, the goal is to reduce cellular data
traffic by opportunistically sharing data among end-users
through Terminal-To-Terminal (T2T) communications (we
refer to [13] for a comprehensive study on this topic). A
widely used approach is the so-called “subset selection”,
where the central coordinator (i.e., the server) selects a
subset of users to route the required data to other users
in the network. In [14], the authors propose a target-set
approach, where the server selects k users, with the goal
to maximize the number of reached users (through T2T
connections). Since this problem is NP-hard, the authors
propose a sub-optimal greedy heuristic. The authors in
[15] study the regular interaction patterns among users to
predict the VIP users (i.e., those who experience the highest
number of meetings); these are then selected to be the local
data forwarders. Distinct from these works: (i) we show that,
by allowing users to cache network-coded parts of the data,
the problem can be formulated as an easy-to-handle Linear
Program (LP); (ii) thanks to the rigorous mathematical for-
mulation, we prove an analytical performance guarantee of
the proposed caching strategies; (iii) by means of numerical
evaluations on real data, we present scenarios in which our
approach achieves a better performance with respect to [14].

Contributions. We first formulate our problem as an LP,
which allocates amounts of data to download to each mem-

ber so as to minimize the expected total cost (total number
of downloads). Towards this goal, we assume that the data
is coded (as in network coding [16]). Since each user caches
randomly coded data segments, it is unlikely that two
different caches have the same content. Thus, a user receives
novel information whenever she accesses a cache to which
she has not had access before. With this, forN members, we
have 2(N

2 ) possible meeting patterns, each occurring with a
certain probability. The LP is hence of exponential size. We
perform several simplification steps and prove that, in the
symmetric case, i.e., when all pairs of members meet with
equal probability, the complexity of the solution reduces to
linear in N . Moreover, through an artifact, we show how
the indirect case can be studied within the framework of the
direct case without the need to develop a separate one.

We then show a surprising connection between our prob-
lem and the well-known set-cover problem. In particular,
we prove that the solution of the optimal LP is lower
bounded by the weighted sum of the solutions of several set-
cover problems. Each problem is described by an adjacency
matrix, which is related to a possible meeting pattern among
the users; the weight depends on the probability that this
particular meeting pattern occurs.

Next, inspired by the structure of the solution of the
optimal LP, we propose a simple polynomial-time approxi-
mation algorithm that we name AlgCov. AlgCov is related
to the bipartite set-cover problem, reduces to a closed form
expression in the symmetric case, and achieves in our sim-
ulations a performance close to the optimal. Moreover, by
using approximation techniques and tools from LP duality,
we analytically prove that AlgCov outputs a solution that is
at most an additive worst-case gap apart from the optimal;
the gap depends on the number of members and on the
probability that the users meet.

Finally, we evaluate the performance of AlgCov over
real-world datasets. We use data from the MIT Reality Min-
ing project [17], as well as two synthesized mobility traces,
generated by the SWIM model [18]: a simulation tool used
to synthesize mobility traces of users based on their social
interactions. These synthesized traces were created based
on real mobility experiments conducted in IEEE INFOCOM
2005 [19] and Cambridge in 2006 [20]. We assess the perfor-
mance over the case where group members exhibit relatively
symmetric meeting patterns (i.e., users have approximately
the same expected number of users to meet) as well as asym-
metric patterns (i.e., different users have different expected
number of users to meet). For both configurations, AlgCov
achieves a performance close to the optimal. AlgCov perfor-
mance is also compared with alternative solutions, e.g., the
target-set heuristic in [14] and CopCash, a strategy which
incorporates the concept of caching into the cooperative
downloading approach proposed in [5]. This paper is based
on the work in [21], with the following novel contributions:
(i) proofs of the theorems in [21], (ii) Theorems 3.1, 3.3 and
6.1, (iii) connection to the set-cover problem, (iv) CopCash
comparison, and (v) SWIM model experiments.

Paper Organization. Section 2 introduces our problem. Sec-
tion 3 formulates the problem as an exponentially complex
LP and shows that this complexity becomes linear in N in
the symmetric case. Section 4 shows the connection of the
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LP formulation to the set-cover problem. Section 5 proposes
two polynomial time heuristics, based on which we design
AlgCov in Section 6. Section 6 also derives an additive
gap bound on AlgCov from the optimal solution. Section
7 evaluates the performance of AlgCov over real-world
and synthesized traces; Section 7 also provides comparisons
with alternative solutions. Finally Section 8 concludes the
paper. Some of the proofs can be found in the Appendix.

Notation. Lower and upper case letters indicate scalars,
boldface lower case letters denote vectors and boldface up-
per case letters indicate matrices; calligraphic letters indicate
sets; |A| is the cardinality of A, A\B is the set of elements
that belong to A but not to B and Pow(A) is the power set
of A; [n1 : n2] is the set of integers from n1 to n2 ≥ n1;
[x]+ := max{0, x} for x ∈ R; E [·] is the expected value;
1j (respectively, 0j), is a j-long column vector of all ones
(respectively, zeros); AT is the transpose of the matrix A;
1{P} is the indicator function, i.e., it is equal to 1 when
statement P is true and 0 otherwise.

2 SETUP

Goal. We consider a set N of N users ui ∈ N ∀ i ∈ [1 : N ]
who form a social group. All users need to obtain the
same set M of |M| = M information units (files), that
are available from a server, within the same time period
of duration t. Users can access the server through a direct
longhaul wireless link that has a cost c per downloaded
information unit. They can also exchange data with each
other through a cost free D2D communication link, when
(and if) they happen to physically encounter each other -
when their devices can directly connect to each other, e.g.
through Bluetooth. Our goal is to minimize the average total
downloading cost across the user group. Clearly, with no
cooperation, the total cost is NMc.

Assumptions. We make the following assumptions.
• Complete encounter cache exchange. According to [22],
the average contact duration between two mobile devices
is 250 seconds, sufficient for delivering approximately 750
MBs using standard Bluetooth 3.0 technology. Thus, we
assume that encounters last long enough to allow the users
who meet to exchange their whole cache contents.
•No memory constraints. Since the users demand the whole
M, we assume they have sufficient cost-free storage for it.
• A-priori known Bernoulli distribution. We assume that
the pairwise meetings between the users (i) are Bernoulli
distributed and (ii) occur with probabilities that are known
a priori. Studies in the literature have been conducted to
provide mobility models for users based on their social
interactions (see [23] and references therein). While such
models are fit for simulation purposes, they appear complex
to study from an analytical point of view. Thus, we make
assumption (i) as a means to derive closed-form solutions
and provide analytical performance guarantees; we also
assess the validity of our derived solutions on synthesized
mobility traces which use mobility models. Assumption (ii)
can be attained by exploiting the high regularity in human
mobility [24], [25] to infer future meeting probabilities based
on previous meeting occurrences.
• Delay-tolerant users. Even with a longhaul connection,

users can endure a delay, at most of duration t, in data
delivery so as to receive data via D2D communications.
• Network coded downloads. We assume that users down-
load linear combinations of the information units [16].
Approach. Our scheme consists of three phases, namely
1) Caching phase: before the period of duration t starts, each
user downloads a (possibly different) amount xi of the file
setM using the longhaul connection at cost cxi. In our LP
formulations, we assume, without loss of generality, that
|M| = M = 1, and thus xi is a fraction.
2) Sharing phase: when two or more users meet, they oppor-
tunistically exchange the data they have in their caches. We
consider two separate cases: the direct sharing case, where
users share data they themselves have downloaded from
the server (e.g., because of liability/authentication reasons),
and the indirect sharing case, where users also exchange data
they have collected through previous encounters.
3) Post-sharing phase: each user downloads the amount yi
she may be missing from the server at a cost cyi. In the LPs,
since we assume M = 1, we have that 0 ≤ yi ≤ 1.
With this approach, what remains is to find the optimal
caching strategy. For instance, it is not obvious whether a
user, who we expect to meet many others, should down-
load most of the file (so that she delivers this to them) or
almost none (as she will receive it from them). Moreover,
downloading too much may lead to unnecessary cost in
the caching phase; downloading too little may lead to not
enough cost-free sharing opportunities, and thus unneces-
sary cost in the post-sharing phase.

3 LP FORMULATIONS

We formulate an LP that takes as input the encounter
probabilities of the users, and finds xi, ∀i = [1 : N ] that
minimize the average total cost during the caching and post-
sharing phases. We consider direct and indirect sharing.
Direct Sharing. During encounters users can exchange what
they have personally downloaded from the server. Thus,
whether users ui and uj meet each other multiple times or
just once during the period of duration t, they can still only
exchange the same data - multiple encounters do not help.

We model the encounters between the N users as a
random bipartite graph (U ,V, E), where: (i) U contains a
node for each of the N users at the caching-phase, (ii) V
contains a node for each of the N users at the end of the
period of duration t, and (iii) an edge e ∈ E always exists
between a node and itself and it exists between (ui, uj),
with i 6= j, with probability p

(t)
i,j ; this edge captures if ui

and uj meet each other (one or multiple times) during the
period of duration t and share their cache contents. There
are K = 2(N

2 ) realizations (configurations) of such a random
graph, indexed as k = [1 : K]. Each configuration has an
adjacency matrix A(k) and occurs with probability p(t)

k . For
brevity, in what follows we drop the superscript (t).1

1. With this formulation, we can directly calculate the probabilities
pk, ∀k ∈ [1 : K], if the pairwise encounters are independent and
Bernoulli distributed with probabilities pi,j ; however, the Bernoulli
assumption is not necessary, since the formulation only uses the prob-
abilities pk, ∀k ∈ [1 : K], that could be provided in different ways as
well. We also remark that pk, ∀k ∈ [1 : K], not only depends on the
duration t, but also on the start of the sharing period.
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We denote with x = [x[1:N ]]
T the vector of the down-

loaded fractions and with r(k) = [r
(k)
[1:N ]]

T the vector of
the received fractions after the sharing phase for the k-th
configuration. With this we have r(k) = A(k)x. The cost
of post-sharing downloading in the k-th configuration is

C(k) =
[
C(k)(1), . . . ,C(k)(N)

]T
with

C(k)(i) = c ·max{0, 1− ri} ∀ i ∈ [1 : N ].

With the goal to minimize the total cost (i.e., caching and
post-sharing phases) incurred by all users, the optimal x
becomes the solution of the following optimization problem

min
x

K∑
k=1

pk

N∑
i=1

C(k)(i) + c · 1T
Nx

subject to x ≥ 0N ,

or equivalently

min
x,y

fOpt(x,y) =
K∑

k=1

pk

N∑
i=1

yi,k + 1T
Nx

subject to x ≥ 0N , y ≥ 0N×K ,

1N −A(k)x ≤ yk,∀ k ∈ [1 : K],

(1)

where the variable yi,k represents the fraction to be down-
loaded in the post-sharing phase by user i ∈ [1 : N ] in
configuration k ∈ [1 : K] after receiving data from the users
encountered in the sharing phase. Without loss of generality,
we assumed c = 1. The LP formulation in (1) has complexity
O(2N

2

) (due to the K = 2(N
2 ) possible realizations over

which we have to optimize), which prohibits practical uti-
lization - yet this formulation still serves to build intuitions
and offers a yardstick for performance comparisons.

The following theorem provides an alternative formula-
tion of the LP in (1), which reduces the complexity toO(2N ).
Let πv be any row vector of length N with zeros and ones
as entries. By excluding the all-zero vector, there are 2N − 1
such vectors, which we refer to as selection vectors. We let
T be the set of all such vectors and Sv be the set of users
corresponding to the selection vector πv .

Theorem 3.1. Let πv ∈ T , ∀ v = [1 : 2N − 1]. Then the LP in
(1) can be equivalently formulated as

min
x,y

2N−1∑
v=1

∑
u∈Sv

Pr(u→ Sv)

 yv + 1T
Nx

subject to x ≥ 0N , y ≥ 0N×K ,

1− πvx ≤ yv,∀ v ∈ [1 : 2N − 1],

(2)

where Pr(u → Sv) is the probability that user u is connected to
all and only the users in Sv .

The main observation behind the proof of Theorem 3.1
(see Appendix A) is that the LP in (1) has an inherent sym-
metry: the Left-Hand-Sides (LHS) of the constraints of the
LP in (1) are all repetitions of constraints of the form 1−πvx.
Thus, an optimal solution will let the right-hand-side of the
constraints with the same LHS be equal. By appropriately
grouping these constraints and variables together, we arrive
at the LP in (2) which has complexity of O(2N ).

LP for the symmetric case
We now assume that users meet pairwise with the same
probability, i.e., pi,j = p, ∀ (i, j) ∈ [1 : N ]2, i 6= j during the
period of duration t. Thus, pk only depends on the number
of encounters (as opposed to which exactly) that the config-
uration k contains. Many realistic scenarios can be modeled
as symmetric, (e.g., students in the same class, doctors in the
same medical department in a hospital, military soldiers in
the battlefield). The next theorem (whose proof is provided
in Appendix B) significantly simplifies the problem in (1).

Theorem 3.2. In the symmetric scenario, the LP in (2) can be
simplified to the following LP

min
x,yi,i∈[1:N ]

N∑
i=1

yi

(
N − 1

i− 1

)
Npi−1 (1− p)N−i +Nx

subject to x ≥ 0, yi ≥ 0, ∀ i ∈ [1 : N ],

1− ix ≤ yi, ∀ i ∈ [1 : N ].

(3)

The LP in (3) has linear complexity in N , i.e., the optimal
solution is obtained in polynomial time. It is worth noting
that the symmetric assumption is made to get an analytical
handle on the problem. When we assess the performance
on real datasets we will relax this assumption by requiring
users to have an approximately equal average degree (i.e.,
number of encountered users), as explained in Section 7.
Indirect Sharing. Enabling users to share both what they
downloaded from the server as well as what they received
from previous encounters, gives rise to interesting situa-
tions, since now, not only multiple encounters help, but also
the order of the encounters matters. Assume for instance
that, during the period of duration t, u1 meets u2, and later
u2 meets u3. Now u3 will have ’indirectly’ received x1 as
well as x2. If instead, u2 meets u3 before she meets u1, then
u3 will only receive x2, but u1 will receive both x2 and x3.
Moreover, if u2 again meets u3 later during the period, u3

can receive x1 through this second encounter with u2.
To model sequential encounters, we split the time pe-

riod of duration t into T time segments, such that, during
each segment, it is unlikely for more than one encounter
opportunity to occur (note that one user can still meet
multiple people simultaneously). We then ’expand’ over
time our bipartite graph to a (T + 1)-partite layered graph,
by adding one layer for each time segment, where the `-
th time segment corresponds to the duration between times
t`−1 and t`, with ` ∈ [1 : T ]. In contrast to the direct case, at
the end of the period of duration t, node uj is able to receive
xi from node ui, if and only if there exists a path connecting
ui at the first layer to uj at the last layer; ui and uj do not
need to have directly met, provided that such a path exists.

Note that in the bipartite (direct) case, the probability
pi,j (respectively pj,i) associated with the edge from user i
to user j (respectively, from j to i) indicates how often user i
shares her cache content with user j (respectively, j with i),
with pi,j = pj,i. Thus, using this time-expanded model, the
indirect case can be readily transformed into an equivalent
bipartite (direct) case, by replacing the probability of each
two users meeting in the bipartite graph, with the probabil-
ity of a path existing between these two users on the (T+1)-
partite graph. Let t0 and tT be the time instants at which
the (T + 1)-partite graph begins and ends, respectively. Let



5

P
(T )
N (u→ Sv; t0) be the probability that, in the time interval

between t0 and tT , a path exists between user u and each of
the users inside the set Sv . We let p(t`)

i,j ,∀` = [0 : T−1] be the
probability that users i and j are connected between time
instants t` and t`+1. Given this, the next theorem derives
the values of P

(T )
N (u→ Sv; t0)2.

Theorem 3.3. Assume a (T + 1)-partite model, where t`−1 and
t` are respectively the starting and ending times of the `-th time
segment, ∀` ∈ [1 : T ]. Let N be the set of all users, and let
SI ⊆ N and SO ⊆ N be two sets of users of sizes I and O,
respectively. Let U = SO\SI . Denote with SI → SO the event
of having the users in SI meeting exactly the users in SO and let
P

(n+1)
N (SI → SO; t`) be the probability of this event happening

between time instants t` and t`+n+1. Then, for (`, n) ∈ [0 :
T − 1]2, `+ n ≤ T − 1, this probability is given by

P
(n+1)
N (SI → SO; t`) =∑

u∈Pow(U)

P
(1)
N (SI → SI + u; t`+n) · P(n)

N (SI + u→ SO; t`),

where

P(1)
N (SI → SO; tn) =

∏
a∈N\SO

∏
b∈SI

p̄
(tn)
a,b

∏
c∈SO\SI

1−
∏
d∈SI

p̄
(tn)
c,d


if SI⊆SO and P(1)

N (SI → SO; tn) = 0 otherwise, where p̄(tn)
a,b =

1− p(tn)
a,b .

Theorem 3.3 can hence be utilized to cast the indirect
sharing version of our problem as a direct sharing one.
In particular, an LP of the form described in (1) has to be
solved, with the values of pk,∀k ∈ [1 : K] being replaced
with those obtained from Theorem 3.3. Note that these
probabilities might not have the same symmetric structure
as those of the direct sharing model3. However, the problem
formulation and the algorithms designed in next sections
are readily suitable for the indirect sharing case where the
graph model is not necessarily symmetric. Thus, in the rest
of the paper, for theoretical analysis we only consider the di-
rect case. However, in Section 7, we assess the performance
of our algorithms for both the direct and indirect cases.

4 CONNECTION TO SET-COVER PROBLEM

A Set-Cover (SC) problem is modeled as a bipartite graph
(S,V, E), with V being the set of nodes (i.e., the universe), S
being a collection of sets whose union equals the universe
and where an edge eij ∈ E exists between set i ∈ S
and node j ∈ V if node j belongs to set i. An integer
LP formulation of the SC problem then finds the optimal
selection variables xi ∈ {0, 1}, ∀i ∈ [1 : N ] to minimize the
number of selected sets in S while ’covering’ all node in V .

One can therefore think of the LP formulation in (1) as
a relaxation of an integer LP, which models a variation of
the SC problem. In this variation, there are two major differ-
ences: (i) the covering is performed on K bipartite graphs,
each with a different adjacency matrix A(k), k ∈ [1 : K],

2. The proof of Theorem 3.3 is based on simple counting techniques.
3. In the direct case, when user i meets user j with probability pi,j ,

then user j meets user i with the same probability.

u1

u2

u3

u1

u2

u3

Sets Nodes
x1

x2

x3

(a) Set-Cover Problem

u1

u2

u3

u1

u2

u3

Sets Nodes
x1

x2

x3

y1,1

y2,1

y3,1

(b) Variation of the Set-Cover Problem

u1

u2

u3

u1

u2

u3

y1,8

y2,8

y3,8

Figure 1. Set-cover problem and its variation.

and the same sets are selected to cover ’all’ bipartite graphs;
(ii) each node can be covered by either a selected set that
contains it, or an ’outside’ source. With reference to the LP
in (1), the variables xi are the selection variables of the
sets, and the variables yi,k are the outside sources of user
i in configuration k. An illustrative example is given in
Figure 1. A conventional SC problem is shown in Figure 1(a),
where the sets u1 and u3 contain nodes (u1, u2) and (u2, u3),
respectively, while set u2 contains users u[1:3]. The variables
x[1:3] therefore determine which sets are selected for all the
nodes to be covered. In this example, the set u2 covers all
the nodes. In our variation of the SC problem in Figure 1(b),
there are 8 possible instances of bipartite graphs between 3
sets and 3 nodes, where the variables x[1:3] determine the
selected sets that are used to simultaneously cover the users
in all graphs, while the variables yi,k are used to cover the
remaining users that were not covered by the selected sets.

The following theorem proves that indeed our LP for-
mulation in (1) is closely related to the set-cover problem
(see Appendix C for the proof).

Theorem 4.1. The optimal solution of the LP in (1) is lower
bounded by the weighted sum of the outputs of K different LPs
as follows. For k ∈ [1 : K], the k-th LP is a relaxed SC problem
over a bipartite graph with adjacency matrix A(k). The output of
the k-th LP is weighted by pk.

5 POLYNOMIAL TIME APPROXIMATIONS

In this section, we propose heuristics that find an approxi-
mate solution for the LP in (1) in polynomial time.

Inverse Average Degree (IAD). Consider the symmetric
direct case, where users meet pairwise with the same proba-
bility p. For this scenario, we expect that the bipartite graph
has (in expectation) a constant degree of p(N − 1) + 1, since
each user, in average, meets the same number of people.
The degree, in fact, captures the number of users met in
that random realization; hence, each user meets (apart from
herself) the remaining N − 1 users with equal probability p.

In this case, a natural heuristic is to let each user down-
load 1

E(C) , where C is a random variable corresponding
to the number of people (including herself) a user meets.
Figure 2 shows the optimal performance (solid lines), i.e., the
solution of the LP in (1), and the performance of the caching
strategy when each user downloads 1

E(C) (dashed lines) for
the symmetric case versus different values of p. It is evident
from Figure 2, that such a choice of a caching strategy
closely follows the performance of the optimal solution in
symmetric scenarios. However, this approximation does not
perform as well in the general (asymmetric) case. Consider,
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Figure 2. Optimal (solid lines) and IAD (dashed lines) average total cost.

for example, a ‘star’-like configuration, i.e., u1 is highly
connected to the other N − 1 users, while the other N − 1
users are only connected to u1. In this scenario the minimum
(i.e., optimal) total average cost is approximately 1, achieved
by letting u1 download the whole file and then share it with
the other N − 1 users. In contrast, if we force ui ∈ [1 : N ] to
download 1

E(Ci)
we would get that u1 downloads 1

N (as she
meets the others N − 1 members plus herself) and uj , j 6= 1
downloads 1

2 (as she only meets u1 plus herself). This would
imply a total cost of

(
1
N + N−1

2

)
≥ 1,∀ N for the caching

phase, which grows linearly with N and thus can be N -
times worse than the optimal. This suggests that the optimal
search might look like a ‘cover’: a set of nodes that enables
to ‘reach’ and ‘convey’ information to all others. This is in
line with the observations we previously made in Section 4.

Probabilistic Set-Cover (PSC). Building on this intuition,
we propose another heuristic that seeks to find a form of
a “fractional covering”, where the fraction that each user
downloads is a ’cover’ for the users she may meet. In the
PSC problem [26], the covering constraint is replaced with a
probabilistic one (i.e., the probability of covering all nodes
is greater than a threshold). Here, we propose a variation of
the PSC problem with an ’average’ constraint.

We model the problem through a fully-connected bipar-
tite graph (U ,V, E), where each edge ui− vj , ∀ui ∈ U , vj ∈
V, (i, j) ∈ [1 : N ]2 has an associated weight pi,j , that
represents how much on average ui can cover vj . We set
pi,i = 1, ∀i ∈ [1 : N ], and pi,j = pj,i, ∀(i, j) ∈ [1 : N ]2, i 6=
j. The heuristic then seeks to associate fractional values xi
to the nodes in U on the transmitting side, so that the sum of
all xi’s is minimized, while each node in V on the receiving
side is covered, i.e., assured to receive (on average) the total
amount. This is expressed through the following LP

min
x

fPSC(x) =
N∑
i=1

xi

subject to Px ≥ 1N , x ≥ 0N ,

(4)

where P is a matrix whose (i, j)-th entry (with i 6= j) is pi,j
and with ones on the main diagonal. This is very similar
to a fractional covering problem formulation, with the only
difference that P is not forced to be binary, but can have real
components to express expectations.

The next theorem proves that, for the symmetric case,
the optimal solution for the LP in (4) coincides with that of
the IAD heuristic (see Appendix D for the proof).

Theorem 5.1. For the symmetric scenario, the optimal solution
for the LP in (4), denoted as xPSC, coincides with the IAD solution,

Algorithm 1 AlgCov
Input Pairwise probability matrix: P
Output AlgCov solution: xAlg

Compute xPSC - the optimal solution of the LP in (4)
Compute xIAD, with xIAD

i = 1/E(Ci), ∀i ∈ [1 : N ]

if xIAD is feasible in (4) then xAlg = xPSC

else Compute SPSC = 1T
NxPSC and SIAD = 1T

NxIAD

if SIAD ≤ SPSC then xAlg = xIAD

else xAlg = xPSC

end if
end if

denoted as xIAD, i.e., xPSC = xIAD = 1
E(C)1N where E(C) =

1 + (N − 1) p.

6 ALGCOV ALGORITHM

In this section we present AlgCov, a simple heuristic algo-
rithm that combines both approaches discussed in Section 5.
AlgCov enables to calculate the fractions xi in polynomial
time, and achieves a performance close to that of the (expo-
nentially complex) general LP in (1).

6.1 Motivation
To design an algorithm that combines the merits of both
heuristics presented in Section 5, one might proceed as
follows: (i) compute the solution xPSC of the PSC heuristic,
(ii) compute the performance of this heuristic by plugging
xPSC into the LP in (1) and by optimizing over y to find
the optimal cost for this solution. Then, repeat the same
procedure for the IAD solution xIAD and finally choose the
solution with the smallest cost.

Such a solution is, in theory, possible. However, the pro-
cess of computing the cost of each heuristic involves solving
an exponentially complex LP, prohibiting the applicability of
the heuristic. The following theorem helps circumvent this
complexity issue (see Appendix E for the proof).

Theorem 6.1. Let f̄Opt and f̄PSC be the optimal values of the LPs
in (1) and in (4), respectively. Then f̄Opt ≥ f̄PSC.

Theorem 6.1 provides a lower bound on the optimal
value of the LP in (1), and consequently on the performance
of the solution xPSC, i.e., fOpt

(
xPSC,yPSC

)
≥ f̄Opt ≥ f̄PSC,

with yPSC being obtained by evaluating the LP in (1) while
setting x = xPSC. A fairly simple lower bound on the perfor-
mance of xIAD is obtained by simply summing over the el-
ements of the vector xIAD, i.e., fOpt

(
xIAD,yIAD

)
≥ 1T

NxIAD,
with yIAD being obtained by evaluating the LP in (1) while
setting x = xIAD. As it is much simpler to compute these
lower bounds, one can envisage to design an algorithm
which, based on the lower bounds, selects one among the
two heuristics described in Section 5.

6.2 Algorithm Description
AlgCov takes as input the probability matrix P that contains
the pairwise probabilities of meeting among users, and out-
puts the solution xAlg as a caching strategy. It first computes
the two heuristic solutions, namely xPSC and xIAD, and then,
as shown in Algorithm 1, selects one of them as output
based on SPSC and SIAD, which in Theorem 6.1 we proved to
be lower bounds on the actual performance of the heuristics.
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6.3 Analytical performance

Symmetric case. In this setting, all pairs of members meet
with equal probability. According to Theorem 5.1, both the
IAD and the PSC heuristics provide the same solution, i.e.,
xAlg = xPSC = xIAD. By optimizing the objective function of
the LP in (3) over yi, i ∈ [1 : N ] with x = xAlg, we obtain

fOpt(xAlg) =
N∑
i=1

[
1− i

1+(N − 1) p

]+

·(
N−1

i−1

)
Npi−1 (1− p)N−i+ N

1+(N−1) p
, (5)

which is an upper bound on the optimal performance, i.e.,
f̄Opt ≤ fOpt(xAlg). In order to provide a performance
guarantee we need to understand how well fOpt(xAlg)
approximates the optimal solution of the LP in (3). To this
end, we use the lower bound in Theorem 6.1. This lower
bound, denoted as fLB, implies that f̄Opt ≥ fLB. Using the
structure of xPSC for the symmetric case in Theorem 5.1, the
lower bound becomes

fLB =
N

1 + (N − 1) p
. (6)

By simply taking the difference between fOpt(xAlg) in (5)
and fLB in (6) we obtain

Gsym ≤
N∑
i=1

[
1− i

1+(N−1) p

]+
(
N−1

i−1

)
Npi−1 (1−p)N−i .

The above gap result ensures us that, in the symmetric case,
the output of AlgCov is always no more than Gsym above
the optimal solution of the LP in (3). It is worth noting that
Gsym is only function of the number of members N and of
the probability p that users meet.

Remark 6.2. Through extensive numerical simulations, we ob-
served that Gsym is maximum for i = 1, i.e., the probability
p? maximizing Gsym is p? = −N+

√
5N2−8N+4

2(N−1)2 . By evaluating
Gsym in p?, we get a worst-case (greatest) gap of Gsym ≤ 0.25N .

Asymmetric case. In this setting, different pairs of members
meet with different probabilities. In this scenario, differently
from the symmetric case analysed above, the LP in (4)
does not seem to admit an easily computable closed-form
solution. For this reason, we next show how the analysis
drawn for the symmetric case can be extended to find a
performance guarantee for the asymmetric case as well.

In the asymmetric case, an upper bound on the solution
of AlgCov can be found by evaluating fOpt(xAlg) in (5) in
p = pm, with pm = min(i,j)∈[1:N ]2,i6=j {pi,j}. In other words,
instead of considering different probabilities for different
pairs, we set all of them to be equal to the minimum
probability; this gives a solution which is always worse,
i.e., greater than or equal to the optimal solution of AlgCov
evaluated with the original (asymmetric) probability matrix.

Similarly, a lower bound on the optimal solution of the
LP in (2) can be found by evaluating fLB in (6) in p =
pM , with pM = max(i,j)∈[1:N ]2,i6=j {pi,j}. Again, instead of
considering different probabilities for different pairs, we set
all of them to be equal to the maximum probability; this
gives a solution which is always better, i.e., smaller than or

equal to the optimal solution of the LP in (2) evaluated with
the original (asymmetric) probability matrix. Thus

Gasym≤
N∑
i=1

[
1− i

1+(N−1) pm

]+
(
N−1

i−1

)
Npi−1

m (1−pm)
N−i

+
N (N − 1) (pM − pm)

[1 + (N − 1) pm] [1 + (N − 1) pM ]
.

This proves that in the asymmetric case, the output of
AlgCov is always no more than Gasym above the optimal
solution of the LP in (2). Similar to the symmetric case, also
in this setting Gasym is only a function of the number of
members N and of the probabilities pm and pM .

7 DATA-SET EVALUATION

In this section, we evaluate and compare the performance of
our proposed solutions and algorithms using mobility traces
that are obtained either from real-world experiments or via
a human mobility trace synthesizer.

Performance Metrics and Comparisons: We are mainly
interested in the performance of our proposed caching
techniques in comparison to the conventional non-sharing
solution. Specifically, we are interested in assessing the av-
erage total cost (total amount downloaded across the caching
and post-sharing phases), averaged over the experiments. If
each user simply downloads all data, this cost is N . Versus
this, we compare the performance of:
• Original Formulation and AlgCov: We calculate the average
probabilities from our dataset, feed these into the LP in (1)
and into Algorithm 1 that assume Bernoulli distributions,
and obtain the optimal and the AlgCov heuristic solutions,
respectively. For each experiment, we then use these caching
amounts, and follow the real meeting patterns recorded
in the mobility traces to exchange data and download
as needed in post-sharing phase. Finally, we calculate the
actual total cost, averaged over the experiments.
• 1/N : We evaluate the performance when each user caches
1/N of the data, independently of the meeting probabilities;
this is a naive heuristic that does not fully exploit the
opportunistic sharing possibilities.
• CopCash: We propose a modified version of the cooperative
sharing algorithm originally proposed in [5], where we in-
corporate the concept of caching. Cooperative sharing takes
advantage of the fact that nearby users, with a common
demand, can collectively download the requested set of
files. In addition, the proposed CopCash allows users to
cache the received files, with the goal of exploiting next
encounter opportunities to further share the data with other
users. The scheme can be described as follows:

1) Whenever N users meet, each of them first down-
loads a fraction 1/N of the requested set of files,
and then they share these parts among themselves
through cost-free transmissions (e.g., Bluetooth).

2) If there exists a user (or a set of users) in the
group who has already participated to a cooperative
sharing instance, she directly shares what she has
in her cache, i.e., what she obtained from previous
meetings. In particular, she can share only what she
has downloaded (direct sharing) or the whole set of
files (indirect sharing).
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Figure 3. An illustrative example of CopCash.

3) The sharing procedure continues until the end of
the period of duration t. At this point, if a user
has participated in a previous sharing instance, she
will have already obtained the set of files during
that sharing instance. Otherwise, she will solely
download the file set.

Consider the example in Figure 3. Suppose that, at
time instant i = 1, u1 and u2 met; hence each of them
downloaded 1/2 of the file. Then, u1 and u2 exchanged the
downloaded fractions, thus their demand was satisfied. At
time instant i = 2, u1 meets u3 and u4, while u2 meets
u5 and u6. In the case of direct sharing - see Figure 3(a)
- u1 (respectively, u2) shares with u3 and u4 (respectively,
u5 and u6) what she has personally downloaded from the
server, i.e., 1/2 of the file; at the end of the sharing period,
uj ,∀j ∈ [3 : 6] downloads 1/2 of the file from the server.
With this, each user has to download 1/2 of the file. In the
case of indirect sharing - see Figure 3(b) - u1 and u2 share
the whole set of files with the users they are connected to;
in this case, uj ,∀j ∈ [3 : 6] does not need to download
anything from the server.
• Target-Set: We assess the performance of the Target-Set
heuristic proposed in [14] with k = 1, i.e., the server assigns
one user the task to route the data to other users. We only
show the performance of k = 1 since it is the case which
incurs the smallest cost over the datasets that we consider.

Experiment Setup: We consider groups of size N = 6.
In each experiment, we obtain the average performance of
our algorithms by averaging over 50 group trials. For each
group trial we pick a group of size 6 according to a specific
selection criterion, and we compute the performance of the
different heuristics for this group. In particular, we evaluate
the performance in two different types of network, namely:

1) Symmetric Configurations: Users in the group have
approximately the same expected number of users
to meet among the group. Note that this is a relaxed
requirement of symmetry with respect to the one
used in Section 3 where all the users were assumed
to meet with the exact same probability.

2) Asymmetric Configurations: Users in the group
have different expected number of users to meet.

For each group, we define the Expectation Deviation (ED):
the difference between the maximum and the minimum
expected number of encountered users, among all users,
i.e., let Sj be the set of N users belonging to group j, then
ED = max

i∈Sj
E(Ci)−min

i∈Sj
E(Ci). A group with high ED is more

Description: Value:
Number of Users 75
Dates of Interest Oct., Nov., Dec. - 2004
Hours of Interest 2 pm - 6 pm
Sharing Period 15 mins
Deadlines t 1 h, 2 h, 4 h
Number of Group Trials 50
N 6
thasym, thsym, thmax 1.3, 0.2, 1.2

Table 1
Experiment Parameters - MIT Reality Mining Dataset.

likely to have an asymmetric structure, while a group with
small ED would have a symmetric structure. Our selection
criterion is therefore the following: (a) for asymmetric con-
figurations, we choose groups that have ED ≥ thasym, and
(b) for symmetric configurations, we select groups that have
ED ≤ thsym, while having max

i∈Sj
E(Ci) ≥ thmax; thasym, thsym

and thmax are decision parameters. For each experiment,
these thresholds are set to values, which ensure the existence
of the required number of groups.

We consider different deadlines t: the time period after
which all users must individually have the whole set of files
at their disposal. Intuitively, we expect that the longer the
deadline is, the higher the number of sharing opportunities
can be among the users within the same group and thus
the smaller the average cost becomes. For each deadline, the
duration of the whole experiment is divided into a number
of deadline trials: for example, if the experiment is performed
for a duration of 100 days, and we consider a duration of 4
hours in each day, then for a deadline of 2 hours, we have
100·4

2 = 200 deadline trials.

7.1 MIT Reality Mining Dataset

We evaluate the performance of our proposed solutions and
algorithms using the dataset from the MIT Reality Mining
project [17]. Table 1 lists the values of all the parameters that
we use in our experiment, described in the following.

This dataset includes the traces from 104 subjects affili-
ated to MIT - 75 of whom were in the Media Laboratory -
in the period from September 2004 to June 2005. All subjects
were provided with Nokia 6300 smart phones used to collect
information such as the Bluetooth devices in the proxim-
ity logs. In our experiment, we utilize this information to
capture the sharing opportunities among users. Each device
was programmed to perform a Bluetooth device discovery
approximately every 5 minutes, and store both the time
instant at which the scan was performed, as well as the list
of the MAC addresses of the devices found during the scan.

Assumptions: We say that two users are connected at a time
instant, if there exists a scan (at that time instant) that was
performed by any of the two users, in which the other user
was found. We assume instantaneous sharing, i.e., if two
users are connected at a time instant, then they can share
their full cache contents. We justify this assumption in the
following discussion. As specified in [17], Bluetooth discov-
ery scans were performed and logged approximately every
5 minutes. However, this granularity in time was not always
attainable since (i) the devices were highly asynchronous,
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Figure 4. Experimental result obtained from the MIT Reality Mining dataset.

and (ii) some devices were powered off for a considerable
amount of time. Because a non-negligible fraction of users
experienced these irregularities, discarding their traces is
not a suitable solution. Other solutions in the literature (for
example, see [27]) utilize the IDs of the cell towers to which
mobile devices are connected to infer proximity information.
However, such approaches are too optimistic in assuming
sharing opportunities, and hence are not suitable for our
application. Our approach to deal with this highly irregular
data was to consider the minimum sharing interval to be 15
minutes, i.e., two users are connected for an entire sharing
interval if they are so at any time instant in that specific
interval. Using the standard Bluetooth wireless transmission
speed, this time period is sufficient to share approximately
2 GBs of data. Hence, for all practical purposes, it is reason-
able to assume that any two connected users can share their
full cache contents during that sharing interval.

For indirect sharing, we do not allow intra-interval relay-
ing: users cannot indirectly share with other users within
the same interval. We do, however, allow inter-interval re-
laying: indirect sharing can be performed across successive
intervals. Our premise is that, while a 15-minute sharing
interval is sufficient for one full cache content sharing, it
might not be long enough to ensure more than one suc-
cessful data exchange. This approach might severely limit
the performance, i.e., a lower cost could be achieved by
allowing intra-interval relaying.

Setup: We consider a period of three months from the
academic year 2004/2005 in MIT, namely from October to
December. We consider traces of only 75 users - labeled as af-
filiated to the Media Laboratory - during Monday, Tuesday
and Wednesday. The reason for choosing these particular
days is that we observed that, across the time period of
interest, meetings occur most frequently in these days; thus,
this represents a suitable period to assess the performance
of all the solutions under consideration. We perform each
experiment from 2 pm to 6 pm, and we consider deadlines
of t ∈ {1, 2, 4} hours. The thresholds for choosing groups
are thasym = 1.3, thsym = 0.2 and thmax = 1.2. The reason
behind this particular choice was to ensure the existence of
50 groups of 6 users in the duration of the experiment.

Experimental Results: Figure 4 shows the performance of
different network structures (i.e., asymmetric and symmet-
ric) for the direct and indirect sharing cases, respectively.
From Figure 4, as expected, we observe that: (i) the average
total cost decreases as the deadline increases; (ii) the average
total cost in the indirect sharing case is less than the one

in the direct case, thanks to a higher number of sharing
opportunities; (iii) using 1/N as a caching strategy performs
the worst among all other schemes. This is because the 1/N
scheme, differently from the other strategies, is not based on
the meeting probabilities of the users.
Asymmetric Networks: Figure 4(a) and Figure 4(c) show the
performance over asymmetric networks for the direct and
indirect sharing cases, respectively. We note the following:
• Target-Set performs very close to the optimal scheme in
both the direct and the indirect sharing cases. This is due to
the asymmetric structure of the selected groups: one node
is more likely to be connected to the other members of the
group, and therefore the optimal solution would rely on that
node to deliver the data to the whole group.
• AlgCov outperforms IAD in Figure 4(a), which indicates
that AlgCov utilizes the solution that is generated from PSC.
In contrast, AlgCov and the IAD strategy perform almost
the same in Figure 4(c) which indicates that IAD outper-
forms PSC in this case. This justifies the merge between
these two heuristics in the design of AlgCov.
Symmetric Networks: Figure 4(b) and Figure 4(d) show
the performance of the different schemes over symmetric
networks for the direct and the indirect sharing cases,
respectively. Observations are similar to those drawn for
the asymmetric case. However, one major observation is
that Target-Set, differently from asymmetric groups, poorly
performs. This is a direct consequence of the symmetric
structure of the selected group: in a symmetric group, an op-
timal sharing strategy would equally distribute the caching
and sharing efforts among all members within the group;
in contrast, Target-Set selects only one member who has the
task of caching and sharing the data for the group.

Remark 7.1. One might argue that CopCash has an inherent
advantage over the other caching strategies since it does not need
the genie-aided information of the pairwise meeting probabilities.
However, this information is not hard to obtain in a realistic
scenario. For example, although being out of the scope of this
work, one can think of modifying AlgCov, by including a learning
module. With this and by exploiting the regular mobility behavior
of the users, the probabilities can be estimated as reportedly done
in the literature (see [15], [27]).

Remark 7.2. CopCash performs closely to our proposed solution.
One can thus draw a premature conclusion that pre-caching does
not bring significant benefits with respect to opportunistically
exploiting sharing opportunities, as CopCash does. This is true
when the meeting probabilities are small, as in the MIT Reality
Mining dataset. However, as shown next, pre-caching solutions
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Figure 5. Experimental results obtained from the synthesized Infocom-2005 trace.

Description: Value:
Number of Users 300
Duration of Experiment 3 (Infocom-2005) and

11 (Cambridge-2006) days
Sharing Period 10 mins
Deadlines t 0.5 h, 1 h, 2 h
Number of Group Trials 50
N 6
thasym, thsym, thmax 3.7, 0.2, 1.2

Table 2
Experiment Parameters - Infocom-2005 and Cambridge-2006.

outperform opportunistic sharing approaches when the users are
moderately/highly connected.

7.2 SWIM-Based Results
We here evaluate the performance of our algorithms over
mobility traces synthesized using the SWIM model. SWIM
[18] is a human mobility model that is used to synthesize
mobility traces based on the users social behavior. Traces are
generated in the form of events: the exact time at which two
users meet/leave. Thus, the trace files consist of a chrono-
logical series of meeting/leaving events among the users
involved in the generation of the trace. We use a synthe-
sized version of two existing traces, namely Infocom-2005
and Cambridge-2006. These traces were obtained through
experiments conducted in the IEEE INFOCOM 2005 confer-
ence and in Cambridge in 2006, respectively (see [19], [20]
for more details). The synthesized versions of these traces
include a greater number of nodes (with the same spatial
density) than the original ones, which is the main reason
behind our choice of the synthesized traces.

Assumptions: We consider the sharing interval to be 10
minutes. We say that two users successfully exchange their
cache contents if they are in contact for at least 85% of the
interval. Similarly to Section 7.1, in the indirect sharing we
only allow inter-interval relaying.

Setup: We perform each experiment over the traces from
300 virtual users during the entire duration of the trace (3
days for Infocom-2005 and 11 days for Cambridge-2006).
The deadlines that we consider are of t = 0.5 hour, t = 1
hour and t = 2 hours. The thresholds for choosing groups
are thasym = 3.7, thsym = 0.2 and thmax = 1.2. The reason
behind this particular choice was to ensure the existence of
50 groups of 6 users for all the days of the experiment. Table
2 lists the values of all the parameters of the experiments.

Experimental Results: We assess the performance of our
algorithms on the Infocom-2005 (Figure 5) and Cambridge-
2006 (Figure 6) mobility traces. Similar conclusions to those
in Section 7.1 can be drawn. In particular: (i) the average
total cost decreases as the deadline increases; (ii) the average
total cost incurred in the indirect sharing case is less than the
one in the direct counterpart; (iii) the caching strategy 1/N
shows the worst performance among the different schemes;
(iv) Target-Set performs close to the optimal in asymmetric
configurations. However, differently from Section 7.1, in
most of the cases CopCash poorly performs with respect
to other solutions. The reason is that the mobility traces of
both Infocom-2005 and Cambridge-2006 show a relatively
high frequency of meetings among users, which is a distinct
feature with respect to the MIT Reality Mining dataset.

8 CONCLUSIONS

We here motivated, proposed, analysed, and experimen-
tally evaluated AlgCov, a simple low-complexity algorithm
for social caching, that uses pre-caching in anticipation of
encounter opportunities to minimize the required down-
load bandwidth. We derived formal LP formulations and
presented a worst-case analytical performance gap. We
numerically evaluated the performance of the proposed
solutions on (i) the mobility traces obtained from the MIT
Reality Mining data set, and (ii) two mobility traces that
were synthesized using the SWIM mobility model. AlgCov
achieves a performance which is close to the optimal and, in
some configurations, it outperforms existing solutions, such
as the Target-Set. AlgCov makes the case that, even in the
presence of random encounters, using simple algorithms for
pre-caching can significantly reduce bandwidth usage.

APPENDIX A
PROOF OF THEOREM 3.1

The key observation is to notice that the constraints in the LP
in (1) can be written in the form 1−πvx ≤ yi,k, ∀yi,k ∈ Y(v),
where Y(v) = {yi,k|1− πvx ≤ yi,k is a constraint}. Since all
the constraints of the type 1N −A(k)x ≤ yk in the LP in (1)
can be replaced with 1 − πvx ≤ yi,k, the optimal solution
would make all yi,k ∈ Y(v) equal, as proved in Lemma A.1.
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Figure 6. results obtained from the synthesized Cambridge-2006 trace.

Lemma A.1. Let (x̂,ŷ) be an optimal solution for the LP in (1).
Then ŷi,k = yv, ∀ŷi,k ∈ Y(v). Thus,

fOpt(x̂, ŷ) =
2N−1∑
v=1

yv

N∑
i=1

K∑
k=1,

yi,k∈Y(v)

pk + 1T
N x̂.

We next prove the result in Lemma A.1. Without loss of
generality, assume that ŷi,k = yv, ∀ŷi,k ∈ Y(v)\ȳ and ȳ =
yv + ∆ where ∆ ≥ 0. Then, since this is a feasible point, ∆
can be driven down to zero without violating the feasibility
conditions, and consequently reducing the optimal value of
the objective function; thus, we have a contradiction. The
same argument can be extended to the case where more
than one ŷi,k is different from yv .

With yi,k =yv, ∀yi,k∈Y(v) in fOpt(x,y) in (1), we get

K∑
k=1

pk

N∑
i=1

yi,k =
K∑

k=1

pk

N∑
i=1

2N−1∑
v=1

yi,k1{yi,k∈Y(v)}

=
2N−1∑
v=1

yv

N∑
i=1

K∑
k=1

pk1{yi,k∈Y(v)}.

This concludes the proof of Lemma A.1.
Notice that, by our definition in Theorem 3.1, we have

N∑
i=1

∑K
k=1 pk1{yi,k∈Y(v)} =

∑
u∈Sv Pr(u→ Sv)..

We now use the result in Lemma A.1 to prove Theorem
3.1, i.e., the equivalence of the LPs in (1) and in (2).
Part 1. Let

(
x1,y1

)
be an optimal solution for the LP in

(1), which follows the structure described in Lemma A.1.
For v ∈ [1 : 2N − 1], let y1

v be the value where, for each
y1
i,k ∈ Y(v), y1

i,k = y1
v . Then, one can construct a feasible

solution
(
x2,y2

)
for the LP in (2) as follows: (i) set x2 = x1;

(ii) let y2
v be an element of y2 that corresponds to a constraint

of the form 1− πvx2 ≤ y2
v in the LP in (2), then set y2

v = y1
v .

By doing so, the constraints of the LP in (2) are satisfied.
Moreover, with Lemma A.1, the objective functions of both
problems are equal, when evaluated at the described points.
Part 2. Let

(
x2,y2

)
be an optimal solution for the LP in (2).

Then one can construct a feasible solution
(
x1,y1

)
for the

LP in (1) as follows: (i) set x1 = x2; (ii) ∀y1
i,k ∈ Y(v), set

y1
i,k = y2

v . . By doing so, the constraints of the LP in (1)
are guaranteed to be satisfied. Moreover, with Lemma A.1,
the objective functions of both problems will be equal, when
evaluated at the described points. This concludes the proof.

APPENDIX B
PROOF OF THEOREM 3.2

We prove the equivalence of the LP in (1) and the LP in (3)
by means of the following lemma.

Lemma B.1. Let (x̂, ŷ) be the optimal solution for the LP in (1).
Then, by assuming a symmetric model

1) x̂ = x̂1N , with x̂ ∈ [0, 1];
2) For m ∈ [1 : N ], let Π(m) = {(i, k)| [1−mx̂]

+ ≤
ŷi,k ≤ [1− (m− 1)x̂]

+} with i ∈ [1 : N ], k ∈
[1 : K], then ŷi,k = ŷm,∀(i, k) ∈ Π(m), with
ŷm = [1−mx]

+.

Moreover, with reference to fOpt(x,y) in (1), we get

K∑
k=1

pk

N∑
i=1

ŷi,k =
N∑
i=1

ŷi

(
N − 1

i− 1

)
Npi−1(1− p)N−i.

We now prove Lemma B.1 in three steps.
Step 1. We prove that x = x1N and yi,k = ym ∀ (i, k) ∈
Π(m), m ∈ [1 : N ] is a feasible solution for the LP in (1).
Assume a feasible solution consists of x = x1N . Then, with
yi,k =ym ∀ (i, k)∈Π(m), m∈ [1 : N ] so that ym≥ [1−mx]

+,
we get a feasible solution of the required form.
Step 2. Assume that an optimal solution has x̂ = x̂1N .
We prove, by contradiction, that this implies ŷi,k =
ŷm ∀ (i, k) ∈ Π(m). We use similar steps as in the proof
of Lemma A.1. Without loss of generality, assume that
ŷi,k = ŷm ∀ (i, k) ∈ Π(m)\(̄i, k̄) and ŷī,k̄ = ŷm + ∆,
where ∆ ≥ 0. Since this point is feasible, then ∆ can be
driven down to zero without having violated the feasibility
conditions; this operation (i.e., setting ∆ = 0) also implies
a reduction in the optimal value of the objective function;
thus we have a contradiction.
Step 3. We prove that, for the symmetric model, an optimal
solution of the form x̂ = x̂1N and ŷi,k = ŷm ∀ (i, k) ∈
Π(m) ∀m ∈ [1 : N ] exists. Without loss of generality,
assume that (x̃, ỹ) is an optimal solution of the form
x̃ = [x, · · · , x, x + ∆]T , where 0 ≤ ∆ < x4. We show
that x̂ = x + ∆

N 1N gives a smaller value for the objective
function of the LP in (1), i.e., fOpt(x̃, ỹ) − fOpt(x̂, ŷ) =

4. This assumption is not necessary and is made only to simplify the
analysis.
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K∑
k=1

pk
N∑
i=1

ỹi,k−
K∑

k=1
pk

N∑
i=1

ŷi,k ≥ 0. We start by noticing that,

by using the symmetric model in fOpt(x,y) in (1), we get

K∑
k=1

pk

N∑
i=1

yi,k = p1

(
N∑
i=1

yi,1

)
+ . . .+ pK

(
N∑
i=1

yi,K

)

=

N(N−1)
2∑

j=0

B (p, j,N)
K∑

k=1

N∑
i=1

yi,k1{pk=B(p,j,N)}, (7)

where the last equality follows by noticing that each
of the pk, k ∈ [1 : K] is equal to a term of the type

B (p, j,N) = pj (1− p)
N(N−1)

2 −j for some j ∈
[
0 : N(N−1)

2

]
and by swapping the order of the summations.

We next evaluate fOpt(x̃, ỹ) and fOpt(x̂, ŷ) separately.
Evaluation of fOpt(x̃, ỹ): We define

Π̃
(m,j)
∆ = {(i, k)|pk = B (p, j,N) ,

[1−mx−∆]
+ ≤ ỹi,k < [1−mx]

+
}
,

Π̃
(m,j)
∆,† = {(i, k)|pk = B (p, j,N) ,

[1−mx]
+ ≤ ỹi,k < [1− (m− 1)x−∆]

+
}
.

As x̃ is fixed, the optimal solution would yield ỹ to be
as small as possible, while preserving feasibility. Thus,
∀(i, k) ∈ Π̃

(m,j)
∆ , ỹi,k = [1−mx−∆]

+ , and ∀(i, k) ∈
Π̃

(m,j)
∆,† , ỹi,k = [1−mx]

+. By noticing that the sets Π̃
(m,j)
∆

and Π̃
(m,j)
∆,† are disjoint ∀m ∈ [1 : N ] and ∀j ∈

[
0 : N(N−1)

2

]
and contain all elements of ỹ, we can rewrite (7) as

K∑
k=1

pk

N∑
i=1

ỹi,k =

N(N−1)
2∑

j=0

B (p, j,N)
N∑

m=1

 ∑
w∈Π̃

(m,j)
∆

ỹw +
∑

w∈Π̃
(m,j)
∆,†

ỹw

 .
(8)

Let Qm,j
N (a, b) = a

(N−1
b−1

)(N(N−1)
2 −N+1
j−m+1

)
. Then by means

of counting techniques, one can see that the number of
elements of ỹ that belong to a constraint of the type
1 − mx − ∆ is

∣∣∣Π̃(m,j)
∆

∣∣∣ = Qm,j
N (m,m), while the num-

ber of elements of ỹ that belong to a constraint of the
type 1 − mx is

∣∣∣Π̃(m,j)
∆,†

∣∣∣ = Qm,j
N (N −m,m). With this

we can rewrite (8) as in (9) at the top of the next page,
where g1 ∈ Z+, respectively g2 ∈ Z+ which ensures that
[1− `x−∆]

+
= 1 − `x − ∆,∀` ∈ [1 : g1], respectively

[1− `x]
+

= 1− `x,∀` ∈ [1 : g2].
Evaluation of fOpt(x̂, ŷ): We define

Π̂
(m,j)
∆ = {(i, k)| pk = B (p, j,N) ,[
1−mx− m

N
∆
]+
≤ ŷi,k<

[
1− (m− 1)x− m− 1

N
∆

]+
}
.

Thus, similarly to the case of (x̃, ỹ), the optimal solution
would yield ∀(i, k) ∈ Π̂

(m,j)
∆ , ŷi,k =

[
1−mx− m

N ∆
]+ and

we can rewrite (7) as

K∑
k=1

pk

N∑
i=1

ŷi,k =

N(N−1)
2∑

j=0

B (p, j,N) ·
N∑

m=1

∑
w∈Π̂

(m,j)
∆

ŷw. (11)

Similar to (x̃, ỹ), one can see that the number of elements
of ŷ that belong to a constraint of the type 1−mx− m

N ∆ is∣∣∣Π̂(m,j)
∆

∣∣∣ = Qm,j
N (N,m). With this we have that (11) can be

rewritten as (10) at the top of the next page, where g3 ∈ Z+

ensures that
[
1− `x− `

N ∆
]+

= 1− `x− `
N ∆,∀` ∈ [1 : g3].

Depending on x and ∆, one can distinguish 4 cases
that might occur, which are next analyzed. For each case,
we identify the values of g[1:3] and show that fOpt(x̃, ỹ) −
fOpt(x̂, ŷ) ≥ 0, thus proving optimality of the pair (x̂, ŷ).
Case 1: 1 − (n + 1)x > 0, n ∈ [1 : N ]; here, we have
g1 = g3 = n and g2 = n+ 1 in (9) and (10) at the top of the
next page. In that case we get fOpt(x̃, ỹ)− fOpt(x̂, ŷ) ≥ 0.
Case 2: 1 − (n + 1)x ≤ 0 and 1− nx −∆ > 0, n ∈ [1 : N ];
here, we have g1 =g2 =g3 =n in (9) and (10) at the top of the
next page. In that case we get fOpt(x̃, ỹ)− fOpt(x̂, ŷ) = 0.
Case 3: 1− nx−∆ ≤ 0 and 1− nx− n

N ∆ > 0, n ∈ [1 : N ];
here, we have g1 = n − 1 and g2 = g3 = n in (9) and
(10) at the top of the next page. In that case we get
fOpt(x̃, ỹ)− fOpt(x̂, ŷ) ≥ 0.
Case 4: 1−nx− n

N ∆ ≤ 0 and 1−nx > 0, n ∈ [1 : N ]; here,
we have g1 = g3 = n−1 and g2 = n in (9) and (10) at the top
of the page. In that case we get fOpt(x̃, ỹ)− fOpt(x̂, ŷ) ≥ 0.

Remark B.2. The proof above generalizes to the case when x̃ has
general components. The idea is to order x̃ in ascending order and
to rewrite it as x̃ = xm + [0, ∆2, . . . , ∆N ]

T , where xm =
mini x̃i and ∆i, i ∈ [1 : N ] is the difference between the i-th
component of the ordered x̃ and xm. Then, the above method is
applied N − 1 times as follows. At step k ∈ [1 : N − 1], ∆k+1

is equally shared among the N components of x̃; this, as proved
above, brings to a reduction of the objective function. At the end
of the N − 1 steps the optimal x̂ is of the form x̂ = 1N x̂.

According to the structure of x̂ in Step 2, the optimal ŷ
has components of the form stated in Lemma B.1 - item 2).

One can see that with fOpt (x̂, ŷ) in (1), we have

K∑
k=1

pk

N∑
i=1

ŷi,k =
N∑
i=1

ŷi

(
N − 1

i− 1

)
Npi−1(1− p)N−i,

which follows by noting that the probability of having i
people meeting is

(N−1
i−1

)
pi−1(1 − p)N−i and that this event

happens once for every user. This completes the proof of
Lemma B.1.

Using Lemma B.1, one can prove the equivalence of the
LPs in (1) and (3) using similar arguments as in Appendix
A. This concludes the proof.

APPENDIX C
PROOF OF THEOREM 4.1

Let f̄Opt be the optimal solution for the LP in (1). Then, the
LP in (1) can be equivalently written as

f̄Opt = min
(x,y)∈F

K∑
k=1

pk

N∑
i=1

yi,k + 1T
Nx,
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K∑
k=1

pk

N∑
i=1

ỹi,k =

N(N−1)
2∑

j=0

B (p, j,N)

[
N∑

m=1

[1−mx−∆]
+
Qm,j

N (m,m) +
N∑

m=1

[1−mx]
+
Qm,j

N (N −m,m)

]

=

N(N−1)
2∑

j=0

B (p, j,N)

[
g1∑
`=1

(1−`x−∆)Q`,j
N (`, `)+

g2∑
`=1

(1− `x)Q`,j
N (N − `, `)

]
, (9)

K∑
k=1

pk

N∑
i=1

ŷi,k =

N(N−1)
2∑

j=0

B (p, j,N)
N∑

m=1

[
1−mx−m

N
∆
]+
Qm,j

N (N,m)=

N(N−1)
2∑

j=0

B (p, j,N)

g3∑
`=1

(
1−`x− `

N
∆

)
Q`,j

N (N, `) . (10)

where F = {(x,y) |x ≥ 0N , y ≥ 0N×K ,1N − A(k)x ≤
yk,∀ k ∈ [1 : K]}. The next series of inequalities hold

f̄Opt = min
(x,y)∈F

K∑
k=1

pk

N∑
i=1

yi,k + 1T
Nx

= min
(x,y)∈F

K∑
k=1

pk

N∑
i=1

yi,k +
K∑

k=1

pk1
T
Nx

(a)

≥
K∑

k=1

pk min
(x,y)∈F

(
N∑
i=1

yi,k + 1T
Nx

)
=

K∑
k=1

pkf(k),

where (a) is due to Jensen’s inequality. Thus,

f(k) = min
x,y

N∑
i=1

yi,k + 1T
Nx

subject to x ≥ 0N , y ≥ 0N×K ,

1N −A(v)x ≤ yv,∀ v ∈ [1 : K].

(12)

Consider the set of constraints in (12) ∀v ∈ [1 : K] such that
v 6= k, which can be written as A(v)x ≥ 1N − yv ≥ −∞,
since yv does not directly affect the objective function. This
makes these constraints trivial, i.e., (12) becomes

f(k) = min
x,yk

1T
Nyk + 1T

Nx

subject to x ≥ 0N , yk ≥ 0N ,

yk + A(k)x ≥ 1N .

(13)

For the problem in (13), we prove that, for any k ∈ [1 : K],
an optimal solution of the form yk = 0N always exists.
Assume this is not true, i.e., ∃ (x∗,y∗k) such that yi,k >
0, for i ∈ S, where S ⊆ [1 : N ]. Then consider the point
(x̂, ŷk). Note that A(k) has ones on the diagonal. Then, by
letting ŷk = 0N and x̂ = x∗ + y∗k we get another feasible
point with the same objective function. Thus, the problem
in (13) becomes

f(k) = min
x

1T
Nx

subject to x ≥ 0N , A
(k)x ≥ 1N .

(14)

The problem in (14) is the LP relaxation of the SC problem
on a bipartite graph with adjacency matrix A(k). This con-
cludes the proof.

APPENDIX D
PROOF OF THEOREM 5.1
We start by proving that xPSC = x1N . Assume that x′ is the
optimal solution, with k = mini∈[1:N ] {x′i}; without loss of
generality, x′ = k1N + [∆[1:N−1], 0]T , where ∆i ≥ 0 ∀i =

[1 : N − 1]. With this, we get that fPSC(x′) = Nk +
N−1∑
i=1

∆i,

and x′ satisfies the constraints of the LP in (4) that are

k + (N − 1)pk + ∆i + p
N−1∑

j=1,j 6=i

∆j ≥ 1, ∀i ∈ [1 : N − 1]

k + (N − 1)pk + p
N−1∑
j=1

∆j ≥ 1. (15)

It is clear that the first set of constraints is always redundant,
as the second one is tighter. Now consider xPSC = x1N , with

x = k+ 1
N

N−1∑
j=1

∆j ; it is not difficult to see that fPSC(xPSC) =

fPSC(x′). To complete the proof that xPSC = x1N we need
to show that such a point is feasible. The constraints of the
LP in (4) when evaluated at xPSC become

k + (N − 1)pk +
1

N
(1 + (N − 1) p)

N−1∑
j=1

∆j ≥ 1,

thus xPSC is a feasible solution as this constraint is al-
ways satisfied if the second constraint in (15) holds since
1
N (1 + (N − 1) p) ≥ p. By enforcing this solution into the
LP in (4) we get fPSC

(
xPSC

)
= Nx and a constraint of the

form x≥ 1
1+(N−1)p = 1

E(C) which implies that the optimal
value is xPSC = 1

E(C)1N . This completes the proof.

APPENDIX E
PROOF OF THEOREM 6.1
Let

(
xOpt,yOpt

)
and xPSC be the optimal points for the LPs

in (1) and (4), respectively. If xOpt is a feasible point in the
LP in (4), then by definition

f̄PSC = fPSC(xPSC) ≤ fPSC(xOpt) ≤ fOpt(xOpt,yOpt) = f̄Opt,

where the second inequality holds by simply observing the
objective functions of both problems.

Consider now the case where xOpt is not a feasible point
in the LP in (4). Since it is feasible in (1), it satisfies

A(k)xOpt + y
Opt
k ≥ 1N , ∀k ∈ [1 : K]. (16)

Weighting (16) by pk and taking the sum, we get
K∑

k=1

pk
(
A(k)xOpt + y

Opt
k

)
= PxOpt + ỹOpt ≥ 1N (17)

where the equality holds by noticing that
K∑

k=1
pkA

(k) = P

and by letting ỹOpt =
K∑

k=1
pky

Opt
k ≥ 0N .
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Consider now the point x̂PSC = xOpt + ỹOpt. Then, this
point is feasible in (4) since Px̂PSC = PxOpt + PỹOpt ≥
PxOpt + ỹOpt ≥ 1N , where the first inequality holds because
the diagonal entries of P are all equal to 1, and all the
other entries are non-negative, while the second inequality
follows from (17). Thus, we get

f̄PSC ≤ fPSC(x̂PSC) = fOpt(xOpt,yOpt) = f̄Opt.

This completes the proof.
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