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Abstract—Achievable rate regions for cooperative relay broad-
cast channels with rate-limited feedback are proposed. Specifi-
cally, we consider two-receiver memoryless broadcast channels
where each receiver sends feedback signals to the transmitter
through a noiseless and rate-limited feedback link, meanwhile,
acts as a relay to transmit cooperative information to the other
receiver. It’s shown that the proposed rate regions improveon
the known regions that consider either relaying cooperation or
feedback communication, but not both.

I. I NTRODUCTION

Relay broadcast channels (RBCs) describe communication
networks where the transmitter sends information to a set of
receivers with the help of relaying communication. In [1],
[2], the dedicated-relay broadcast channel (BC) model was
studied, where a relay node was introduced to the original
BC to assist the cooperation between two receivers. Another
RBC model, called cooperative RBC model was studied in [3],
[4], where each receiver acts as a relay and sends cooperative
information to the other receiver. It was shown that even
partially cooperation (only one receiver relays cooperative
information) still improves on the capacity region of original
BC.

In a different line of work, many studies have been done on
memoryless BCs with feedback, where the receivers send feed-
back signals to the transmitter through feedback links. In [5], it
shows that feedback cannot increase the capacity region forall
physically degraded BCs. The first simple example BC where
feedback increases capacity was presented by Dueck [6].
Based on Dueck’s idea, Shayevitz and Wigger [7] proposed an
achievable region for BCs with generalized feedback. Other
achievable regions for BCs with perfect or noisy feedback,
have been proposed by Kramer [8] and Venkataramanan and
Pradhan [9]. Most recently, Wu and Wigger [10], [11] showed
that any positive feedback rate can increase the capacity region
for a large class of BCs, called strictly essentially less noisy
BCs, unless it is physically degraded.

Cooperative RBCs with prefect feedback was investigated
in [3], where the capacity region was established for the case
of perfect feedback from the receiver to the relay. In this paper,
we consider the cooperative RBCs with rate-limited feedback
from the receivers to the transmitter, i.e., each receiver sends
feedback signals to the transmitter through a noiseless and
rate-limited feedback link, and meanwhile, acts as a relay to

transmit cooperative information to the other receiver.
In the first work, we first study thepartially coopera-

tive RBC with one-sided feedback (only one receiver sends
feedback signals and relays cooperative information to the
other receiver). We proposed a new coding scheme (Scheme
1) based on block-Markov coding, Marton’s coding [12],
partial decode-forward [13] and compress-forward strategies
[13]. Specifically, in each block, the transmitter uses Mar-
ton’s coding to send the source messages andforward the
feedback message. The receiver who acts as relay performs
combined partial decode-forward and compress-forward, and
sends the compression message as feedback information. The
other Receiver uses backward decoding to jointly decode its
private message and the compression message. It is shown that
when feedback rate is sufficiently large, our coding scheme
strictly improves on Liang and Kramer’s region [4], which is
tight for the semideterministic partially cooperative RBCs and
orthogonal partially cooperative RBCs.

In the second work, we study thefully cooperative RBCs
with two-sided feedback (both receiver send feedback signals
and relay cooperative information). Two block-Markov coding
schemes (Scheme 2A and 2B) are proposed based on Scheme
1. Specifically, in each block, the transmitter uses Marton’s
coding to send the source messages and forward the feedback
messages sent by both receivers. In Scheme 2A, both receivers
apply compress-forward and backward decoding. Scheme 2B
is similar to Scheme 1A except that one of the two receiver
uses hybrid relaying strategy and sliding-window decoding.
The resulting rate regions strictly improve on Wu and Wigger’s
region [10, Theorem 1], which shows that feedback strictly
increases capacity region for a large class of BCs.

Note that in our coding schemes the transmitter can recon-
struct the receivers’ inputs due to a delicate design, which
allows to superimpose the Marton’s codes on the receivers
inputs, and thus attains cooperation between the transmitter
and the receivers.

This paper is organized as follows. Section II describes
cooperative RBC with feedback and our main results are pre-
sented in Section III. Section IV compares various achievable
rate regions and shows that our regions strictly improve the
known rate regions that consider either relay cooperation or
feedback communication, but not both. Sections VI and V
contain the proofs of our results in Section III. Finally, Section
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Fig. 1. Cooperative relay broadcast channel with feedback

VII concludes this paper.
Notations: We use capital letters to denote random variables

and small letters for their realizations, e.g.X andx. For j ∈
Z
+, we use the short hand notationsXj andxj for the tuples

Xj := (X1, . . . , Xj) andxj := (x1, . . . , xj). Given a positive
integern, let 1[n] denote the all-one tuple of lengthn, e.g.,
1[3] = (1, 1, 1). The abbreviation i.i.d. stands forindependent
and identically distributed.

Given a distributionPA over some alphabetA, a positive
real numberε > 0, and a positive integern, letT n

ε (PA) denote
the typical set in [14].

II. SYSTEM MODEL

Consider 3-node cooperative RBC with feedback, as shown
in Fig. 1. This setup is characterized by seven finite alphabets
X ,Xk,Yk,Fk, for k ∈ {1, 2}, a channel lawPY1Y2|XX1X2

and nonnegative feedback ratesRfb,1, Rfb,2. Specifically, at
discrete-timei ∈ [1 : n], the transmitter sends inputxi ∈ X .
Receiverk observes outputyk,i ∈ Yk and relays cooper-
ative informationxk,i ∈ Xk to the other receiver. When
both receiver relay information, it is calledfully cooperative
RBC. When only one receiver relays information, it is called
partially cooperative RBC. After observingyk,i, Receiverk
also sends a feedback signalfk,i ∈ Fk,i to the transmitter,
whereFk,i denotes the finite alphabet offk,i. The feedback
link between the transmitter and Receiverk is noiseless and
rate-limited to Rfb,k bits per channel use. In other words, if
the transmission takes place over a total blocklengthn, then

|Fk,1| × · · · × |Fk,n| ≤ 2nRfb,k , k ∈ {1, 2}. (1)

In the communication, the transmitter wishes to send message
M0 ∈ [1 : 2nR0 ] to both receivers, and messageMk ∈ [1 :
2nRk ] to Receiverk.

A (2nR0 , 2nR1 , 2nR2 , n) code for this channel consists of
• message setsM0 := [1 : 2nR0 ] andMk := [1 : 2nRk ];
• a source encoder that maps(M0,M1,M2) to a sequence

Xi

(

M0,M1,M2, F
i−1
1 , F i−1

2

)

;
• two receiver encoders where Receiverk mapsY i−1

k to a
sequenceXk,i(Y

i−1
k );

• two decoders where Receiverk estimates(M̂ (k)
0 , M̂k)

based onY n
k ,

for each timei ∈ [1 : n] andk ∈ {1, 2}. SupposeM0,M1 and
M2 are uniformly distributed and independent with each other.
A rate tuple(R0, R1, R2) with average feedback ratesRfb,k,

for k ∈ {1, 2}, is called achievable if for every blocklengthn,
there exists a(2nR0 , 2nR1 , 2nR2 , n) code such that the average
probability of error

P (n)
e = Pr[(M̂ (1)

0 , M̂
(2)
0 , M̂1, M̂2) 6= (M0,M0,M1,M2)]

tends to 0 asn → ∞. The capacity region is all nonnegative
rate tuples(R0, R1, R2) such thatlimn→∞ P

(n)
e = 0.

III. M AIN RESULTS

In this section, we present our main results as the following
theorems. The proofs are given in Section V and Section VI.

Theorem 1: For the partially cooperative BRC with
receiver-transmitter feedback, the capacity region includes the
setR1 of all nonnegative rate tuples(R0, R1, R2) that satisfy

R0 +R1 ≤ I(U0, U1;Y1|X1) (2a)

R0 +R2 ≤ I(U0, U2, X1;Y2)

−I(Ŷ1;Y1|U0, U2, X1, Y2) (2b)

R0 +R1 +R2 ≤ I(U1;Y1|U0, X1) + I(U0, U2, X1;Y2)

−I(Ŷ1;Y1|U0, U2, X1, Y2)

−I(U1;U2|U0, X1) (2c)

R0 +R1 +R2 ≤ I(U0, U1;Y1|X1) + I(U2; Ŷ1, Y2|U0, X1)

−I(U1;U2|U0, X1) (2d)

2R0 +R1 +R2 ≤ I(U0, U1;Y1|X1) + I(U0, U2, X1;Y2)

−I(Ŷ1;Y1|U0, U2, X1, Y2)

−I(U1;U2|U0, X1) (2e)

for some pmf PU0U1U2X1
P
Ŷ1|U0X1Y1

and function X =

f(U0, U1, U2) such that

I(Ŷ1;Y1|U0, X1) ≤ Rfb,1. (2f)

Proof: See Section V.
Remark 1: The rate constraint (2f) can be relaxed as

I(Ŷ1;Y1|U0, X1, Y2) ≤ Rfb,1 (3)

by using a trick in [11, Section V], where the receivers use
the feedback links to send Wyner-Ziv compression messages
about their previously observed outputs to the transmitter.

Remark 2: If Ŷ1 = ∅, i.e., no feedback signal is sent by
Receiver 1, then rate regionR1 reduces toRLiang, which is
the set of all nonnegative rate tuples(R0, R1, R2) satisfying

R0 +R1 ≤ I(U0, U1;Y1|X1) (4a)

R0 +R2 ≤ I(U0, U2, X1;Y2) (4b)

R0 +R1 +R2 ≤ I(U1;Y1|U0, X1) + I(U0, U2, X1;Y2)

−I(U1;U2|U0, X1) (4c)

R0 +R1 +R2 ≤ I(U0, U1;Y1|X1) + I(U2;Y2|U0, X1)

−I(U1;U2|U0, X1) (4d)

2R0 +R1 +R2 ≤ I(U0, U1;Y1|X1) + I(U0, U2, X1;Y2)

−I(U1;U2|U0, X1) (4e)

for some pmfPU0U1U2X1
and functionX = f(U0, U1, U2).

This rate region was proposed by Liang and Kramer [4,



Theorem 2], and was shown to be the capacity region for
semideterministic partially cooperative RBCs and orthogonal
partially cooperative RBCs.

Theorem 2: For the fully cooperative BRC with two-sided
and rate-limited feedback, the capacity region includes the set
R2 of all nonnegative rate tuples(R0, R1, R2) that satisfy

R0 +R1 ≤ I(U0, U1; Ŷ2, Y1|X1, X2) + ∆1 (5a)

R0 +R2 ≤ I(U0, U2; Ŷ1, Y2|X1, X2) + ∆2 (5b)

R0 +R1 +R2 ≤ I(U0, U1; Ŷ2, Y1|X1, X2) + ∆1

+I(U2;Y2, Ŷ1|U0, X1, X2)

−I(U1;U2|U0, X1, X2) (5c)

R0 +R1 +R2 ≤ I(U0, U2; Ŷ1, Y2|X1, X2) + ∆2

+I(U1;Y1, Ŷ2|U0, X1, X2)

−I(U1;U2|U0, X1, X2) (5d)

2R0 +R1 +R2 ≤ I(U0, U1; Ŷ2, Y1|X1, X2) + ∆1

+I(U0, U2; Ŷ1, Y2|X1, X2) + ∆2

−I(U1;U2|U0, X1, X2) (5e)

for some pmfPX1
PX2

PU0U1U2|X1X2
P
Ŷ1|X1Y1

P
Ŷ2|X2Y2

and
functionX = f(U0, U1, U2) such that

I(Ŷ1;Y1|X1) ≤ Rfb,1 and I(Ŷ2;Y2|X2) ≤ Rfb,2 (5f)

where

∆1 = min{0, I(X2;Y1|X1)−I(Ŷ2;Y2|X1, X2, Y1)}

∆2 = min{0, I(X1;Y2|X2)−I(Ŷ1;Y1|X1, X2, Y2)}.

Proof: See Section VI-A.
Remark 3: If R0 = 0 and X1 = X2 = ∅, i.e., both

receivers send feedback signals without relaying cooperative
information, by relaxing rate constraint (2f) as in Remark 1,
the rate regionR1 reduces toRWu, which is the set of all
nonnegative rate tuples(R0, R1, R2) satisfying

R1 ≤ I(U0, U1;Y1, Ŷ2)− I(Ŷ2;Y2|Y1) (6a)

R2 ≤ I(U0, U2;Y2, Ŷ1)− I(Ŷ1;Y1|Y2) (6b)

R1+R2 ≤ I(U0, U1;Y1, Ŷ2)− I(Ỹ2;Y2|Y1)

+I(U2;Y2, Ŷ1|U0)− I(U1;U2|U0) (6c)

R1+R2 ≤ I(U0, U2;Y2, Ŷ1)− I(Ŷ1;Y1|Y2)

+I(U1;Y1, Ŷ2|U0)− I(U1;U2|U0) (6d)

R1+R2 ≤ I(U0, U1;Y1, Ŷ2)− I(Ŷ2;Y2|Y1)− I(U1;U2|U0)

+I(U0, U2;Y2, Ỹ1)− I(Ŷ1;Y1|Y2) (6e)

for some pmf PU0U1U2
PỸ1|Y1

PỸ2|Y2
and function X =

f(U0, U1, U2) such that

I(Ỹ1;Y1|Y2) ≤ RFb,1 and I(Ỹ2;Y2|Y1) ≤ RFb,2. (6f)

This rate region coincides with Wu and Wigger’s region in [10,
Corrollary 1], which shows feedback can strictly increase the
entire capacity region for a large class of BCs, called strictly
essentially less noisy BCs, unless it is physically degraded.

In the scheme for Theorem 2, both receivers apply
compress-forward. If one of the two receivers uses a hybrid

relaying strategy that combines partially decode-forwardand
compress-forward, we obtain a new achievable region below.

Theorem 3: For the fully cooperative BRC with two-sided
and rate-limited feedback, the capacity region includes the set
R

(1)
3 of all nonnegative rate tuples(R0, R1, R2) that satisfy

R0 ≤ I(U0;Y1|X1, X2) + ∆ (7a)

R0 +R1 ≤ I(U0;Y1|X1, X2) + ∆ + I1 (7b)

R0 +R2 ≤ I(U0;Y1|X1, X2) + ∆ + I2 (7c)

R0 +R2 ≤ I(U0, U2, X1;Y2|X2) (7d)

−I(Ŷ1;Y1|U0, U2, X1, X2, Y2) (7e)

R0 +R1 +R2 ≤ I(U0;Y1|X1, X2) + I(U0, U2, X1;Y2|X2)

+∆− I(Ŷ1;Y1|U0, U2, X1, X2, Y2)

−I(U1;U2|U0, X1, X2) (7f)

R0 +R1 +R2 ≤ I(U0;Y1|X1, X2) + ∆

+I1 + I2 − I(U1;U2|U0, X1, X2) (7g)

for some pmfPX1
PX2

PU0U1U2|X1X2
P
Ŷ1|U0X1X2Y1

P
Ŷ2|X2Y2

and functionX = f(U0, U1, U2) such that

I(Ŷ1;Y1|U0, X1, X2, Y2) ≤ Rfb,1 (7h)

I(Ŷ2;Y2|U0, X1, X2, Y1) ≤ Rfb,2 (7i)

where

∆ = min{0, I(X2;Y1|X1)−I(Ŷ2;Y2|U0, X1, X2, Y1)}

I1 = I(U1; Ŷ2, Y1|U0, X1, X2)

+min{0, Rfb,2−I(Ŷ2;Y2|U0, X1, X2, Y1)}

I2 = I(U2; Ŷ1, Y2|U0, X1, X2)

+min{0, Rfb,1−I(Ŷ1;Y1|U0, X1, X2, Y2)}.

Proof: See Section VI-B
Remark 4: The regionR(2)

3 is also achievable by exchang-
ing indices1 and2 in the above definition ofR(1)

3 . The convex
hull of the union ofR(1)

3 andR(2)
3 leads to a potentially larger

rate region.

IV. COMPARISONS AMONGR1 , R2, RLiang AND RWu

We compare our regionsR1, R2 with the known rate
regionsRLiang andRWu. Note thatRLiang is for RBCs without
feedback andRWu is for BCs with feedback, whileR1 andR2

include both feedback communication and relay cooperation.

A. RLiang versus R1

In Remark 2, it showed that our rate regionR1 includes
Liang and Kramer’s regionRLiang. In this subsection, we will
prove that when the feedback rate is sufficiently large, this
inclusion is strict for some channels, i.e.

RLiang ⊂ R1. (8)

SupposeR0 = 0 for simplicity. To prove (8), in view of
Remark 2, it’s sufficient to show there exists some rate pair
(R∗

1, R
∗
2) in R1 lying strictly outside ofRLiang. Consider the

corner point(0, R∗
2,Liang) on the boundary ofRLiang in (4),



where the transmitter spends all power to send messageM2

to Receiver 2, i.e.,U1 = ∅ andU2 = X . Thus, we have

R∗
2,Liang ≤ I(X,X1;Y2) (9a)

R∗
2,Liang ≤ I(U0;Y1|X1) + I(X1;Y2|X1, U0) (9b)

for some pmfPXX1U , which is the partial decode-forward
lower bound of relay channel [13].

Now considerR1 in (2). Let R0 = R1 = 0 andU1 = ∅
andU2 = X , then the marginal rateR2 is achievable if

R∗
2,Scheme1≤ I(X,X1;Y2)− I(Ŷ1;Y1|U0, X,X1, Y2) (10a)

R∗
2,Scheme1≤ I(U0;Y1|X1) + I(X ; Ŷ1, Y2|U0, X1) (10b)

for some pmfPU0X1XP
Ŷ1|U0X1Y1

satisfying

I(Ŷ1;Y1|U0, X1) ≤ Rfb,1. (10c)

If feedback rate is sufficiently large such that rate constraint
(10c) is inactive, then (10) turns to be Gabbai and Bross’s
rate in [15, Theorem 3]. In their work, they evaluated the
rates (9) and (10) for the Gaussian andZ relay channels, and
showed thatR∗

2,Scheme1> R∗
2,Liang. In view of this fact and

from Remark 2, we have
Corollary 1: RLiang ⊂ R1 holds whenRfb,1 satisfies (10c).

B. RWu versus R2

Remark 3 states thatRWu ⊆ R2. Here we prove thatRWu ⊂
R2. To prove the strict inclusion, we follow similar procedures
in Section IV-A and show that there exists some rate pair
(R∗

1, R
∗
2) insideR2 lying strictly outside ofRWu.

Consider the corner point(0, R∗
2,Wu) on the boundary of

RWu. From (6), it’s easy to check that

R∗
2,Wu ≤ I(X ;Y2) (11)

for somePX , which is the capacity of the link from the
transmitter to Receiver 2.

Now considerR2 in (5). LetR0 = R1 = 0 andU0 = U1 =
Ŷ2 = ∅, then the marginal rateR2 is achievable if

R∗
2,CF ≤I(X ; Ŷ1, Y2|X1) (12a)

R∗
2,CF ≤I(X,X1;Y2)−I(Ŷ1;Y1|X,X1,Y2) (12b)

for some pmfPXPX1
P
Ŷ1|X1Y1

, which is the compress-forward
lower bound of the relay channel [13]. It’s well known that
introducing a compress-forward relay to the point-to-point
channel, such as Gaussian channel, can strictly increase the
capacity (11). Thus, we have

Corollary 2: RWu ⊂ R2.

C. Example

Consider the Gaussian relay broadcast channel with perfect
feedback from Receiver 1 to the transmitter, see Fig. 2. The
channel outputs are:

Y1 = g01X + Z1,

Y2 = g02X + g12X1 + Z2

X1Y1

Rx 1

Tx
X

Y2

Rx 2

Z1

Z2

g01

g02

g12

Fig. 2. Gaussian RBC with relay-transmitter feedback

TABLE I
MARGNIAL RATE R∗

2 ACHIEVED BY VARIOUS CODING SCHEMES

d R∗

2,Liang R∗

2,Scheme1 R∗

2,Wu R∗

2,CF

0.73 1.6881 1.7069 1.2925 1.6908
0.74 1.6703 1.7111 1.2925 1.6971
0.75 1.6529 1.7153 1.2925 1.7033
0.76 1.6358 1.7195 1.2925 1.7094

whereg01, g02 andg12 are channel gains, andZ1 ∼ N (0, 1)
andZ2 ∼ N (0, 1) are independent Gaussian noise variables.
The input power constraints areE|X2| ≤ P andE|X2

1 | ≤ P1.
Table I comparesR∗

2,Liang, R∗
2,Scheme1, R∗

2,Wu, and R∗
2,CF,

see (9)–(12), for this channel withg01 = 1/d, g02 = 1,
g12 = 1/|1 − d|, and P = 5, P1 = 1. It can be seen that
R∗

2,Scheme1> R∗
2,CF > R∗

2,Liang > R∗
2,Wu, which means that our

rate regionsR1 andR2 can strictly improve onRLiang and
RWu, respectively.

V. CODING SCHEME FOR PARTIALLY COOPERATIVEBRCS

WITH RATE-LIMITED FEEDBACK

In this section we present a block-Markov coding scheme
for partially cooperative BRCs with relay-transmitter andrate-
limited feedback. Assume only Receiver 1 relays cooperative
informationX1 without loss of generality. In the transmission,
a sequence ofB i.i.d message tuples(m0,b,m1,b,m2,b), b ∈
[1 : B], are sent overB + 1 blocks, each consisting ofn
transmissions.

Split messagemk,b into common and private parts:mk,b =
(mc,k,b,mp,k,b), where mc,k,b ∈ [1 : 2nRc,k ], mp,k,b ∈
[1 : 2nRp,k ] and Rk = Rc,k + Rp,k. Define mc,b :=
(m0,b,mc,1,b,mc,2,b) andRc := R0 +Rc,1 +Rc,2.

In each blockb ∈ [1 : B + 1], after obtaining feed-
back messagemfb,1,b−1, the transmitter uses Marton’s coding
to send (mc,b,mc,b−1,mfb,1,b−1) in the cloud centreun

0,b,
and mp,1,b,mp,2,b in two different satellitesun

1,b, u
n
2,b, re-

spectively. Receiver 1 first jointly decodes(mc,b,mp,1,b),
and then compress its channel outputsyn1,b. Finally, it
sends the compression messagemfb,1,b as feedback infor-
mation andxn

1,b+1(mc,b,mfb,1,b) as channel inputs in next
bock. Receiver 2 uses backward decoding to jointly decode
(mc,b−1,mp,2,b,mfb,1,b−1). Note that the transmitter knows
(mc,b−1,mfb,1,b−1), from which it can reconstruct Receiver
1’s input xn

1,b, thus we superimpose(un
0,b, u

n
1,b, u

n
2,b) on xn

1,b

that attains cooperation between the transmitter and Receiver
1. Coding is explained with the help of Table II.



TABLE II
SCHEME 1 FOR PARTIALLY COOPERATIVEBRCS WITH RATE-LIMITED FEEDBACK

Block 1 2 . . . b · · ·

X1 xn
1,1(1, 1) xn

1,2(mc,1,mfb,1,1) . . . xn
1,b(mc,b−1, mfb,1,b−1) . . .

U0 un
0,1(mc,1|1, 1) un

0,2(mc,2|mc,1,mfb,1,1) . . . un
0,b(mc,b|mc,b−1,mfb,1,b−1) · · ·

Uk un
k,1(mp,k,1, vk,1|mc,1, 1, 1) un

k,2(mp,k,2, vk,2|mc,2,mc,1,mfb,1,1) . . . un
k,b

(mp,k,b, vk,b|mc,b,mc,b−1,mfb,1,b−1) · · ·

Ŷ1 ŷn1,1(mfb,k,1|mc,1, 1, 1) ŷn1,2(mfb,1,2|mc,2,mc,1,mfb,1,1) . . . ŷn1,b(mfb,1,b|mc,b,mc,b−1,mfb,1,b−1) · · ·

Y1 (m̂(1)
c,1, m̂p,1,1, v̂1,1) (m̂(1)

c,2, m̂p,1,2, v̂1,2)→ . . . (m̂(1)
c,b

, m̂p,1,b, v̂1,b)→ · · ·

Y2 (m̂p,2,1, v̂2,1) ← (m̂(2)
c,1, m̂p,2,2, v̂2,2, m̂fb,1,1) . . . ← (m̂(2)

c,b−1, m̂p,2,b, v̂2,b, m̂fb,1,b−1) · · ·

1) Code construction: Fix pmf PU0U1U2X1
P
Ŷ1|U0X1Y1

and
a functionX = f(U0, U1, U2). For each blockb ∈ [1 : B+1],
randomly and independently generate2n(Rc+R̂1)

sequences xn
1,b(mc,b−1,mfb,1,b−1) ∼

∏n

i=1 PX1
(x1,b,i),

mc,b−1 ∈ [1 : 2nRc ] and mfb,1,b−1 ∈ [1 : 2nR̂1 ]. For
each (mc,b−1,mfb,1,b−1), randomly and independently
generate 2nRc sequencesun

0,b(mc,b|mc,b−1,mfb,1,b−1) ∼
∏n

i=1 PU0|X1
(u0,b,i|x1,b,i). For each(mc,b,mc,b−1,mfb,1,b−1),

randomly and independently generate2n(Rp,k+R′

k)

sequences un
k,b(mp,k,b, vk,b|mc,b,mc,b−1,mfb,1,b−1) ∼

∏n

i=1 PUk|U0X1
(uk,b,i|u0,b,i, x1,b,i), mp,k,b ∈ [1 : 2nRp,k ] and

vk,b ∈ [1 : 2nR
′

k ]. For each (mc,b,mc,b−1,mfb,1,b−1),
randomly and independently generate 2nR̂1

sequences ŷn1,b(mfb,1,b|mc,b,mc,b−1,mfb,1,b−1) ∼
∏n

i=1 PŶ1|U0X1
(ŷ1,b,i|u0,b,i, x1,b,i).

2) Encoding: In each blockb ∈ [1 : B+1], assume that the
transmitter already knowsmfb,1,b−1 through feedback link. It
first looks for a pair of indices(v1,b, v2,b) such that
(

un
1,b(mp,1,b, v1,b|mc,b,mc,b−1,mfb,1,b−1),

un
0,b(mc,b|mc,b−1,mfb,1,b−1), x

n
1,b(mc,b−1,mfb,1,b−1),

un
2,b(mp,2,b, v2,b|mc,b,mc,b−1,mfb,1,b−1)

)

∈T n
ǫ (PU0U1U2X1

).

Then in blockb it sendsxn
b with xb,i = f(u0,b,i, u1,b,i, u2,b,i).

By covering lemma [14], this is successful with high prob-
ability for sufficiently largen if

R′
1 +R′

2 ≥ I(U1;U2|U0, X1) (13)

3) Receiver 1’s decoding: In each blockb ∈ [1 : B + 1],
Receiver 1 looks for(m̂(1)

c,b , m̂p,1,b, v̂1,b) such that
(

xn
1,b(mc,b−1,mfb,1,b−1), y

n
1,b,

un
1,b(m̂p,1,b, v̂1,b|m̂

(1)
c,b ,mc,b−1,mfb,1,b−1),

un
0,b(m̂

(1)
c,b ,mc,b−1,mfb,1,b−1)

)

∈ T n
ǫ (PX1U0U1Y1

).

It then compressesyn1,b by findingmfb,1,b satisfying
(

xn
1,b(mc,b−1,mfb,1,b−1), u

n
0,b(mc,b|mc,b−1,mfb,1,b−1), y

n
1,b,

ŷn1,b(mfb,1,b|mc,b,mc,b−1,mfb,1,b−1)
)

∈ T n
ǫ (P

Ŷ1X1U0Y1
).

Finally, it sendsmfb,1,b as feedback message to the trans-
mitter at rate

R̂1 ≤ Rfb,1, (14)

and sendsxn
1,b+1(mc,b,mfb,1,b) as channel inputs in blockb+

1.
By the independence of the codebooks, the Markov lemma

[14], packing lemma [14] and the induction on backward
decoding, these steps are successful with high probabilityif

Rp,1+R′
1 < I(U1;Y1|U0, X1) (15a)

Rp,1+R′
1+Rc < I(U0, U1;Y1|X1) (15b)

R̂1 > I(Ŷ1;Y1|U0, X1) (15c)

4) Receiver 2’s decoding: Receiver 2 performs backward
decoding. In each blockb ∈ [1 : B + 1], It looks for
(m̂(2)

c,b−1, m̂p,2,b, v̂2,b, m̂fb,1,b−1) such that
(

xn
1,b(m̂

(2)
c,b−1, m̂fb,1,b−1), ŷ

n
1,b(mfb,1,b|mc,b, m̂

(2)
c,b−1, m̂fb,1,b−1),

un
2,b(m̂p,2,b, v̂2,b|mc,b, m̂

(2)
c,b−1, m̂fb,1,b−1), y

n
2,b,

un
0,b(mc,b, m̂

(2)
c,b−1, m̂fb,1,b−1)

)

∈ T n
ǫ (P

X1U0U2Y2Ŷ1
).

By the independence of the codebooks, the Markov lemma,
packing lemma and the induction on backward decoding, these
steps are successful with high probability if

Rp,2 +R′
2 < I(U2;Y2, Ŷ1|U0, X1) (16a)

Rp,2 +R′
2 +Rc + R̂1 < I(U0, U2, X1;Y2)

+I(Ŷ1;U2, Y2|U0, X1) (16b)

Combine (13–16) and use Fourier-Motzkin elimination to
eliminateR′

1, R
′
2, R̂1, R̂2, then we obtain Theorem 1.

VI. A CHIEVABLE RATES FOR FULLY COOPERATIVERBC
WITH RATE-LIMITED FEEDBACK

In this section we present two block-Markov coding
schemes for fully cooperative BRC with relay/receiver-
transmitter and rate-limited feedback.

A. Scheme 2A: Compress-forward relaying and backward
decoding

In this subsection we propose a block-Markov cod-
ing scheme where a sequence ofB i.i.d message tuples
(m0,b,m1,b,m2,b) are sent overB+1 blocks, each consisting
of n transmissions. Split the messagemk,b in the same way
as Section V and definemfb,b := (mfb,1,b,mfb,2,b).

In each blockb ∈ [1 : B + 1], after obtaining feedback
messagesmfb,b−1, the transmitter uses Marton’s coding to send



TABLE III
SCHEME 2A FOR FULLY COOPERATIVEBRCS WITH RATE-LIMITED FEEDBACK

Block 1 2 . . . b · · ·

Xk xn
k,1(1) xn

k,2(mfb,k,1) . . . xn
k,b

(mfb,k,b−1) . . .

U0 un
0,1(mc,1|1, 1) un

0,2(mc,2|mfb,1) . . . un
0,b(mc,b|mfb,b−1) · · ·

Uk un
k,1(mp,k,1, vk,1|mc,1, 1, 1) un

k,2(mp,k,2, vk,2|mc,2,mfb,1) . . . un
k,b

(mp,k,b, vk,b|mc,b,mfb,b−1) · · ·

Ŷk ŷn
k,1(mfb,k,1|1) ŷn

k,2(mfb,k,2|mfb,k,1) . . . ŷn
k,b

(mfb,k,b|mfb,k,b−1) · · ·

Y1 (m̂(1)
c,1, m̂p,1,1, v̂1,1) ← (m̂(1)

c,2, m̂p,1,2, v̂1,2, m̂fb,2,1) . . . ← (m̂(1)
c,b

, m̂p,1,b, v̂1,b, m̂fb,2,b−1) · · ·

Y2 (m̂(2)
c,1, m̂p,2,1, v̂2,1) ← (m̂(2)

c,2, m̂p,2,2, v̂2,2, m̂fb,1,1) . . . ← (m̂(2)
c,b

, m̂p,2,b, v̂2,b, m̂fb,1,b−1) · · ·

(mc,b,mfb,b−1) in the cloud centreun
0,b, andmp,1,b,mp,2,b in

two different satellitesun
1,b, u

n
2,b, respectively. Receiverk ∈

{1, 2} first uses backward decoding to decode(mc,b,mp,k,b)
and reconstructs the other receiver’s compression message.
Then, it compresses its channel outputsynk,b. Finally, it sends
mfb,k,b as feedback message andxn

k,b+1(mfb,k,b) as channel
inputs in next bock. Here(un

0,b, u
n
1,b, u

n
2,b) are superimposed

on (xn
1,b, x

n
2,b) that attains cooperation between the transmitter

and the receivers. Coding is explained with the help of Table
III.

1) Code construction: Fix pmf

PX1
PX2

PU0U1U2|X1X2
P
Ŷ1|X1Y1

P
Ŷ2|X2Y2

and a functionX = f(U0, U1, U2). For each blockb ∈ [1 :B+

1] andk ∈ {1, 2}, randomly and independently generate2nR̂k

sequencesxn
k,b(mfb,k,b−1) ∼

∏n

i=1 PXk
(xk,b,i), mfb,k,b−1 ∈

[1 : 2nR̂k ]. For eachmfb,k,b−1, randomly and indepen-
dently generate2nR̂k sequenceŝynk,b(mfb,k,b|mfb,k,b−1) ∼
∏n

i=1 PŶk|Xk
(ŷk,b,i|xk,b,i). For eachmfb,b−1, randomly and

independently generate2nRc sequencesun
0,b(mc,b|mfb,b−1) ∼

∏n

i=1 PU0|X1X2
(u0,b,i|x1,b,i, x2,b,i), mc,b ∈ [1 : 2nRc ]. For

each (mc,b,mfb,b−1), randomly and independently gener-
ate 2n(Rp,k+R′

k) sequencesun
k,b(mp,k,b, vk,b|mc,b,mfb,b−1) ∼

∏n
i=1 PUk|U0X1X2

(uk,b,i|u0,b,i, x1,b,i, x2,b,i), mp,k,b ∈ [1 :

2nRp,k ] andvk,b ∈ [1 : 2nR
′

k ].
2) Encoding: In each blockb ∈ [1 : B + 1], assume that

the transmitter already knowsmfb,b−1 through feedback links.
It first looks for a pair of indices(v1,b, v2,b) such that

(

un
0,b(mc,b|mfb,b−1), x

n
1,b(mfb,1,b−1),

un
1,b(mp,1,b, v1,b|mc,b,mfb,b−1), x

n
2,b(mfb,2,b−1),

un
2,b(mp,2,b, v2,b|mc,b,mfb,b−1)

)

∈T n
ǫ (PU0U1U2X1X2

)

Then in blockb it sendsxn
b with xb,i = f(u0,b,i, u1,b,i, u2,b,i).

By covering lemma, this is successful with high probability
for sufficiently largen if

R′
1 +R′

2 ≥ I(U1;U2|U0, X1, X2). (17)

3) Decoding: Both receivers perform backward decoding
and compress-forward strategy. In each blockb ∈ [1 : B + 1],

Receiver 1 looks for(m̂(1)
c,b , m̂p,1,b, v̂1,b, m̂fb,2,b−1) such that

(

xn
1,b(mfb,1,b−1), x

n
2,b(m̂fb,2,b−1), ŷ

n
2,b(mfb,2,b|m̂fb,2,b−1),

un
1,b(m̂p,1,b, v̂1,b|m̂c,b,mfb,1,b−1, m̂fb,2,b−1), y

n
1,b,

un
0,b(m̂c,b|mfb,1,b−1, m̂fb,2,b−1)

)

∈ T n
ǫ (PX1X2U0U1Y1Ŷ2

).

It then compressesyn1,b by finding a unique indexmfb,1,b

such that
(

xn
1,b(mfb,1,b−1), ŷ

n
1,b(mfb,1,b|mfb,1,b−1), y

n
1,b

)

∈ T n
ǫ (P

Ŷ1X1Y1
).

Finally, in block b + 1 it sendsxn
1,b+1(mfb,1,b) as channel

input and forwardsmfb,1,b through the feedback link at rate:

R̂1 ≤ Rfb,1. (18)

Receiver 2 performs in a similar way with exchanging indices
of 1 and 2 in above steps.

By the independence of the codebooks, the Markov lemma,
packing lemma and the induction on backward decoding, these
steps are successful with high probability if

R̂1 > I(Ŷ1;Y1|X1) (19a)

R̂2 > I(Ŷ2;Y2|X2) (19b)

Rp,1+R′
1 < I(U1;Y1, Ŷ2|U0, X1, X2) (19c)

Rp,2+R′
2 < I(U2;Y2, Ŷ1|U0, X1, X2) (19d)

Rp,1+R′
1+Rc < I(U0, U1; Ŷ2, Y1|X1, X2) (19e)

Rp,2+R′
2+Rc < I(U0, U2; Ŷ1, Y2|X1, X2) (19f)

Rp,1+R′
1+Rc+R̂2 < I(U0, U1, X2;Y1|X1)

+I(Ŷ2;U0, U2, Y1, X1|X2) (19g)

Rp,2+R′
2+Rc+R̂1 < I(U0, U2, X1;Y2|X2)

+I(Ŷ1;U0, U1, Y2, X2|X1). (19h)

Combine (17–19) and use Fourier-Motzkin elimination to
eliminateR′

1, R
′
2, R̂1, R̂2, then we obtain Theorem 2.

B. Scheme 2B: Hybrid relaying strategy and sliding-window
decoding

In Scheme 2A both receivers apply compress-forward. In
this subsection, we propose a coding scheme where one of the
two receivers, called Receiver 1 without loss of generality, ap-
plies a hybrid relaying strategy that combines partially decode-
forward and compress-forward. More specifically, Receiver1
first decodes the cloud center containing(mc,b,mfb,2,b−1), then



TABLE IV
SCHEME 2B FOR FULLY COOPERATIVEBRCS WITH RATE-LIMITED FEEDBACK

Block 1 2 . . . b · · ·

X1 xn
1,1(1[3], 1) xn

1,2(mc,1,mfb,1,1) . . . xn
1,b(mc,b−1, mfb,1,b−1) . . .

X2 xn
2,1(1) xn

2,2(mfb,2,1) . . . xn
2,b(mfb,2,b−1) . . .

U0 un
0,1(mc,1|1[3], 1[2]) un

0,2(mc,2|mc,1,mfb,1) . . . un
0,b(mc,b|mc,b−1,mfb,b−1) · · ·

Uk un
k,1(mk,1, vk,1|mc,1, 1[3], 1[2]) un

k,2(mk,2, vk,2|mc,2,mc,1,mfb,1) . . . un
k,b

(mk,b, vk,b|mc,b,mc,b−1,mfb,b−1) · · ·

Ŷ1 ŷn1,1(mfb,1,1, j1,1|mc,1, 1[3], 1[2]) ŷn1,2(mfb,1,2, j1,2|mc,2,mc,1,mfb,1) . . . ŷn1,b(mfb,1,b, j1,b|mc,b,mc,b−1,mfb,b−1) · · ·

Ŷ2 ŷn2,2(mfb,2,2, j2,2|mfb,2,1) ŷn2,1(mfb,2,1, j2,1|1) . . . ŷn2,b(mfb,2,b, j2,b|mfb,2,b−1) · · ·

Y1 m̂(1)
c,1 → (m̂(1)

c,2, m̂fb,2,1), (j2,1, m̂p,1,1, v̂1,1)→ . . . (m̂(1)
c,b

, m̂fb,2,b−1), (j2,b−1, m̂p,1,b−1, v̂1,b−1)→ · · ·

Y2 (m̂p,2,1, v̂2,1, ĵ1,b) ← (m̂(2)
c,1, m̂p,2,2, v̂2,2, m̂fb,1,1, ĵ1,2) . . . ← (m̂(2)

c,b−1, m̂p,2,b, v̂2,b, m̂fb,1,b−1, ĵ1,b) · · ·

reconstructs Receiver 2’s compression outputsŷn2,b−1 and de-
codesmp,1,b−1 based on the enhanced outputs(ŷn2,b−1, y

n
1,b−1).

Finally it compressesyn1,b, and sends the compression message
mfb,1,b as feedback andxn

1,b+1(mc,b,mfb,1,b) as channel inputs
in block b + 1. Note that Receiver 1 needs to decodemc,b

before sendingxn
1,b+1, thus it has to use sliding-window

decoding instead of backward decoding. The transmitter and
the other receiver perform similarly as Scheme 1A. Coding is
explained with the help of Table IV.

1) Code construction: Fix pmf
PX1

PX2
PU0U1U2|X1X2

P
Ŷ1|U0X1X2Y1

P
Ŷ2|X2Y2

and a function
X = f(U0, U1, U2). For each blockb ∈ [1 : B + 1],
randomly and independently generate2n(Rc+R̂1)

sequencesxn
1,b(mc,b−1,mfb,1,b−1) ∼

∏n
i=1 PX1

(x1,b,i),

for mc,b−1 ∈ [1 : 2nRc ] andmfb,1,b−1 ∈ [1 : 2nR̂1 ]. Randomly
and independently generate2nR̂2 sequencesxn

2,b(mfb,2,b−1) ∼
∏n

i=1 PX2
(x2,b,i), for mfb,2,b−1 ∈ [1 : 2nR̂k ]. For

each (mc,b−1,mfb,b−1), randomly and independently
generate 2nRc sequencesun

0,b(mc,b|mc,b−1,mfb,b−1) ∼
∏n

i=1 PU0|X1X2
(u0,b,i|x1,b,i, x2,b,i), mc,b ∈ [1 :

2nRc ]. For each (mc,b,mc,b−1,mfb,b−1), randomly
and independently generate 2n(Rp,k+R′

k) se-
quences un

k,b(mp,k,b, vk,b|mc,b,mc,b−1,mfb,b−1) ∼
∏n

i=1 PUk|U0X1X2
(uk,b,i|u0,b,i, x1,b,i, x2,b,i), mp,k,b ∈

[1 : 2nRp,k ] and vk,b ∈ [1 : 2nR
′

k ]. For eachmfb,2,b−1,
randomly and independently generate2n(R̂2+R̃2) sequences
ŷn2,b(mfb,2,b, j2,b|mfb,2,b−1) ∼

∏n
i=1 PŶ2|X2

(ŷ2,b,i|x2,b,i),

j2,b ∈ [1 : 2nR̃2 ]. For each (mc,b,mc,b−1,mfb,b−1),
randomly and independently generate2n(R̂1+R̃1)

sequences ŷn1,b(mfb,1,b, j1,b|mc,b,mc,b−1,mfb,b−1) ∼
∏n

i=1 PŶ1|U0X1X2
(ŷ1,b,i|u0,b,i, x1,b,i, x2,b,i), j1,b ∈ [1 : 2nR̃1 ].

2) Encoding: In each blockb ∈ [1 : B + 1], assume that
the transmitter already knowsmfb,b−1 through feedback links.
It first looks for a pair of indices(v1,b, v2,b) such that
(

un
0,b(mc,b|mc,b−1,mfb,b−1), x

n
1,b(mc,b−1,mfb,1,b−1),

un
1,b(mp,1,b, v1,b|mc,b,mc,b−1,mfb,b−1), x

n
2,b(mfb,2,b−1),

un
2,b(mp,2,b, v2,b|mc,b,mc,b−1,mfb,b−1)

)

∈T n
ǫ (PU0U1U2X1X2

).

Then in blockb it sendsxn
b with xb,i = f(u0,b,i, u1,b,i, u2,b,i).

By covering lemma, this is successful with high probability
for sufficiently largen if

R′
1 +R′

2 ≥ I(U1;U2|U0, X1, X2). (20)

3) Receiver 1’s Decoding: In each blockb ∈ [1 : B +
1], Receiver 1 first decodes cloud centreun

0,b by looking for

(m̂(1)
c,b , m̂fb,2,b−1) such that
(

un
0,b(m̂

(1)
c,b |mc,b−1,mfb,1,b−1, m̂fb,2,b−1), x

n
2,b(m̂fb,2,b−1),

xn
1,b(mc,b−1,mfb,1,b−1), y

n
1,b

)

∈ T n
ǫ (PU0X1X2Y1

).

It then decodes (ŷn2,b−1, u
n
1,b−1) by looking for

(ĵ2,b−1, m̂1,b−1, v̂1,b−1) such that
(

un
0,b−1(mc,b−1|mc,b−2,mfb,b−2), x

n
1,b−1(mc,b−2,mfb,1,b−2),

ŷn2,b−1(mfb,2,b−1, ĵ2,b−1|mfb,1,b−1),

un
1,b−1(m̂p,1,b−1, v̂1,b−1|mc,b,mc,b−1,mfb,b−1),

xn
2,b−1(mfb,2,b−2), y

n
2,b−1

)

∈ T n
ǫ (PU0U1X1X2Ŷ2Y1

).

Then, it compressesyn1,b by looking for a unique pair
(mfb,1,b, j1,b) such that

(

un
0,b(mc,b|mc,b−1,mfb,b−1), x

n
1,b(mc,b−1,mfb,1,b−1),

ŷn1,b(mfb,1,b, j1,b|mc,b,mc,b−1,mfb,b−1),

xn
2,b(mfb,2,b−1), y

n
1,b

)

∈ T n
ǫ (P

Ŷ1U0X1X2Y1
).

Finally, in block b + 1 it sendsxn
1,b+1(mc,b,mfb,1,b) as

channel input and forwardsmfb,1,b through the feedback link
at rate:

R̂1 ≤ Rfb,1. (21)

By the independence of the codebooks, the Markov lemma,
packing lemma and the induction on backward decoding, these
steps are successful with high probability if

Rc < I(U0;Y1|X1, X2) (22a)

Rc + R̂2 < I(U0, X2;Y1|X1) (22b)

R̃2 < I(Ŷ2;U0, X1, Y1|X2) (22c)

Rp,1 +R′
1 < I(U1;Y1, Ŷ2|U0, X1, X2) (22d)

Rp,1 +R′
1 + R̃2 < I(U1;Y1, Ŷ2|U0, X1, X2)

+I(Ŷ2;U0, X1, Y1|X2) (22e)

R̂1 + R̃1 > I(Ŷ1;Y1|U0, X1, X2). (22f)



4) Receiver 2’s Decoding: Receiver 2 performs backward
decoding. In each blockb ∈ [1 : B + 1], Receiver 2 looks for
(m̂(2)

c,b−1, m̂p,2,b, v̂2,b, m̂fb,1,b−1, ĵ1,b) such that
(

un
0,b(mc,b|m̂

(2)
c,b−1, m̂fb,1,b−1,mfb,2,b−1), x

n
2,b(mfb,2,b−1),

ŷn1,b(mfb,1,b, ĵ1,b|mc,b, m̂
(2)
c,b−1, m̂fb,1,b−1), y

n
2,b,

un
2,b(m̂p,2,b, v̂2,b|mc,b, m̂

(2)
c,b−1, m̂fb,1,b−1,mfb,2,b−1),

xn
1,b(m̂

(2)
c,b−1, m̂fb,1,b−1)

)

∈ T n
ǫ (PX1X2U0U1Y2Ŷ1

).

Also, it compressesyn2,b by looking for a unique pair
(mfb,2,b, j2,b) such that .

(

xn
2,b(mfb,1,b−1), y

n
2,b,

ŷn2,b(mfb,2,b, j2,b|mfb,2,b−1)
)

∈ T n
ǫ (P

Ŷ2X2Y2
).

Finally, in blockb+1 it sendsxn
2,b+1(mfb,2,b) as channel input

and forwardsmfb,2,b through the feedback link at rate:

R̂2 ≤ Rfb,2. (23)

By the independence of the codebooks, the Markov lemma,
packing lemma and the induction on backward decoding, these
steps are successful with high probability if

R̃1 < I(Ŷ1;Y2, U2|U0, X1, X2) (24a)

Rp,2+R′
2 < I(U2;Y2, Ŷ1|U0, X1, X2) (24b)

Rp,2+R′
2+R̃1 < I(U2;Y2, Ŷ1|U0, X1, X2)

+I(Ŷ1;Y2|U0, X1, X2) (24c)

Rc+R̂1+Rp,2+R′
2 + R̃1 < I(Ŷ1;Y2, U2|U0, X1, X2)

+I(U0, U2, X1;Y2|X2) (24d)

R̂2 + R̃2 > I(Ŷ2;Y2|X2). (24e)

Combine (20–24) and use Fourier-Motzkin elimination to
eliminateR′

1, R
′
2, R̂1, R̂2, R̃1, R̃2, then we obtain Theorem 3.

VII. C ONCLUSION

In this paper, we studied partially and fully cooperative
RBCs with relay/receiver-transmitter and rate-limited feed-
back. New coding schemes have been proposed to improve
on the known rate regions that consider either feedback or
relay cooperation, but not both. Specifically, our first rate
region strictly improves on Liang and Kramer’s region for the
partially cooperative RBCs without feedback, and our second
rate region strictly improves Wu and Wigger’s region for the
BCs with feedback but in the absence of relay cooperation.
These two results together demonstrates that using feedback
and relay simultaneously is a powerful tool to improve the rate
performance of networks.
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