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Abstract—The trapping redundancy of a linear code is the
number of rows of a smallest parity-check matrix such that no
submatrix forms an (a, b)-trapping set. This concept was first
introduced in the context of low-density parity-check (LDPC)
codes in an attempt to estimate the number of redundant rows in
a parity-check matrix suitable for iterative decoding. Essentially
the same concepts appear in other contexts as well such as robust
syndrome extraction for quantum error correction. Among the
known upper bounds on the trapping redundancy, the strongest
one was proposed by employing a powerful tool in probabilistic
combinatorics, called the Lov́asz Local Lemma. Unfortunately,
the proposed proof invoked this tool in a situation where an
assumption made in the lemma does not necessarily hold. Hence,
although we do not doubt that nonetheless the proposed bound
actually holds, for it to be a mathematical theorem, a more
rigorous proof is desired. Another disadvantage of the proposed
bound is that it is only applicable to (a, b)-trapping sets with
rather small a. Here, we give a more general and sharper upper
bound on trapping redundancy by making mathematically more
rigorous use of probabilistic combinatorics without relying on the
lemma. Our bound is applicable to all potentially avoidable(a, b)-
trapping sets witha smaller than the minimum distance of a given
linear code, while being generally much sharper than the bound
through the Lovász Local Lemma. In fact, our upper bound is
sharp enough to exactly determine the trapping redundancy for
many cases, thereby providing precise knowledge in the formof
a more general bound with mathematical rigor.

I. I NTRODUCTION

Binary linear codes are the most extensively investigated
class of error-correcting codes with many applications. Math-
ematically speaking, an[n, k, d] linear code C of length
n, dimensionk, and minimum distanced is simply a k-
dimensional subspace of then-dimensional vector spaceFn

2

over the finite fieldF2 of order 2 such that every nonzero
vector inC is of weight at leastd. Thus, the study of[n, k, d]
linear codes may essentially be seen as a particular theory of
vector spaces.

An interesting twist in coding theory is that the structures
of the duals of subspaces are equally or sometimes even more
important. Indeed, it is often the case in modern coding theory
that it is more important to find suitable sets of vectors in the
duals of linear codes than good linear codes themselves. In
the language of coding theory, we are often more interested
in the properties of aparity-check matrixH of a linear code
C, whereC = {c ∈ F

n
q | Hc

T = 0}, than in those ofC itself.

A quintessential example in which parity-check matrices
play the central role islow-density parity-check(LDPC)
codes [1]. It is known that the combination of the efficient
decoding scheme for LDPC codes, calledbelief propagation
(BP) decoding, and a compatible parity-check matrix makes
remarkably low decoding complexity and high error correction
capabilities simultaneously possible.

One natural direction of theoretical research on desirable
parity-check matrices is to focus on the kind of substructure
that causes a given decoding method to fail. For instance,
given anm × n parity-check matrixH of an [n, k, d] linear
code C, the main culprit of decoding errors in the case of
basic syndrome decoding over the binary symmetric channel
is m × a submatrices for smalla in which every row is of
even weight. While this is simply a reworded version of the
basic observation that codewordsc ∈ C of low weight tend to
cause decoding errors, an interesting phenomenon in modern
coding theory is that efficient, sophisticated decoding methods
are often susceptible to small particular submatrices thatmay
not necessarily correspond to codewords. Such substructures
have been studied for various channels and decoding strategies
under different names, such as trapping sets [2]–[4], near-
codewords [5], and stopping sets [6]–[8]. This line of research
has also made a bridge to a branch of combinatorial design
theory with an extremal set theoretic flavor, where particular
substructures in a binary matrix have long been investigated
as purely mathematical objects [9], [10]. For recent results in
the context of LDPC codes, we refer the reader to [11] and
references therein.

This paper studies the theoretical limit on the size of a
parity-check matrix for a given linear code in which no small
submatrices form a special type of trapping set. An(a, b)-
trapping set in an m × n binary matrix H over F2 for
1 ≤ a ≤ n and 0 ≤ b ≤ m is anm × a submatrixT of H
such that the number of rows of odd weight is exactlyb. An
(a, 0)-trapping set leads to a codeword of weighta. In general,
an (a, b)-trapping set corresponds to an error vector over a
binary-in binary-out channel whose syndrome is of weightb.

A notable fact is that an(a, b)-trapping set for smalla
can be removed rather easily if the size of a parity-check
matrix is of no concern. Indeed, adding a linearly dependent
row to a parity-check matrix increases or at least maintains
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the weight of the syndrome of a binary error vector, while
keeping the subspace spanned by the rows unchanged. For
example, it is straightforward to see that a parity-check matrix
that consists of all2n−k codewords of the dual of an[n, k, d]
linear code has no(a, b)-trapping set for all1 ≤ a ≤ d − 1
and0 ≤ b ≤ 2n−k−1 [12]. However, too large a parity-check
matrix is problematic for various reasons, such as increased
decoding overhead in the case of LDPC codes [13] and
increased syndrome extraction failure rates for quantum error
correction [14]. Hence, given a linear code, we are interested
in the smallest possible parity-check matrices that contain no
undesirable(a, b)-trapping sets for all smalla andb less than
some given constants.

This limit was first investigated in [15] as thetrapping
redundancyof a linear code. Their motivation was to estimate
the number of rows of a smallest parity-check matrix that is
suited for BP decoding over the additive white Gaussian noise
(AWGN) channel in order to investigate how large a parity-
check matrix for a good LDPC code should be. They also
proposed a very tight upper bound, which, as far as the authors
are aware, has not yet been surpassed by any known general
bound.

An important fact is that the proposed proof of the tightest
bound relies on a very powerful tool in probabilistic combi-
natorics, called theLovász Local Lemma. Unfortunately, as
we will see later, the presented proof in its current form
invokes the lemma when an assumption required to apply the
probabilistic tool does not necessarily hold, although we do
not doubt that the proposed bound holds for most linear codes
of interest regardless of this subtle mathematical gap.

Aside from mathematical rigor, the proposed bound has a
disadvantage that it is only applicable to(a, b)-trapping sets
for relatively smalla. Any parity-check matrix for an[n, k, d]
linear code necessarily contains a nonzero codeword of the
smallest weight as a(d, 0)-trapping set, while(a, b)-trapping
sets with smallera and positiveb may not appear in a well-
chosen parity-check matrix. Thus, a most general bound would
consider avoidance of(a, b)-trapping sets for alla ≤ d − 1.
However, the proposed bound only considers the casea ≤
⌊d−1

2 ⌋.
The purpose of this paper is to give a sharp upper bound

on the trapping redundancy of an[n, k, d] linear code that is
mathematically rigorous and handles all(a, b)-trapping sets
for a ≤ d − 1. Our proof uses the same probability space as
in [15]. However, our argument does not require the Lovász
Local Lemma. Instead, we make rigorous use of basic tools in
probabilistic combinatorics to prove a much tighter and more
general bound. In fact, our bound shows that the trapping
redundancy of an[n, k, d] linear code often matches the trivial
lower boundn − k for many cases in which all previously
proved or proposed upper bounds are far fromn− k.

It should be noted, however, that our results do not im-
mediately give practical linear codes because we do not take
into account any other restrictions on a parity-check matrix
that may arise in a real-life application. Rather, our tight
upper bound simply suggests that it is often not as difficult

as previously thought to avoid trapping sets in a parity-check
matrix with few redundant rows if no other constraints are
imposed.

In the next section, we define necessary notions and give
a brief review on the known relevant results. Our bound on
trapping redundancy is proved in Section III as our main result.
Section IV concludes this paper with some remarks.

II. PRELIMINARIES

Extensive empirical and theoretical research has shown that
(a, b)-trapping sets for smalla and b can greatly deteriorate
the performance of BP decoding over the AWGN channel,
making parity-check matrices with no small trapping sets more
appealing (see [15] and references therein). The problem of
avoiding small trapping sets also appears in robust quantum
error correction under the phenomenological error model [16],
[17] and erasure resilient coding for lage disk arrays [18],[19].
The common theme in these applications is that it is desirable
for a parity-check matrix to have as few redundant rows as
possible but contain no small trapping sets.

The(a, b)-trapping redundancyTa,b(C) of an [n, k, d] linear
codeC is the number of rows of a smallest parity-check matrix
for C that contains no(a, t)-trapping set for0 ≤ t ≤ b − 1.
The collective(a, b)-trapping redundancyT a,b(C) of C is the
number of rows of a smallest parity-check matrix forC that
contains no(s, t)-trapping set for1 ≤ s ≤ a and0 ≤ t ≤ b−1.
Trivially, Ta,b(C) ≤ T a,b(C) for any linear codeC and any
parametersa andb.

We use a special kind of combinatorial matrix to em-
ploy probabilistic proving methods. Anorthogonal array
OA(m,n, l, s) is an m × n matrix over a finite setΓ of
cardinality l such that in anym × s submatrix everys-
dimensional vector inΓs appears exactlym

ls
times as a row.

This definition demands thatm be divisible byls. A simple
but useful observation is that an OA(m,n, l, s) for s ≥ 2 is
also an OA(m,n, l, s− i) for any 0 ≤ i ≤ s− 1.

The following is an immediate corollary of Delsarte’s equiv-
alence theorem [20, Theorem 4.5].

Proposition 2.1:Let C be a linear code of lengthn, dimen-
sion k, and minimum distanced. A 2n−k × n matrix formed
by all codewords ofC⊥ as rows is an OA(2n−k, n, 2, d− 1).

Informally, the above proposition shows that for1 ≤ a ≤
d− 1, fixeda bits in a randomly chosen codeword inC⊥ look
completely random. Through this observation, it is claimed
in [15] that for an[n, k, d] linear codeC and positive integer
a ≤ ⌊d−1

2 ⌋, the (a, b)-trapping redundancyTa,b(C) would be
smaller than or equal tom+n−k−1, wherem is the smallest
integer such that

2−m

((

n

a

)

−

(

n− a

a

)) b−1
∑

j=0

(

m

j

)

≤
1

e

with e being the base of the natural logarithm. While this
inequality does not consider the case⌊d−1

2 ⌋ < a ≤ d − 1, it
is by far the tightest for the case when1 ≤ a ≤ ⌊d−1

2 ⌋.
Unfortunately, the proposed proof relies on the following

well-known lemma in a way a more mathematically rigorous



argument is desirable for the bound to be considered a math-
ematical theorem.

Proposition 2.2 (Lov́asz Local Lemma):Take a finite set of
eventsAi in an arbitrary probability space such that eachAi

occurs with probability at mostp and is mutually independent
of all others except for at mostx of the others. If(x+1)ep ≤ 1,
the probability that none ofAi occurs is positive.

The proposed proof starts with takingm codewords inde-
pendently and uniformly at random from the dualC⊥ to form
an m × n potential parity-check matrixH and then invokes
the Lovász Local Lemma given above to assert that there is a
positive probability that nom× a submatrix forms an(a, t)-
trapping set for0 ≤ t ≤ b−1. The final step is to taken−k−1
more rows fromC⊥ to make sure that the rank of the resulting
(m− n− k − 1)× n matrix is n− k.

To see a subtle gap in the above argument, for1 ≤ a ≤
⌊d−1

2 ⌋ let M be the set ofm × a submatrices inH and
N ⊂ M its subset such that any pairN,N ′ ∈ N of
submatrices inN share no columns. DefineAM to be the
event thatm× a submatrixM ∈ M forms an(a, t)-trapping
set. The problematic part of the proposed proof is that it
invokes the Lovász Local Lemma by assuming that the events
AN for N ∈ N are always mutually independent, which
is, strictly speaking, not true. Indeed, while Proposition2.1
assures thatAN for N ∈ N are pairwise independent, this fact
does not imply that they are mutually independent in general.
Although a variant of the Lovász Local Lemma which does
not assume mutual independence is also known in probabilistic
combinatorics (see [21]), as is also pointed out in [8], it seems
unlikely for the Lovász Local Lemma and its variants to be
able to give such a strong bound in this probability space.
Nonetheless, in the next section we show that basic tools in
probabilistic combinatorics can prove an even stronger and
more general bound.

III. B OUNDS BY PROBABILISTIC COMBINATORICS

Now we present an upper bound on trapping redundancy
without relying on the Lovász Local Lemma. In what follows,
for a pairx, y of nonnegative integersx ≥ y,

[

x

y

]

q

=

y−1
∏

i=0

1− qx−i

1− qi+1

is defined to be the Gaussian binomial coefficient.
Our argument provides an explicit upper bound on the

collective(a, b)-trapping redundancyT a,b(C) for an arbitrary
[n, k, d] linear codeC.

Theorem 3.1:Let C be an[n, k, d] linear code. For1 ≤ a ≤
d− 1 andb ≥ 0,

T a,b(C) ≤ min
t∈N

{

t+

⌊

2−t

a
∑

u=1

(

n

u

) b
∑

i=0

i

(

t

b − i

)

+ 2−t(n−k)
n−k
∑

r=0

(n− k − r)

[

n− k

r

]

2

r−1
∏

i=0

(2t − 2i)

⌋}

.

To prove the above theorem, we employ the following well-
known fact.

Lemma 3.2:Let C be an[n, k, d] binary linear code andHt

a t×n matrix of which each row is drawn independently and
uniformly at random from the dualC⊥. For 1 ≤ r ≤ n − k,
the probability thatHt is of rankr is

[

n−k

r

]

2

∏r−1
i=0 (2

t − 2i)

2t(n−k)
.

For various known proofs of the above lemma, see, for
example, [22], [23].

We now prove Theorem 3.1. In what follows, the expected
value of a given random variableX is denoted byE(X).

Proof of Theorem 3.1:Let Ht be at× n matrix whose
rows are drawn fromC⊥ independently and uniformly at
random. DefineMt,u to be the set oft×u submatrices inHt.
Note that Proposition 2.1 implies that for any1×u submatrix
u in Ht with u ≤ d−1, the probability thatu is of odd weight
is 1

2 . ForM ∈ Mt,u, let wM be the random variable counting
the number of rows of odd weight inM . DefineXM to be
the random variable

XM =

{

0 if wM ≥ b,

b− wM otherwise.

Note thatXM counts the smallest number of additional rows
required to turnM into a (u, c)-trapping set withc ≥ b. Let

Yt = n− k − rank(Ht)

be the random variable counting the smallest number of
additional rows required to turnHt into a parity-check matrix
for C. Define

Zt = Yt +

a
∑

u=1

∑

M∈Mt,u

XM .

Note that we can construct a parity-check matrix forC which
contains no(u, v)-trapping set for all1 ≤ u ≤ a and 0 ≤
v ≤ b − 1 by adding toHt at mostZt codewords ofC⊥ as
rows, which means that there exists a(t+⌊E(Zt)⌋)×n parity-
check matrix forC which contains no(u, v)-trapping set for
all 1 ≤ u ≤ a and0 ≤ v ≤ b− 1. Hence, we have

T a,b(C) ≤ min
t∈N

{t+ ⌊E(Zt)⌋} . (1)

To calculate the expected value on the right-hand side, notice
that forM ∈ Mt,u,

E(XM ) =

b
∑

i=1

i2−(b−i)2(b−i)−t

(

t

b− i

)

= 2−t

b
∑

i=1

i

(

t

b− i

)

.

By Lemma 3.2,

E(Yt) = 2−t(n−k)
n−k
∑

r=0

(n− k − r)

[

n− k

r

]

2

r−1
∏

i=0

(2t − 2i).



Thus, by linearity of expectation, we have

E(Zt) = E(Yt) +
a

∑

u=1

∑

M∈Mt,u

E(XM )

= 2−t

a
∑

u=1

(

n

u

) b
∑

i=0

i

(

t

b − i

)

+ 2−t(n−k)
n−k
∑

r=0

(n− k − r)

[

n− k

r

]

2

r−1
∏

i=0

(2t − 2i).

Plugging in the above equation into (1) proves the assertion.

The upper bound we just proved is extremely tight for
quite a large portion of known linear codes. In fact, Theorem
3.1 shows that the trivial lower boundT a,b(C) ≥ n − k

is indeed the true collective trapping redundancy for many
[n, k, d] linear codesC. The following immediate corollary is
useful for checking whether the collective trapping redundancy
of a given linear code matches the trivial lower bound.

Corollary 3.3: Let C be an[n, k, d] linear code. If

2−(n−k)
a

∑

u=1

(

n

u

) b
∑

i=0

i

(

n− k

b− i

)

+ 2−(n−k)2
n−k
∑

r=0

(n− k − r)

[

n− k

r

]

2

r−1
∏

i=0

(2n−k − 2i) < 1,

thenT a,b(C) = n− k.
Proof: Take exactlyn − k rows independently and uni-

formly at random fromC⊥ and follow the same argument as
in the proof of Theorem 3.1.

Because the left-hand side of the inequality in the above
corollary is exponentially small for fixeda andb, if we fix the
rate k

n
, taking a longer linear code ensures that a parity-check

matrix with no redundant row can avoid all(a, b)-trapping sets.
To see the usefulness of Corollary 3.3, recall the following
basic formulation of the Gilbert-Varshamov bound (see [24]
for recent progress on bounds of Gilbert-Varshamov type).

Theorem 3.4 (Gilbert-Varshamov bound):An [n, k, d] lin-
ear code exists if

2n−k ≥
d−1
∑

i=0

(

n

i

)

.

While this existence result has been known for more than
sixty years, it is quite difficult to beat and still serves as a
quick benchmark for goodness of a code today. Now, if an
[n, k, d] linear codeC obeys the Gilbert-Varshamov bound,
the first term2−(n−k)

∑a

u=1

(

n

u

)
∑b

i=0 i
(

n−k

b−i

)

on the left-hand
side of the inequality in Corollary 3.3 tends to0 exponentially
fast asn − k increases. Since the second term is also expo-
nentially small, the upper bound onT a,b(C) quickly becomes
n − k once the size ofC goes below the Gilbert-Varshamov
bound. This simple observation also shows the existence of an
asymptotically good sequence of linear codes with constant
relative distance and the lowest possible collective trapping
redundancy.

TABLE I
(a, b)-TRAPPING REDUNDANCY OF THEMARGULIS CODE

a b Trivial lower bound Upper bound by Theorem 3.1 LLLa

6 5 1320 1320 1394

8 5 1320 1320 1413

12 5 1320 1320 1448

14 5 1320 1320 1464

a This column lists the upper bound in [15] using the Lovász Local Lemma.

It is also notable that Theorem 3.1 is a bound on the
collective (a, b)-trapping redundancyT a,b(C), which implies
that it also serves as an upper bound on the(a, b)-trapping
redundancyTa,b(C) becauseTa,b(C) ≤ T a,b(C) by definition.
While known upper bounds on the trapping redundancy in-
cluding the one relying on the Lovász Local Lemma can not
match the trivial lower bound in general, Theorem 3.1 can
verilify that Ta,b(C) = n − k by showing the much stronger
statement thatT a,b(C) = n− k for all sufficiently large linear
codesC. For instance, an upper bound on the(a, b)-trapping
redundancy of the Margulis code [25] of length2640 and
dimension1320 was derived in [15] fora ≤ 14 andb = 5 by
using the Lovász Local Lemma as example cases. Table I lists
the upper bound by the lemma along with our upper bound by
Theorem 3.1 and the trivial lower bound. Because the length
and dimension of the code are2640 and 1320, the trapping
redundancy must be at least2640−1320 = 1320. As shown in
the table, for all examined cases, Theorem 3.1 determines the
exact trapping redundancy by showing that even the collective
trapping redundancy is already1320.

IV. CONCLUDING REMARKS

We have derived a tight upper bound on the collective
trapping redundancy of a linear code by employing proba-
bilistic combinatorics. An immediate corollary showed that
the collective(a, b)-trapping redundancy of an[n, k, d] linear
code whose dimension is strictly below the Gilbert-Varshamov
bound matches the trivial lower boundn − k unlessn is
too small andb is too large. Our bound is applicable to all
1 ≤ a ≤ d − 1, which is exactly the range within which
collective(a, b)-trapping redundancy is well-defined.

It should be noted, however, that our optimistic results do
not necessarily imply that there exist practical linear codes for
a specific real-life application where low trapping redundancy
is desirable. Indeed, for the theory of trapping redundancy
to be practical, it is necessary to take into account other
restrictions that may arise in practice.

Another related problem we did not address is efficient
algorithms for constructing parity-check matrices whose ex-
istence is proved by our probabilistic argument. Ideally, such
derandomization should be carried out while ensuring that the
resulting parity-check matrices with no small trapping sets
possess other desirable properties as well. For instance, in the
context of LDPC codes, one key requirement is that a parity-
check matrix has only a very small number of nonzero entries.



From this point of view, it may also be a very promising path
to generalize the approach taken in [15]. Indeed, their current
approach already gives a fairly sparse matrix because we only
need to add a small number of extra rows to a sparse parity-
check matrix.

As we have seen, the probabilistic proof presented here
shows that a parity-check matrix with no redundant rows
can often completely avoid small trapping sets. However, our
theoretical analysis does not immediately give a solution to
a practical problem. Therefore, our results are simply the
first step that showed that trapping redundancy can be much
smaller than previously thought. Nevertheless, we hope that
the results presented here stimulate research on trapping sets
with applications in mind and related theoretical problems.
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