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Abstract—Coded Caching is an efficient technique to re-
duce peak hour network traffic. One limitation of known
coded caching schemes is that the demands of all users
are revealed to their peers in the delivery phase. Schemes
that assure privacy for user demands are studied in recent
past. Assuming that the users are equipped with caches
of small memory sizes, the achievable rate under demand
privacy constraints is investigated in this work. We present
an MDS code based demand private coded caching scheme
with K users and N files that achieves a memory rate pair
(

1
K(N−1)+1

, N

(

1−
1

K(N−1)+1

))

. The presented memory-

rate pair meets the lower bound under demand-privacy
requirements, proposed by Yan et al. in the recent work [12].
By memory sharing this characterizes the exact rate-memory
trade-off for the demand private coded caching scheme for

cache memory M ∈

[

0, 1
K(N−1)+1

]

.

I. INTRODUCTION

Data traffic has grown at a rapid pace over the last

decade especially that of multimedia files such as video-

on-demand. Since communication resources become scarce

during peak usage hours, caching at off-peak hours be-

comes a natural solution. Maddah Ali and Niesen had pro-

vided a scheme [1] that showed that by utilizing multicast

opportunities, coded caching can achieve significant gain

over uncoded caching. Yu, Maddah Ali and Avestimehr

improved this scheme and provided one that is optimal

for uncoded placement [2]. In [3], Chen, Fan and Letaief

showed that coded caching schemes with coded prefetching

can perform better compared to schemes with uncoded

prefetching. The coded caching problem of rate minimiza-

tion by the joint design of placement and delivery phase

has been studied in different settings like decentralized

caching[4], shared caches[5], multiple levels of caches[6]

etc. By the design of placement delivery arrays(PDAs),

Yan et al. investigated the trade-off between rate and

subpacketization of files[7].

In this work, we focus on the coded caching problem

under demand privacy requirements of the users. Recently,

demand privacy for the coded caching problem has been

investigated in [8],[9],[10],[11] and [12]. In [11], Wan

and Caine study demand privacy for users with multiple

file requests. In [6], Aravind et al. address the problem

of demand privacy under subpacketization requirements.

In [8], coded caching under perfect information theoretic

privacy was studied. Sneha Kamath et al. gives exact

memory rate trade-off for a 2-user, 2-file demand private

coded caching problem in [9]. In [12], authors derive a

lower bound on the rate for demand-private coded caching

schemes.

In this paper we present a demand private coded caching

scheme that gives a new achievable (M,R) pair for a gen-

eral K-user, N -file system, which completely characterize

the rate-memory trade-off of demand-private coded caching

for cache memory M ∈ [0, 1
K(N−1)+1 ].

II. PRELIMINARIES

A server with N files is connected to K users through

an error-free broadcast link. Assume that N files Wn;n ∈
[N ] , {1, 2, . . . , N} are independent and each file is of

size F bits and takes values uniformly in the set [2F ] =
{1, 2, . . . , 2F }. W , {W1,W2, . . . ,WN}. Each user k ∈
[K] has a local cache of capacity MF bits (Normalized

capacity of M ), 0 ≤ M ≤ N . Cache of the users are filled

by the server with file contents in the placement phase when

the user demands are unknown. The cache content of the

kth user is denoted by Zk. In the delivery phase, user k

demands file Wdk
from the server, where demand dk are all

i.i.d random variables distributed over [N ]. The demands

of all users is thus, d = {d1, d2, . . . , dK}. All users convey

their demands over a private link between the user and the

server, without revealing it to other users. Let dk̃ denote

all demands but dk. That is, dk̃ = d\{dk}.

Then the server broadcasts a message, Xd of size RF

bits (normalized to R) to all the users. R is termed as the

rate of the transmission.

The main objective of coded caching problem is to

minimize R satisfying the decodabiity criterion

H(Wdk
|Zk, dk, X

d) = 0, ∀k ∈ [K] (1)

for all the users. That is, every user should be able to decode

the demanded file using the local cache content and the

transmission, Xd.

A coded caching scheme with K users, N files, cache

size M and rate R is denoted as (K,N ;M,R) caching

scheme or simply (K,N) caching scheme. But in the usual

non-private coded caching schemes, the demand of users

will be revealed to their peers by the transmissions in the

delivery phase. So the additional requirement of demand

privacy for all users is,

I(dk̃ ; dk, Zk, X
d|W) = 0. (2)

The kth user should be completely uncertain about the

demand of all other users, given all information user k has.

A coded caching scheme that satisfy demand privacy con-

straint in (2) in addition to (1) is referred as a demand

private coded caching scheme. And the schemes that do

not satisfy (2) are called as non-private coded caching

schemes. For a (K,N) non-private coded caching scheme

for a cache memory of M , RK,N (M) denotes the minimum

transmission rate R by which the decodability criterion (1)

is satisfied for all the users. R∗
K,N (M) is the minimum
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achievable rate among all the (K,N) non-private coded

caching schemes for a cache memory of M . Similarly,

for a cache memory M , R
p
K,N (M) and R

p∗
K,N (M) are

the achievable rate for a particular (K,N) demand-private

coded caching scheme and the minimum among all the

(K,N) demand private coded caching schemes respec-

tively. That is, in addition to (1), demand private schemes

should satisfy (2) also. Therefore, any demand private

coded caching scheme with transmission rate R
p
K,N (M) for

a cache memory M will satisfy the following inequality.

R∗
K,N (M) ≤ R

p∗
K,N (M) ≤ R

p
K,N (M) (3)

Yan et al. give a lower bound on the optimal rate-memory

trade-off under demand privacy constraints in [12]. That is,

a (K,N) demand-private coded caching scheme with cache

memory, M should satisfy,

R
p∗
K,N (M) ≥ max

l∈[N ]

(

l +
min{l+ 1,K}(N − l)

N − l +min{l + 1,K}
− lM

)

.

(4)

Consider a (K,N) coded caching system. In a particular

demand vector d, let ln be the number of users requesting

file Wn, n ∈ [N ]. We sort the set {l1, l2, . . . , lN} in the

descending order, and the resultant vector is termed as the

demand profile of d. In [13], author studies the coded

caching problem under different demand profiles. The term

they use is demand type instead of demand profile. For

example, in a caching system with 4 users and 2 files, the

possible demand profiles are [4, 0], [3, 1] and [2, 2].

Definition 1 (Uniform Demand Profile). If all the files are

requested by the same number of users, then the resulting

demand profile is said to be uniform. In the previous

example, the demand profile [2, 2] is uniform.

Now, we review some important results regarding

demand-private coded caching that are already existing in

the literature.

Theorem 1. (Theorem 1 in [8]) For a (K,N) demand

private coded caching with each user having a cache of

memory, M , the rate

R
p
K,N (M) =

(
KN

KM+1

)
−
(
KN−N
KM+1

)

(
KN

KM

) , if M ∈ {0,
1

K
, . . . , N}

is achievable. Also, the lower convex envelope of

R
p
K,N (M) is achievable.

Theorem 2. (Theorem 4 in [10]) If there exist a

(KN,N ;M,R) non-private coded caching scheme, then

there exist a (K,N ;M,R) demand private coded caching

scheme.

In [8], author derives a (K,N) demand private coded

caching scheme from a (KN,N) non-private scheme. By

that construction, each of the K users in the demand private

scheme is mapped to N virtual users in the non-private

scheme (total of KN virtual users). For user k ∈ [K] in

the demand private scheme, server independently generates

a number, Sk uniformly at random from [N ] and conveys

the same to user k through the dedicated channel from

the server to the user in the placement phase. The cache

placement is in accordance with the non-private scheme.

But the earlier mapping of actual user in the demand private

scheme to the virtual users in the non-private scheme gives

N different choices of the cache contents to every user

connected to the server. So, during the placement phase,

server populates kth user’s cache with the content that is

supposed to keep in (k− 1)N +Sk-th virtual user’s cache.

Therefore, under this placement policy user k′ will have an

uncertainty regarding the cache content of user k since k′ is

unaware of Sk. In the delivery phase, the K length demand

vector d = [d1, d2, . . . , dK ] is mapped to a KN long

virtual demand vector d̃ = [q1,q2, . . . ,qK], where qk is

an N length vector obtained by applying (Sk−dk) mod N

right cyclic shifts on (1, 2, . . . , N). The transmission is

corresponding to the (KN,N) non-private coded caching

scheme for a demand vector d̃. The user k in the actual

demand private scheme becomes the (k − 1)N + Sk -th

user in the (KN,N) non-private scheme and the user can

decode the demanded file. Since Sk is unknown for user

j ∈ [K]\{k}, privacy for all the users are guaranteed. More

details can be found in [8].

As the (KN,N) non-private scheme, in [8] author uses

the coded caching scheme proposed in [2] to achieve the

rate memory trade-off in theorem 1 where the placement is

uncoded. In [9] and [10], authors use coded placement for

demand private coded caching. In our work, we propose a

demand private coded caching scheme which also makes

use of coded placement.

Each of the q1,q2, . . . ,qK are just shifted versions of

(1, 2, . . . , N). So, by the construction of d̃, each file is

requested exactly by K virtual users and hence the demand

profile of the (KN,N) non-private scheme used for the

construction of (K,N) demand-private scheme is always

uniform. In Theorem 2, authors are giving a sufficient

condition for the existence of a (K,N) demand-private

coded caching scheme. By the above observation regarding

the virtual demand vector, we can improve the sufficient

condition and restate Theorem 2 as follows.

Theorem 3. (Improved Theorem 2) If an (M,R) point

is achievable for a (KN,N) non-private coded caching

scheme under a demand with uniform profile, then the same

is achievable for (K,N) demand private coded caching

scheme. That is, the rate achieved by the (KN,N) non-

private scheme for a demand with the demand profile

[K,K, . . . ,K]
︸ ︷︷ ︸

N times

can be achieved by the (K,N) demand-

private coded caching scheme with the same cache memory.

In [13], it is showed that for a (4, 2) non-private coded

caching scheme the rate 4
3 is achievable under the demand

profile [2, 2] at a memory M = 1
3 which is unachievable

for the demand profile [3, 1]. But, we can construct a

(2, 2) demand private scheme that achieves the rate 4
3 at

a cache memory of M = 1
3 by the procedure given in [8].

This example motivates the general results presented in the

subsequent sections.

Remark 1. The condition given in Theorem 2 or the

improved condition in Theorem 3 is not necessary for

the existence of a (K,N) demand-private coded caching

scheme. In [12], a different approach for the construction

of demand-private coded caching scheme is adapted which

achieves (M,R) points that are not achievable by the virtual

user scheme in [8] especially when N > K .



The contributions of this paper may be summarized as

follows:

• The achievability of an (M,R) pair

( 1
K(N−1)+1 , N(1 − 1

K(N−1)+1)) for a (KN,N)
non-private coded caching scheme under uniform

demand profile is shown.

• For cache memory, 0 ≤ M ≤ 1
K(N−1)+1 a (K,N)

demand-private coded caching scheme is introduced

and proved its optimality.

• Under demand privacy constraint (2), the achievability

of the rate N(1 − 1
K(N−1)+1 ) at a cache memory of

1
K(N−1)+1 generalizes the achievability of the (M,R)

pair (13 ,
4
3 ) for a 2-user, 2-file demand-private coded

caching scheme shown in [9].

The main results of this paper are discussed in Section

III. In Section IV, we show some examples of the proposed

demand-private coded caching scheme.

III. MAIN RESULTS

Lemma 1. For a (KN,N) non-private coded caching

system under a demand vector with uniform profile, the

(M,R) pair
(

1
K(N−1)+1 , N(1− 1

K(N−1)+1)
)

is achiev-

able for a sufficiently large field. Furthermore, for M ∈
[0, 1

K(N−1)+1 ],

RKN,N(M) = N(1−M)

is achievable.

Proof. We present a (KN,N) non-private coded

caching scheme that achieves an (M,R) pair(
1

K(N−1)+1 , N(1− 1
K(N−1)+1 )

)

under a demand vector

with uniform profile. That is, the server does the cache

placement with a prior knowledge that the demand vectors

will have a uniform profile. We are assuming that the files

segments are from a finite field of large size. Also, ⊕ and

⊖ denote the field addition and subtraction respectively.

A. Placement Phase

File Wn, ∀n ∈ [N ] is divided into K(N−1)+1 subfiles

of equal size, Wn,j , j ∈ [K(N − 1) + 1]. The normalized

size of a subfile is, |Wn,j | = 1
K(N−1)+1 . Encode the

subfiles, [Wn,j : j ∈ [K(N − 1)+ 1] of the file Wn with a

(KN,K(N − 1) + 1) MDS code, which results in KN

coded subfiles, each with a normalized size 1
K(N−1)+1 .

The i − th coded subfile of the file Wn is denoted as

Cn,i , 1 ≤ i ≤ KN .

• The cache of user k ∈ [KN ] is filled with
⊕N

n=1 Cn,k.

That is,

Zk =

N⊕

n=1

Cn,k, k = 1, 2, . . . ,KN.

B. Delivery Phase

Let dKN×1 be the demand vector and Sn be the set of

all users demanding the file Wn.

Sn := {k ∈ [KN ] : dk = n}

We are assuming a uniform demand profile for d. There

are N files and KN users in the system. That is,

each file is demanded exactly by K users. Let Sn =
{Sn,1, Sn,2, . . . , Sn,K}. The content delivery is as follows,

• Corresponding to a user k ∈ [KN ], transmit Ci,k, ∀i 6=
dk.

C. decodability

Claim: All the users can get their demanded file by the

given transmission strategy.

All users are requiring K(N − 1) + 1 subfiles of their

respective demanded file. For a user k ∈ Sn, those subfiles

can be decoded by any K(N−1)+1 out of the KN coded

subfiles, Cn,i , i ∈ [KN ].

• User k directly receives the coded subfiles Cn,j, ∀j ∈
[KN ]\Sn. That is, the user gets KN − K coded

subfiles of the file Wn.

• User k can calculate Cn,k by,

Cn,k = Zk ⊖









N⊕

i=1,i6=n

Ci,k

︸ ︷︷ ︸

Can calculate from transmissions









That is, the user k ∈ [KN ] receives K(N − 1) + 1 coded

subfiles of their respective demanded file. From those coded

subfiles, the user can decode all the subfiles Wdk,j , ∀j ∈
[K(N − 1) + 1].

D. Rate Calculation

• Corresponding to each user, N − 1 coded subfiles are

transmitted. Therefore, a total of KN(N − 1) subfiles

are getting transmitted in the delivery phase.

The total delivery load R = KN(N − 1) subfiles. The

normalized size of each of the coded subfiles is 1
K(N−1)+1 .

Therefore the net rate is,

R =
KN(N − 1)

K(N − 1) + 1
= N

(

1−
1

K(N − 1) + 1

)

.

The (M,R) pair (0, N) is achievable for a (KN,N)
coded caching scheme under any demand vector irrespec-

tive of its profile. Therefore, the rate of RKN,N(M) =
N(1−M), [0 ≤ M ≤ 1

K(N−1)+1 ] is achievable under uni-

form demand profile by memory sharing between M = 0
and M = 1

K(N−1)+1 appropriately.

This completes the proof of Lemma 1.

Theorem 4. For a (K,N) demand private

coded caching scheme, the memory-rate pair(
1

K(N−1)+1 , N
(

1− 1
K(N−1)+1

))

is achievable.

Furthermore, for M ∈ [0, 1
K(N−1)+1 ], we have

R
p∗
K,N (M) = N(1−M). (5)

Proof. Achievability of the rate R
p
K,N (M) = N(1 −M),

[0 ≤ M ≤ 1
K(N−1)+1 ] is straight forward. Lemma 1 shows

the existence of a (KN,N) non-private coded caching

scheme that achieves the rate, RKN,N(M) = N(1 − M)
under uniform demand profile for M ∈ [0, 1

K(N−1)+1 ] .

Therefore, by Theorem 2 and Theorem 3, the achievability

of the same rate for a (K,N) demand private coded caching

scheme is guaranteed. Therefore,

R
p∗
K,N (M) ≤ N(1−M) (6)



for 0 ≤ M ≤ 1
K(N−1)+1 .

By the lower bound (4) given by Yan et al.

R
p∗
K,N (M) ≥ max

l∈[N ]

(

l+
min{l + 1,K}(N − l)

N − l +min{l+ 1,K}
− lM

)

R
p∗
K,N (M) ≥ N(1−M). (7)

Equation (7) is obtained by putting l = N in the lower

bound (4). From (6) and (7), we can conclude that for a

(K,N) demand-private coded caching scheme with cache

memory M ∈ [0, 1
K(N−1)+1 ], we have R

p∗
K,N (M) = N(1−

M).

Remark 2. For K = 2, N = 2, the proposed scheme is

same as the demand private scheme in [9] for the cache

memory M = 1
3 .

E. Performance Comparison

Here, we compare the performance of the proposed

scheme with known schemes in [8], [9], [10] and [12] in

terms of rate and subpacketization.

• Aravind et al. shows the achievability of an (M,R)
pair (23 , 1) for a 2-file, 2-user demand-private coded

caching with a subpacketization of 3 in [10]. That

scheme can achieve the rate 3
2 at M = 1

3 by memory

sharing. Whereas our proposed scheme achieves the

rate 4
3 at M = 1

3 with the same subpacketization of 3.

• In [9], authors gave the exact rate-memory trade-off

for (2, 2) demand-private coded caching schemes and

proved that R
p∗
2,2(

1
3 ) = 4

3 and can be achieved by

a subpacketization of 3. Our work generalizes that

particular memory-rate pair for a general K-user N -

file demand-private coded caching system. That is,

for the case of 2-user, 2-file demand-private coded

caching, our proposed scheme achieves the rate 4
3 at

cache memory M = 1
3 with same subpacketization of

3.

In [8] and [12], authors deal with general K-user, N -

file demand-private coded caching systems. We compare

the transmission rates of those schemes with our proposed

scheme at cache memory M = 1
K(N−1)+1 .

• We showed the achievability of the rate N(1 −
1

K(N−1)+1) at a cache memory 1
K(N−1)+1 with a

subpacketization of K(N − 1) + 1. To fill a cache of

size 1
K(N−1)+1 , a file has to be divided into at least

K(N−1)+1 subfiles under uniform subpacketization.

• The virtual user scheme proposed in [8] achieves

memory-rate pairs (0, N) and ( 1
K
, 2K−N−1

2K ) with

subpacketization 1 and K respectively. So by memory

sharing the rate ,

R = N

(

1−
1

K(N − 1) + 1

)

+
N − 1

2[K(N − 1) + 1]

is achievable at memory M = 1
K(N−1)+1 .We can

readily observe that the rate is increased by an amount

of N−1
2[K(N−1)+1] compared to the rate achieved by our

proposed scheme. To achieve this rate, a file has to be

divided into K subfiles of normalized size 1
K(N−1)+1

and 1 subfile of normalized size (1 − K
K(N−1)+1).

The non-uniformity in the subpacketization is the

consequence of memory sharing. The (K,N) demand-

private scheme in [8] is derived from the (KN,N)
non-private scheme in [2] where the placement is

uncoded. By coded placement, we can lower the trans-

mission rate especially in the lower memory regime. In

addition to that, if we consider only the demands with

uniform profile, a further reduction in delivery load is

possible. By making use of these facts we are attaining

the optimal rate for cache memory M ≤ 1
K(N−1)+1 .

• The LFR-DPCU scheme proposed in [12] achieves the

rate

R =







N
(

1− 1
K(N−1)+1

)

+ N−1
K(N−1)+1 for K ≥ N

N
(

1− 1
K(N−1)+1

)

+ K
K(N−1)+1 for K < N

at memory M = 1
K(N−1)+1 . For this memory, a

file is divided into 2 subfiles of normalized sizes

(1− 1
K(N−1)+1) and ( 1

K(N−1)+1 ) to achieve the above

rate. Even though the number of subfiles into which

a file is divided is 2, the size of the smallest subfile

still remains 1
K(N−1)+1 . Our proposed scheme does

better in terms of delivery load by paying a little

in subpacketization compared to the demand-private

scheme in [12] for cache memory M ≤ 1
K(N−1)+1 .

IV. EXAMPLES

A. Example 1 (N=K=2)

We illustrate a (4, 2) non-private coded caching scheme

achieving a rate 4
3 under uniform demand profile at M = 1

3 .

The construction of (2, 2) demand-private coded caching

scheme from the (4, 2) non-private scheme is also shown.

• Placement Phase: We call the two files in the system as

A and B. Each file is divided into 3 subfiles of equal

size A1, A2, A3 and B1, B2, B3. We use G ∈ F3×4
2 a

generator matrix of a (4, 3)-MDS code.

G =





1 0 0 1
0 1 0 1
0 0 1 1





Encode [A1, A2, A3] and [B1, B2, B3] using G. Then

according to our previous notation, C1,1 = A1, C1,2 =
A2, C1,3 = A3 and C1,4 = A1 ⊕ A2 ⊕ A3. Similarly,

C2,1 = B1, C2,2 = B2, C2,3 = B3 and C2,4 = B1 ⊕
B2⊕B3. Store C1,1⊕C2,1 in cache 1. Populate all the

caches in the similar fashion. And the cache contents

are as follows,

Z1 A1 ⊕B1

Z2 A2 ⊕B2

Z3 A3 ⊕B3

Z4 A1 ⊕A2 ⊕A3 ⊕B1 ⊕B2 ⊕B3

Let the demand vector be d = [A,A,B,B].
• Delivery Phase: The server makes the transmissions:

B1, B2, A3 and A1 ⊕A2 ⊕A3. It can be verified that

all the users get their requested file.

We have an example for (4, 2) non-private scheme achiev-

ing a memory rate pair (13 ,
4
3 ) ([13]). Now, by the procedure

given in [8], we construct a (2, 2) demand-private coded

caching scheme from the (4, 2) non-private scheme.

There are two users connected to the server. In user 1’s

cache, server stores either Z1 or Z2, with equal probability.

Similarly, in second user’s cache, server can store Z3 or



TABLE I: The transmission Xd for a particular choice of cache content and demand vector.

Content in
Cache 1, Cache 2

Xd

B1

A2

B1

A2

A1

B2

A1

B2

B3 A3 B3 A3

A1 ⊕ A2 ⊕ A3 B1 ⊕B2 ⊕B3 A1 ⊕ A2 ⊕A3 B1 ⊕ B2 ⊕ B3

Z1,Z3 [A,A] [A,B] [B,A] [B,B]

Z1,Z4 [A,B] [A,A] [B,B] [B,A]

Z2,Z3 [B,A] [B,B] [A,A] [A,B]

Z2,Z4 [B,B] [B,A] [A,B] [A,A]

Z4 during the placement phase. But the actual choice of

the cache content is private between the server and the

user. Suppose, server stores Z1 in cache 1 and Z3 in cache

2. During the delivery phase, the actual demand vector d

is mapped to the virtual demand vector d̃. Assume that

d = [A,B]. Then d̃ = [A,B,B,A]. The transmission is

corresponding to d̃. That is server sends B1, A2, A3 and

B1⊕B2⊕B3. From these transmissions, user 1 can decode

the file A and user 2 can decode B. Corresponding to the

cache content and the demand vector, the virtual demand

vector will vary. With the virtual demand vector, Xd also

varies.

Table I specifies the transmission Xd for a given choice

of cache content and demand vector. For example, if Z1

and Z3 are stored in cache 1 and cache 2 respectively,

then for demand vector d = [B,A], the transmissions are

A1, B2, B3 and A1 ⊕ A2 ⊕ A3. It can be seen that the

user demands will remain private under this scheme. We

can verify from Table I that, different cache assignments

lead to the same transmission corresponding to different

demand vectors. For instance, suppose server stores Z1 and

Z3 in cache 1 and cache 2 respectively and assume that the

demand vector is [A,B]. The transmissions are B1, A2, A3

and B1 ⊕B2 ⊕B3. But the cache assignment Z1, Z4 also

lead to the same transmission for the demand vector [A,A].
Since, the actual cache content is private, the user demands

will also remain private.

B. Example 2 (N=2, K=3)

We illustrate a (6, 2) non-private coded caching scheme

achieving a rate 3
2 at M = 1

4 under uniform demand profile.

We call the two files in the system as A and B. Here also,

we assume that the file segments are coming from F5 :=
{0, 1, 2, 3, 4}.

• Placement Phase: Each file is divided into 4 subfiles

of equal size A1, A2, A3, A4 and B1, B2, B3, B4. G is

a systematic generator matrix for a (6, 4) MDS code.

Encode [A1, A2, A3, A4] and [B1, B2, B3, B4] using

G.

G =







1 0 0 0 1 1
0 1 0 0 1 2
0 0 1 0 1 3
0 0 0 1 1 4






∈ F4×6

5

The coded subfiles are C1,1 = A1, C1,2 = A2, C1,3 =
A3, C1,4 = A4, C1,5 = A1⊕A2⊕A3⊕A4 and C1,6 =
A1 ⊕ 2A2 ⊕ 3A3 ⊕ 4A4. Similarly, C2,1 = B1, C2,2 =
B2, C2,3 = B3, C2,4 = B4, C2,5 = B1⊕B2⊕B3⊕B4

and C2,6 = B1⊕2B2⊕3B3⊕4B4. The cache contents

are

Z1 C1,1 ⊕ C2,1
Z2 C1,2 ⊕ C2,2
Z3 C1,3 ⊕ C2,3
Z4 C1,4 ⊕ C2,4
Z5 C1,5 ⊕ C2,5
Z6 C1,6 ⊕ C2,6

Let the demand vector is d = [A,A,A,B,B,B]. The

demand profile is [3, 3]. That is, both the files are

requested by 3 users.

• Delivery Phase: Following transmissions are made:

C2,1, C2,2, C2,3, C1,4, C1,5 and C1,6.

User 1, user 2 and user 3 are requesting for file A. They

directly get the coded subfiles C1,4, C1,5 and C1,6 of file A.

In addition to that, user 1 can decode the coded subfile C1,1
as C1,1 = Z1 ⊖ C2,1. Since, every 4× 4 submatrix of G is

invertible, user 1 can decode the subfiles A1, A2, A3 and A4

from the 4 coded subfiles C1,1, C1,4, C1,5 and C1,6. Similarly,

user 2 can get the coded subfile C1,2 and user 3 can get the

coded subfile C1,3. So they can also get their demanded

file A from the 4 available coded subfiles. User 4, user 5

and user 6 are demanding for file B. All of them directly

receive the coded subfiles C2,1, C2,2 and C2,3 of file B.

From the local cache content, users can get one more coded

subfile. That means, from the transmissions all the users

get 4 encoded subfiles of the demanded file. From those

subfiles, users can decode their required file. Demands of

all the six users can be satisfied by the 6 transmissions

given above. Since each transmission is 1
4 of a file size, the

normalized rate is 3
2 .

V. FUTURE WORK

In this work, we showed the achievability of a particu-

lar rate-memory pair for a general K-user, N -file coded

caching problem satisfying the demand privacy require-

ments and also showed its optimality under a certain

condition. The optimal rate-memory trade-off for a gen-

eral (K,N)-demand private coded caching problem still

remains open. Investigating different coded caching system

models under demand privacy constraints is also very

important.
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