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Abstract—The trapping redundancy of a linear code is the
number of rows of a smallest parity-check matrix such that no
submatrix forms an (a,b)-trapping set. This concept was first
introduced in the context of low-density parity-check (LDPC)
codes in an attempt to estimate the number of redundant rowsn
a parity-check matrix suitable for iterative decoding. Es®ntially
the same concepts appear in other contexts as well such as b
syndrome extraction for quantum error correction. Among the
known upper bounds on the trapping redundancy, the stronges
one was proposed by employing a powerful tool in probabiligt
combinatorics, called the Lowasz Local Lemma. Unfortunately,
the proposed proof invoked this tool in a situation where an
assumption made in the lemma does not necessarily hold. Hezc

actually holds, for it to be a mathematical theorem, a more
rigorous proof is desired. Another disadvantage of the propsed
bound is that it is only applicable to (a,b)-trapping sets with
rather small a. Here, we give a more general and sharper upper
bound on trapping redundancy by making mathematically more
rigorous use of probabilistic combinatorics without relying on the
lemma. Our bound is applicable to all potentially avoidable(a, b)-
trapping sets with « smaller than the minimum distance of a given
linear code, while being generally much sharper than the bond
through the Lovasz Local Lemma. In fact, our upper bound is
sharp enough to exactly determine the trapping redundancydr
many cases, thereby providing precise knowledge in the fornof
a more general bound with mathematical rigor.
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A quintessential example in which parity-check matrices
play the central role islow-density parity-check(LDPC)
codes [[1]. It is known that the combination of the efficient
decoding scheme for LDPC codes, calleglief propagation
(BP) decoding, and a compatible parity-check matrix makes
remarkably low decoding complexity and high error cormaati
capabilities simultaneously possible.

One natural direction of theoretical research on desirable
parity-check matrices is to focus on the kind of substruetur
that causes a given decoding method to fail. For instance,
given anm x n parity-check matrixH of an [n, k,d] linear

although we do not doubt that nonetheless the proposed bound code C, the main culprit of decoding errors in the case of

basic syndrome decoding over the binary symmetric channel
is m x a submatrices for small, in which every row is of
even weight. While this is simply a reworded version of the
basic observation that codewords C of low weight tend to
cause decoding errors, an interesting phenomenon in modern
coding theory is that efficient, sophisticated decodinghods

are often susceptible to small particular submatrices rireat

not necessarily correspond to codewords. Such substasctur
have been studied for various channels and decoding strateg
under different names, such as trapping skts [[2]-[4], near-
codewords([b], and stopping sets$ [6]-[8]. This line of resha
has also made a bridge to a branch of combinatorial design
theory with an extremal set theoretic flavor, where parécul

Binary linear codes are the most extensively investigatedbstructures in a binary matrix have long been investiate

class of error-correcting codes with many applicationsthivia as purely mathematical objectd [9], [10]. For recent resimt

ematically speaking, arin, k,d] linear code C of length
n, dimensionk, and minimum distanced is simply a k-
dimensional subspace of thedimensional vector spadg;

the context of LDPC codes, we refer the reader(td [11] and
references therein.
This paper studies the theoretical limit on the size of a

over the finite fieldF, of order 2 such that every nonzeroparity-check matrix for a given linear code in which no small

vector inC is of weight at leastl. Thus, the study ofn, &, d]

submatrices form a special type of trapping set. @nb)-

linear codes may essentially be seen as a particular théorytrapping setin an m x n binary matrix H over Fy for

vector spaces.

1<a<nand0<b<misanm x a submatrixT of H

An interesting twist in coding theory is that the structuresuch that the number of rows of odd weight is exaétlyAn
of the duals of subspaces are equally or sometimes even m@re))-trapping set leads to a codeword of weightn general,
important. Indeed, it is often the case in modern codingrhecan (a, b)-trapping set corresponds to an error vector over a
that it is more important to find suitable sets of vectors ia thhinary-in binary-out channel whose syndrome is of weight
duals of linear codes than good linear codes themselves. IPA notable fact is that ar(a, b)-trapping set for smalk
the language of coding theory, we are often more interestegin be removed rather easily if the size of a parity-check
in the properties of garity-check matrixd of a linear code matrix is of no concern. Indeed, adding a linearly dependent
C, whereC = {c € F}' | Hc" = 0}, than in those of itself. row to a parity-check matrix increases or at least maintains
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the weight of the syndrome of a binary error vector, whilas previously thought to avoid trapping sets in a parityekhe
keeping the subspace spanned by the rows unchanged. rRatrix with few redundant rows if no other constraints are
example, it is straightforward to see that a parity-checkima imposed.

that consists of al2”~* codewords of the dual of am, k, d] In the next section, we define necessary notions and give
linear code has nda, b)-trapping set for alll < a« < d—1 a brief review on the known relevant results. Our bound on
and0 < b < 2"~*~1 [12]. However, too large a parity-checktrapping redundancy is proved in Section |1l as our mainltesu
matrix is problematic for various reasons, such as incokasgection IV concludes this paper with some remarks.
decoding overhead in the case of LDPC codes [13] and

. . . Il. PRELIMINARIES
increased syndrome extraction failure rates for quantuar er ) o )
correction [14]. Hence, given a linear code, we are interbst Extensive empirical and theoretical research has showvin tha

in the smallest possible parity-check matrices that cantai (@ b)-trapping sets for smal and b can greatly deteriorate
undesirablg(a, b)-trapping sets for all smalt andb less than the performance of BP decoding over the AWGN channel,
some given constants. makmg_ parity-check matrices with no small_ trapping setsemo
This limit was first investigated in[[15] as thizapping app_ef_;lllng (se€ [15] _and references thereln_). The problem of
redundancyof a linear code. Their motivation was to estimat@voiding small trapping sets also appears in robust quantum
the number of rows of a smallest parity-check matrix that fTOr correction under the phenomenological error madaj, [1
suited for BP decoding over the additive white Gaussianenoib-2l and erasure resilient coding for lage disk arrays [[B)].
(AWGN) channel in order to investigate how large a parityThe common theme in t.hese applications is that it is degrabl
check matrix for a good LDPC code should be. They aI§8r a parlty-check_matnx to have as few redundant rows as
proposed a very tight upper bound, which, as far as the amthBPSSiPe but contain no small trapping sets. _
are aware, has not yet been surpassed by any known generglhe(_a’ b)-trapping redundancyy ;(C) of an [T_L’ k, d] linear .
bound. codeC is the number of rows of a smallest parity-check matrix
An important fact is that the proposed proof of the tighted®" € that contains nda, t)-trapping set for) < ¢ < b — 1.
bound relies on a very powerful tool in probabilistic combil N collective (a, b)-trapping redundancy’,,;(C) of C is the
natorics, called the_ovasz Local LemmaUnfortunately, as "umber of rows of a smallest parity-check matrix forthat
we will see later, the presented proof in its current forflontains nds,?)-trapping setfoil < s < aandd < < b—1.
invokes the lemma when an assumption required to apply thaVialy, 7s(C) < T,(C) for any linear codeC and any
probabilistic tool does not necessarily hold, although wee arameters, andb. , , . , .
not doubt that the proposed bound holds for most linear codedV/é Us€ a special kind of combinatorial matrix to em-
of interest regardless of this subtle mathematical gap. ploy probab|I|§tlc proving methpds. Aru)rth_ogonal array
Aside from mathematical rigor, the proposed bound has@\(m.n.1,5) is anm x n matrix over a finite sef” of
disadvantage that it is only applicable to, b)-trapping sets c(_’:\rdlna_lltyl such that In-anym >:s submatrlx Eeverys-
for relatively smalla. Any parity-check matrix for arn, k,d] dimensional vector i appears exactly; times as a row.
linear code necessarily contains a nonzero codeword of thiS definition demands that be divisible byi*. A simple
smallest weight as &, 0)-trapping set, whil(a, b)-trapping but useful observatlon_ is that an (Diﬁ.,n,hs) fors > 2 is
sets with smaller. and positiveb may not appear in a well- &S0 @n OAm, n,l,s —i) for any0 <i < s — 1. , .
chosen parity-check matrix. Thus, a most general boundavoul The following is an immediate corollary of Delsarte’s equiv
consider avoidance dfu, b)-trapping sets for alb < d — 1. alence theoreni 120, Theorem 4.5].

However, the proposed bound only considers the case .Proposition.Z_.l:LetC_ be a linear cgge of Ieng'r:fn, dimen-
[d=1], sion k, and minimum distancd. A 2"~ % x n matrix formed

2 1 i n—k
T f thi is to ai h b H& all codewords of”'-- as rows is an O™ % n,2,d—1).
€ purpose of this paper 1s 1o give a sharp Upper bou Informally, the above proposition shows that for< a <

on the trapping redundancy of an, k, d] linear code that is . .
mathematically rigorous and handles &l b)-trapping sets d—1, fixedg bits in a randomly c_hosen COde.W()quﬁ IooI_<
mpletely random. Through this observation, it is claimed

fora <d—1.0 f th babilit 3 : B
ora = ur proof uses the same probabiliy space & [15] that for an[n, k., d] linear codeC and positive integer

in [15]. However, our argument does not require the Lova p e} :
Local Lemma. Instead, we make rigorous use of basic toolsfn= L5~], the (a, b)-trapping redundancy, ;(C) would be

probabilistic combinatorics to prove a much tighter and e!enoFma"er than or equal tov+n—k—1, wherem is the smallest
general bound. In fact, our bound shows that the '[rappiﬂ'[@;teger such that
redundancy of afn, k, d] linear code often matches the trivial n n—a\\ 2=t /m 1
lower boundn — k for many cases in which all previously 2= <( ) - ( >) Z (]) < -
proved or proposed upper bounds are far from k. j=0

It should be noted, however, that our results do not imwith e being the base of the natural logarithm. While this
mediately give practical linear codes because we do not takequality does not consider the caﬁ‘é;—lj <a<d-1,it
into account any other restrictions on a parity-check matris by far the tightest for the case whén< a < L%J.
that may arise in a real-life application. Rather, our tight Unfortunately, the proposed proof relies on the following
upper bound simply suggests that it is often not as difficultell-known lemma in a way a more mathematically rigorous

a a €



argument is desirable for the bound to be considered a mathLemma 3.2:Let C be an[n, k, d] binary linear code and{,

ematical theorem. at x n matrix of which each row is drawn independently and
Proposition 2.2 (Lofisz Local Lemma)Take a finite set of uniformly at random from the dual*. For1 < r < n — k,

eventsA; in an arbitrary probability space such that eath the probability thatH; is of rankr is

occurs with probability at mogt and is mutually independent . 1ot }

of all others except for at mostof the others. l{z+1)ep < 1, "] Ty (28 = 27)

the probability that none ofi; occurs is positive. 2t(n—k)

The proposed proof starts with taking codewords inde- For various known proofs of the above lemma, see, for
pendently and uniformly at random from the d¢@al to form example, [[22], [[28].

anm x n potential parity-check matrix/ and then invokes We now prove Theorefi3.1. In what follows, the expected
the Lovasz Local Lemma given above to assert that there i?/ﬁue of a given random variabl§ is denoted b;ZE(X)
positiye probability that non x a _submatri)_( forms arta, t)- Proof of Theorem 3]1:Let H; be at x n matrix whose
trapping set foo %t < b—1.Thefinalstepis to take —k—1 rows are drawn fromC+ independently and uniformly at
more rows fronC- to make sure that the rank of the resultlngandom DefineM, .. to be the set of x u Submatrices il
.. . t,u te

(mTc_) Ze_e ];_siz);l(en g]a'[ir:]thr?ena_t)c]j\./e araument 1fot o < Note that Proposition 2.1 implies that for ahy « submatrix
40| let M be th% 2et o o Subn?atrices' (0 = win Hy with u < d—1, the probability thats is of odd weight

moa is % ForM € M, letwy,s be the random variable counting

2
H lA

N C M its subset such that any palW,N' € N of the number of rows of odd weight if/. Define X, to be

the random variable

submatrices in\" share no columns. Defind,; to be the
event thatm x a submatrixM € M forms an(a, t)-trapping
set. The problematic part of the proposed proof is that it 0 if wy > b,

invokes the Lovasz Local Lemma by assuming that the events Xm =

Ay for N € N are always mutually independent, which

is, strictly speaking, not true. Indeed, while Proposifdd Note thatX,; counts the smallest number of additional rows
assures thatl y for N € V' are pairwise independent, this factequired to turnM into a (u, c)-trapping set withc > b. Let
does not imply that they are mutually independent in general

Although a variant of the Lovasz Local Lemma which does Y, =n —k —rank(H,;)

not assume mutual independence is also known in probadili
combinatorics (seé[21]), as is also pointed oufiin [8], é&rae
unlikely for the Lovasz Local Lemma and its variants to b
able to give such a strong bound in this probability space.

b—wys otherwise.

t . .
%e the random variable counting the smallest number of
dditional rows required to turfl; into a parity-check matrix
r C. Define

Nonetheless, in the next section we show that basic tools in a
probabilistic combinatorics can prove an even stronger and Zy =Y, + Z Z X
more general bound. u=1 MeMi u
Ill. BOUNDS BY PROBABILISTIC COMBINATORICS Note that we can construct a parity-check matrix owhich

Now we present an upper bound on trapping redundanggnt@ins no(u, v)-trapping set for alll < u < a and0 <

i 1
without relying on the Lovasz Local Lemma. In what follows? <b- 1 by adding toH; at mO,StZt codewords ofC as
for a pairz, y of nonnegative integers > v, rows, which means that there existéta- |E(Z;)|) x n parity-

' - check matrix forC which contains nqu, v)-trapping set for

x _yill—qm‘i all 1 <u<aand0 <v<b- 1. Hence, we have
yl, H 1—gitt -
vl i Tos(€) < min {t + [E(Z)]}. (1)

is defined to be the Gaussian binomial coefficient.
Our argument provides an explicit upper bound on thko calculate the expected value on the right-hand sideceoti

collective (a, b)-trapping redundancy’, ;(C) for an arbitrary that for M € M,.,,

[n, k, d] linear codeC. '

Theorem 3.1:LetC be an[n, k, d] linear code. Foit < a < b bt
d—1andb >0, ]E(XM):ZQ (¢=090=0 (b—i)

Tus(C) < grgg,l{H {Tﬂé (Z) i(bi) B 2Xb:(bi)

=

n—Fk r—1
+ 27D S (k- 7) {” - ’1 [T - gi)J } . By Lemma[32,
T
r=0 2i=0
n—k r—1
To prove the above theorem, we employ the following well- E(Y;) = 2-t(—h) Z(” k- {n - k} H(2t — 927,
known fact. —0



TABLE |

Thus, by linearity of expectation, we have (a,b)-TRAPPING REDUNDANCY OF THEMARGULIS CODE
a
E(Z,) =E(Y;) + Z Z E(X) b Trivial lower bound  Upper bound by TheordmB.1  LtL
u=1MeMy; 6 5 1320 1320 1394
2\ & t 8 5 1320 1320 1413
=2t > i 12 5 1320 1320 1448
u) 4 b—1
u=1 i=0 14 5 1320 1320 1464
n—k r—1 - - N P
—t(n—Fk) n—=k t i & This column lists the upper bound inJ15] using the Lovaszdldemma.
427 tn n—k—r 2t — 27).
So—k-n" ] et -2)
r=0 2 =0

Plugging in the above equation intd (1) proves the assertion It is also notable that Theorefl B.1 is a bound on the
) ) ] B collective (a, b)-trapping redundancTa,b(C), which implies
The upper bound we just proved is extremely tight fof,5¢ jt 450 serves as an upper bound on (iagh)-trapping
quite a large portion of known linear codes. In fact, Theorepédundancﬂ” »(C) becausel,, ,(C) < T. ,(C) by definition.
B.1 shows that the trivial lower boun®,»(C) > n — %k \hile known upper bounds on the trapping redundancy in-
is indeed the true collective trapping redundancy for many,qing the one relying on the Lovasz Local Lemma can not
[, %, d] linear code<C. The following immediate corollary is atch the trivial lower bound in general, Theorgml3.1 can
usefullforcheckmg whether the coIIect.|v.e trapping recamzy verilify that 7, ,(C) = n — k by showing the much stronger
of a given Imear code matches the t_r|V|aI lower bound. statement thal’, ,(C) = n — k for all sufficiently large linear
Corollary 3.3: Let C be an[n, k, d] linear code. If codesC. For instance, an upper bound on the b)-trapping

N P S — redundancy of the Margulis codé[25] of leng#640 and
2= (k" ( ) Zz(b ) dimension1320 was derived in[[15] for < 14 andb = 5 by
u=1 \"/ iZ0 ! using the Lovasz Local Lemma as example cases. Thble | lists
n—k _ r—1 _ the upper bound by the lemma along with our upper bound by
+27 (R > n—k-r) {n . k} [1"*-2)<1, Theoreni3N and the trivial lower bound. Because the length
r=0 2i=0 and dimension of the code ag$40 and 1320, the trapping
thenTayb(C) —n— k. redundancy must be at leaxt40— 1320 = 1320. As shown in

Proof: Take exactlyn — k rows independently and uni- the table, for all examined cases, Theofem 3.1 determirges th
formly at random fromC+ and follow the same argument asexact trapping redundancy by showing that even the coltecti

in the proof of Theoreri 311. m trapping redundancy is already20.
Because the left-hand side of the inequality in the above
corollary is exponentially small for fixed andb, if we fix the IV. CONCLUDING REMARKS

rate%, taking a longer linear code ensures that a parity-checkywe have derived a tight upper bound on the collective

matrix with no redundant row can avoid &, b)-trapping sets. trapping redundancy of a linear code by employing proba-

To see the usefulness of Corolldry13.3, recall the followingjjistic combinatorics. An immediate corollary showed ttha

basic formulation of the Gilbert-Varshamov bound (se€ [24fe collective(a, b)-trapping redundancy of a, k, d] linear

for recent progress on bounds of Gilbert-Varshamov type). code whose dimension is strictly below the Gilbert-Varsbam
Theorem 3.4 (Gilbert-Varshamov boundn [n, k,d] lin- pound matches the trivial lower bound — & unlessn is

ear code exists if too small andb is too large. Our bound is applicable to all
i =t . 1 < a < d-— 1, which is exactly the range within which
2nE > Z (2) collective (a, b)-trapping redundancy is well-defined.
=0

It should be noted, however, that our optimistic results do

While this existence result has been known for more thamot necessarily imply that there exist practical linearestbr
sixty years, it is quite difficult to beat and still serves as a specific real-life application where low trapping redumcia
quick benchmark for goodness of a code today. Now, if aa desirable. Indeed, for the theory of trapping redundancy
[n,k,d] linear codeC obeys the Gilbert-Varshamov boundto be practical, it is necessary to take into account other
the first term2—(*=#) S°¢ _ (") S20_i("~¥) on the left-hand restrictions that may arise in practice.
side of the inequality in Corollafy 3.3 tends@cexponentially ~ Another related problem we did not address is efficient
fast asn — k increases. Since the second term is also expalgorithms for constructing parity-check matrices whoge e
nentially small, the upper bound @h, ,(C) quickly becomes istence is proved by our probabilistic argument. Ideallighs
n — k once the size of goes below the Gilbert-Varshamovderandomization should be carried out while ensuring theat t
bound. This simple observation also shows the existenca ofresulting parity-check matrices with no small trappingsset
asymptotically good sequence of linear codes with constgmissess other desirable properties as well. For instam¢keei
relative distance and the lowest possible collective firagpp context of LDPC codes, one key requirement is that a parity-
redundancy. check matrix has only a very small number of nonzero entries.



From this point of view, it may also be a very promising patf20] P. Delsarte, “Four fundamental parameters of a codetheid combi-
to generalize the approach taken[inl[15]. Indeed, theirecurr

approach already gives a fairly sparse matrix because we o%ﬁ]
need to add a small number of extra rows to a sparse parig]

check matrix.

As we have seen, the probabilistic proof presented hé%g]
shows that a parity-check matrix with no redundant rows
can often completely avoid small trapping sets. However, o4
theoretical analysis does not immediately give a solutmn t

natorial significance,Inf. Contr, vol. 23, pp. 407-438, 1973.
N. Alon and J. H. SpenceiThe Probabilistic Method3rd ed.
Wiley & Sons, 2008.
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John

a practical problem. Therefore, our results are simply thes] G. Margulis, “Explicit constructions of graphs withoshort cycles and
first step that showed that trapping redundancy can be much 'ow density codes,Combinatorica vol. 2, pp. 7178, 1982.

smaller than previously thought. Nevertheless, we hope tha
the results presented here stimulate research on trapetag s

with applications in mind and related theoretical problems
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