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Abstract

We consider the problem of authenticated communication over a discrete arbitrarily varying channel where the legitimate

parties are unaware of whether or not an adversary is present. When there is no adversary, the channel state always takes a default

value ∅. When the adversary is present, they may choose the channel state sequence based on a non-causal noisy view of the

transmitted codewords and the encoding and decoding scheme. We require that the decoder output the correct message with a

high probability when there is no adversary, and either output the correct message or reject the transmission when the adversary

is present. Further, we allow the transmitter to employ private randomness during encoding that is known neither to the receiver

nor the adversary. Our first result proves a dichotomy property for the capacity for this problem – the capacity either equals zero

or it equals the non-adversarial capacity of the channel. Next, we give a sufficient condition for the capacity for this problem

to be positive even when the non-adversarial channel to the receiver is stochastically degraded with respect to the channel to

the adversary. Our proofs rely on a connection to a standalone authentication problem, where the goal is to accept or reject a

candidate message that is already available to the decoder. Finally, we give examples and compare our sufficient condition with

other related conditions known in the literature.

I. INTRODUCTION

Consider the problem of communication over a channel where an adversary may or may not be present. Neither the transmitter

nor the receiver know a priori whether or not the adversary is present. The goal for the transmission is to decode the message

with an authentication guarantee. In particular, when the adversary is not present, it is desirable that the message is decoded

correctly with a high probability. On the other hand, when the adversary is present, the decoding goal is relaxed – the decoder

may either output the correct message, or it may declare that the adversary is present.

We study this problem in the setting of myopic arbitrarily varying channels (myopic AVCs) (see Fig 1). The channel between

the transmitter and the receiver is an Arbitrarily Varying Channel (AVC) WY |X,S . When the adversary is absent, the channel state

assumes a default “no-adversary” state ∅. On the other hand, when the adversary is present, they may choose the state sequence
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Fig. 1. The authentication problem over a myopic arbitrarily varying channel.
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Fig. 2. In the authentication tag problem, the objective is to authenticate a candidate message m̂ that is already available to the decoder. When no adversary
is present, it is desirable that the decoder outputs a REJECT if and only if the candidate message m̂ is not equal to the true message m. When there is an
adversary present, the decoder may output a REJECT to either denote that the m̂ is not equal to m or to indicate that an adversary has been detected.

arbitrarily over the entire transmission. The adversary is myopic, i.e., they have a non-causal view of the codeword passed

through a memoryless channel UZ |X before they select the channel state sequence. The adversary’s observation is conditionally

independent of the receiver’s observation given the transmitted codeword and the channel state sequence.

A. Related work

The reliable communication problem over AVCs has a rich history [1]–[3]. Myopic AVCs have been studied in [4]–[7].

The problem of authentication has been studied in several different frameworks. There is a long line of work that examines

the message authentication problem – both as a standalone problem [8], [9] as well as over noisy channels [10], [11]. In

recent years, considerable attention has focused on keyless authentication over adversarial channels, which is the setting of

this paper [12]–[16]. Authentication over myopic AVCs has previously been studied in [17], [18].

B. Our contribution

In the following, we summarize our main results. The proofs of these results are detailed in later sections after formally

describing the problem and notation in Section II.

In this paper, we consider the capacity Cstoch,auth for this problem when the encoders are allowed to be stochastic of the

form PXn |M , i.e., the transmitter may employ private randomness while encoding. This randomness is neither available to the

receiver nor to the adversary.

1) Connection to Authentication Tags: Consider the authentication tag problem shown in Figure 2. This problem is

reminiscent of the problem of identification via channels [19], and in a similar vein, supports the number of messages to

be doubly exponential in the blocklength. Our first result draws a connection between the authentication problem and the

authentication tag problem. We show that authentication tag capacity Ctag equals Cstoch,auth for all myopic AVCs. Let C∅ denote

the channel capacity (i.e., the non-adversarial capacity) of the channel W
(∅)

Y |X
(·|·) , WY |X,S(·|·, ∅).

Theorem 1. Ctag = Cstoch,auth. Further, whenever these are positive, they equal C∅.

While this result has been previously noted in settings where the adversary is oblivious of the transmission (c.f., [15]), to

the best of our knowledge, this is the first extension of this property to myopic adversaries. Thus, Theorem 1 shows that, from

a capacity viewpoint, it is sufficient to examine authentication tags.

2) Overwritability condition: Theorem 1 alludes to a dichotomy property for the authentication problem with myopic

adversaries. Such dichotomies are well known in the AVC literature for both the reliable communication problem as well as

the authentication problem. In the authentication setting, this dichotomy is often characterized via an appropriate overwritability

criterion that specifies the condition under which the adversary can confuse the receiver between legitimate (non-adversarial)

transmission a symbol x′ at the channel input and an adversarially influenced transmission.

Coming to authentication over myopic AVCs, [17] introduces the notion of UZ |X -overwritability (also see Definition 9). As

noted in [17], whenever a channel WY |X,S is UZ |X -overwritable, the authentication capacity equals zero. Further, if encoding



Cstoch,auth > 0

UZ |X -overwritable (Cstoch,auth = 0)

UZ |X -distribution overwritable

(UZ |X ,X )- distribution overwritable

I-overwritable

Fig. 3. The hierarchy of overwritable channels is shown here. Theorem 2 shows that positive rates of authentication are supported with stochastic codes by
all channels that are in the shaded region.

is restricted to deterministic codes, the authentication capacity is zero whenever the channel WY |X,S is stochastically degraded

with respect to UZ |X , i.e., there exists a channel VY |Z such that WY |X,S(y|x, ∅) =
∑

z∈Z UZ |X (z|x)VY |Z (y|z)∀y ∈ Y , x ∈ X , and

WY |X,S satisfies the I-overwritability condition (see Definition 10). Going beyond deterministic codes, [18] gives an example

to show that the authentication capacity may be non-zero even if the channel is I-overwritable and WY |X,S is stochastically

degraded with respect to UZ |X .

Our next result is motivated by this example to give a general sufficient condition for positivity of authentication capacity.

We present a new overwritability condition that we call UZ |X -distribution overwritability. Intuitively, this condition requires

that the myopic adversary be able to overwrite the channel output to mimic legitimate transmission of any symbol x′ of their

choice when the true input to the channel is drawn from any distribution that leads to a publicly known distribution PZ for

the adversary (see Definition 7 for a formal statement).

Theorem 2. Cstoch,auth > 0 if WY |X,S is not UZ |X -distribution overwritable.

On the way to proving positive rates for channels that are not UZ |X -distribution overwritable, we first prove achievability

for a smaller class of channels that are not (UZ |X ,X )-distribution overwritable (see Definition 11). Our characterizations of

overwritability give rise a natural hierarchy among different notions of overwritability for myopic AVCs. Figure 3 shows the

inclusion relationships between the overwritability notions we touch upon in this paper. In Section V, we give examples to

show that these inclusions are, in fact, strict.

II. MODEL AND NOTATION

Notation: We follow standard notation for information theoretic quantities (c.f. [20]). We denote sets by calligraphic

symbols (X ,Y etc). P(A ) denotes the set of all probability distributions defined on a set A . V(P,Q) denotes the variational

distance between two probability distributions. All logarithms are to base 2.

a) Channel: We consider myopic arbitrarily varying channels (AVCs) that consist of pairs of channels (WY |X,S ,UZ |X ). The

transmitter and the receiver are connected through the main channel WY |X,S with input alphabet X , output alphabet Y , and

state set S . The state set contains a “no-adversary” state ∅, which is the default channel state when there is no adversary.

The adversary, if present, is connected to the transmitter through the channel UZ |X with input alphabet X and output alphabet

Z . As is standard in myopic AVCs, we assume that conditioned in the channel input X and the channel state S, the main

channel output Y and the adversary’s channel output Z are independent, i.e., the Markov chain Y − (X, S)−Z holds. All channel

alphabets and the state set are finite sets.



b) Codes: We consider stochastic codes for two problems in this paper. The first problem we consider is that of

communicating a message in an authenticated manner over the channel (WY |X,S ,UZ |X ) using authentication codes.

Definition 1 ((N, n)-Authentication Codes). An (N, n)-authentication code for a channel (WY |X,S ,UZ |X ) consists of a stochastic

encoder PXn |M that maps messages m ∈ [N] to codewords Xn ∈ X n ∼ PXn |M=m and a deterministic decoder Φ : Y n →

[N] ∪ {REJECT} .

The second problem we consider is a standalone authentication problem, wherein, the goal is to authenticate a candidate

message already available to the decoder by sending a tag over the channel (WY |X,S ,UZ |X ) using authentication tags.

Definition 2 ((N, n)-Authentication Tags). An (N, n)-authentication tag for a channel (WY |X,S ,UZ |X ) consists of a stochastic

encoder PXn |M that maps messages m ∈ [N] to codewords Xn ∈ X n ∼ PXn |M=m and a collection of deterministic decoders

φm̂ : Y n → {ACCEPT,REJECT} for every m̂ ∈ [N].

c) Adversarial strategies: The adversary (if present) first independently and non-causally observes zn, the output of the

channel UZ |X when xn is the input. Next, the state sequence sn is selected based on the knowledge of the code and the

observation zn using a strategy QSn |Zn .

d) Error Probabilities: The error probability for an authentication code is the larger of following two probabilities: (i) the

maximal probability of decoding to either REJECT or to a message other than the true message m when there is no adversary,

and (ii) the probability of the decoding to neither the true message m nor to REJECT when there is an adversary present. Note

that when there is an adversary, it is acceptable to output a REJECT instead of the true message m.

Definition 3 (Error Probability for Authentication Codes). We say that an (N, n)-authentication code (PXn |M ,Φ) achieves error

probability ǫ if

A. No Adversary
max
m∈[N]

Pr
Xn,Yn

(Φ(Yn) 6= m|m sent, Sn = ∅n) ≤ ǫ , and

B. Adversary Present
max
m∈[N]

sup
QSn |Zn

Pr
Xn,Yn ,Zn ,Sn

(Φ(Yn) /∈ {m,REJECT}m|m sent) ≤ ǫ .

There are two kinds of error probabilities for authentication tags: (i) the maximal probability of REJECT the true message

m when there is no adversary at all and (ii) the maximal probability of accepting a wrong candidate message when there is

an adversary present. Note that when there is no adversary, we don’t consider the event that a wrong candidate message is

accepted in our definition of error probabilities.

Definition 4 (Error Probabilities for Authentication Tags). We say that an (N, n)-authentication tag (PXn |M , {φm}m∈[N]) achieves

error probabilities (λ1, λ2) if

A. False Alarm:
max
m∈[N]

Pr
Xn,Yn

(φm(Yn) = REJECT|m sent, Sn = ∅n) ≤ λ1, and

B. Missed Detection
max
m∈[N]

m̂∈[N]\{m}

sup
QSn |Zn

Pr
Xn,Yn ,Zn ,Sn

(φm̂(Yn) = ACCEPT|m sent) ≤ λ2.

Remark 1. When the channel WY |X,S is non-adversarial, i.e., S = {∅} an authentication tag for (WY |X,S ,UZ |X ) is equivalent to

be thought of as an identification code for the identification problem [19] for the channel WY |X,S .

e) Capacity: The authentication capacity for stochastic codes is defined as follows.

Definition 5 (Authentication capacity). The authentication capacity Cstoch,auth for a channel (WY |X,S ,UZ |X ) with stochastic codes

is defined to be the supremum over all R such that given any ǫ > 0, there is a sequence of (Nn, n)-authentication codes achieving



error probability ǫ , and lim infn→∞
1
n

log2 Nn ≥ R.

Coming to authentication tags, it turns out that, similarly to identification codes [19], the number of messages for

authentication tags grow doubly exponentially in the blocklength.

Definition 6 (Authentication tag capacity). The authentication tag capacity Ctag for a channel (WY |X,S ,UZ |X ) is defined to be

the supremum over all R such that given any λ1, λ2 ∈ (0, 1), there is a sequence of (Nn, n)-authentication tags achieving error

probabilities (λ1, λ2), and lim infn→∞
1
n

log2 log2 Nn ≥ R.

III. EQUIVALENCE BETWEEN AUTHENTICATION CODE AND AUTHENTICATION TAG CAPACITIES

In this section, we prove Theorem 1 and show that the capacities for the authentication problem and the authentication tag

problems are identical when stochastic codes are permitted. Further, whenever these capacities are positive, they equal the

no-adversary capacity of the channel.

A. Proof of Theorem 1

The proof of this theorem relies on Lemmas 1 and 2 and by noting that Ctag is always upper bounded by the identification

capacity of the channel W(∅).

Lemma 1. Ctag ≥ Cstoch,auth.

Proof sketch:

The proof proceeds along the lines of [15]. The key idea here is to first construct an identification code [19] for a noiseless

channel and then transmit the codewords from the identification code using an authentication code for this channel. We furnish

the details in the appendix. �

Lemma 2. Whenever Ctag > 0, Cstoch,auth = C∅.

Proof:

We first note that Cstoch,auth is always bounded form above by C∅ as the latter is the capacity of the channel WY |X,S when there

is no adversary.

In the following we prove that any rate smaller than C∅ is achievable whenever Ctag is positive. Our achievability relies on

a two-phase scheme. The first phase consists of a code for the (non-adversarial) channel WY |X,S(·|·, ∅). The second phase is a

short phase used to verify that the message has been decoded correctly in the first phase. This architecture has been previously

been shown to be capacity-achieveing in [15] for channels with oblivious adversaries. In the following, we prove that this

property continues to hold even when the adversary has a noisy view of the input codeword.

Suppose that Ctag > 0. Let R < C∅. Let ǫ > 0 be the target probaility of error for the authentication code. For every n > 0,

Let tn = ⌈(log nR)/Ctag⌉. Choose n large enough such that the following are ensured:

a) There exists a (2nR, n − tn) channel code with encoder f : [2nR] → X n−tn and decoder g : Y n−tn → [2nR] for the

(non-adversarial) channel WY |X,S=∅ with maximal error probability at most ǫ /2.

b) There exists a (2nR, tn) authentication tag (P̂X tn |M , {φm}) for (WY |X,S ,UZ |X ) achieving error probabilities (ǫ /2, ǫ /2).

We form a (2nR, n) authentication code (PXn |M ,Φ) by concatenating the above codes as follows. The encoder transmits the

channel code followed by the authentication tag, i.e.,

PXn |M(xn|m) =



















P̂X tn |M(xn
n−tn+1

|m) if xn−tn = f (m),

0 otherwise.

The decoder first decodes the message from the channel code and then authenticates it using the authentication tag. Let

m̂ , g(yn−tn). The decoder Φ is defined as

Φ(yn) =



















m̂ if φm̂(yn
n−tn+1

) = ACCEPT

REJECT otherwise.



We argue that the authentication code thus constructed achieves an error probability of ǫ . Consider the following two cases.

a) Case 1. No adversary: When there is no adversary, the error event is contained in the union of the event that the

channel code ( f , g) decodes to an incorrect message and the event that the authentication tag (P̂X tn |M , {φm}) rejects a correct

message from the channel code. Thus,

P
(no−adv)
e ≤ max

m∈[2nR]

[

Pr(g(Yn−tn) 6= m|m sent, Sn−tn = ∅n−tn)+

Pr(φm(Yn−tn+1)m = REJECT|m sent, Sn
n−tn+1 = ∅

n
n−tn+1)

]

≤ ǫ /2 + ǫ /2 = ǫ .

b) Case 2. Adversary present: In this case, the error probability can be expressed as follows. In the following, let l = n− tn

for ease of notation.

max
m

sup
QSn |Zn

Pr
Xn,Yn ,Zn ,Sn

(Φ(Yn) /∈ {M,REJECT} |m sent)

= max
m

sup
QSn |Zn

[

Pr(Φ(Yn) /∈ {m,REJECT} , g(Y l) = m|m sent)

+ Pr(Φ(Yn) /∈ {m,REJECT} , g(Y l) 6= m|m sent)

]

≤ max
m

sup
QSn |Zn

Pr(Φ(Yn) /∈ {m,REJECT} , g(Y l) = m|m sent) +

max
m

sup
QSn |Zn

Pr(Φ(Yn) /∈ {m,REJECT} , g(Y l) 6= m|m sent) (1)

The first term in (1) corresponds to the channel code decoding to the correct message. In this case, the decoder Φ outputs

either the correct message or REJECT, both of which are acceptable outcomes when an adversary is present. Thus,

Pr
Xn,Yn ,Zn,Sn

(Φ(Yn) /∈ {m,REJECT} , g(Y l) = m|m sent) = 0.

Next, we analyze the second term in (1). We perform the error analysis by allowing the adversary to choose their strategy

based on the true message m and the channel code output m̂. We argue that, in this setting, even when the adversary knows

m and m̂, it is sufficient for the adversary to choose a strategy based on the subset of observations Zn
l+1

(in addition to m and

m̂) rather than all of Zn.The probability of not rejecting a wrong message is upper bounded as follows.

max
m

sup
QSn |Zn

Pr(Φ(Yn) /∈ {m,REJECT} , g(Y l) 6= m|m sent)

≤ max
m,m̂6=m

sup
QSn |Zn

Pr
Xn,Yn ,Zn ,Sn

(φm̂(Yn
l+1) = ACCEPT|m sent) (2)

= max
m,m̂6=m

sup
QSn |Zn

∑

xn,yn,zn ,sn

s.t.φm̂(yn
l+1

)=ACCEPT

PXn |M(xn|m)UZ |X (zn|xn)

× QSn |Zn (sn|zn)WY |X,S(yn|xn, sn)

= max
m,m̂6=m

sup
QSn |Zn

∑

xn ,yn,zn ,sn

s.t.xl= f (m)
φm̂(yn

l+1
)=ACCEPT

P̂X tn |M(xn
l+1|m)UZ |X (zn|xn)

× QSn |Zn (sn|zn)WY |X,S(yn|xn, sn)

= max
m,m̂6=m

sup
QSn |Zn

∑

xn
l+1
,yn

l+1
,zn,sn

s.t.φm̂(yn
l+1

)=ACCEPT

P̂X tn |M(xn
l+1|m)

× UZ |X (zl | f (m))UZ |X(zn
l+1|x

n
l+1)QSn |Zn ,Sn(sn|zn)

×WY |X,S(yn
l+1|x

n
l+1, s

n
l+1). (3)



In the above, (2) follows from our design of the authentication code as a two-phase code (see Lemma 3 for details). Note

that (2) does not require a union bound over all m̂ 6= m, rather, only bounding in terms of the worst-case m̂ suffices. Next,

defining

Q̂Stn |Z tn (sn
l+1|z

n
l+1) =

∑

zl ,sl

UZ |X (zl | f (m))QSn|Zn ,Sn(sn|zn),

the expression in (3) may be rewritten as

max
m,m̂6=m

sup
Q̂Stn |Ztn

∑

xn
l+1
,yn

l+1
,zn

l+1
,sn

l+1

s.t.φm̂(yn
l+1

)=ACCEPT

P̂X tn |M(xn
l+1|m)Q̂Stn |Z tn (sn

l+1|z
n
l+1)

×WY |X,S(yn
l+1|x

n
l+1, s

n
l+1)

= max
m,m̂6=m

sup
Q̂Stn |Ztn

Pr
X tn ,Y tn ,Z tn ,Stn

(φm̂ = ACCEPT|m sent) ≤ ǫ /2.

Remark 2. The proof of Lemma 2 suggests a natural two-phase architecture for authentication. The the first phase may be

thought of as the “payload” which can be transmitted using any reliable code for the channel W(∅) without adversary. The

second phase is a short authentication phase. Our analysis shows that the length of the second phase need be no larger than

logarithmic in the overall block length to achieve vanishing probability of error at rates achieving the capacity. This aspect of

communication with authentication has been noted in different adversarial models in prior work [15].

Remark 3. In the proof of Lemma 2, the no-adversary case proceeds identically to the setting with an oblivious adversary [15].

However, unlike in the oblivious setting, when adversary is present, they can correlate the attack strategy in the first and the

second phases. Thus, it is not a priori clear if the authentication tag phase can be analyzed separately from the communication

phase. Our proof shows that even though the adversary may choose a strategy that depends on the entire transmission QSn |Zn ,

such a strategy is not more powerful than strategies Q̂Stn |Z tn that depend only on the authentication tag phase and the knowledge

of the message and the first phase reconstruction.

IV. OVERWRITABILITY WITH STOCHASTIC CODES

We say that P1, P2 ∈ P(X ) are myopically indistinguishable if

∑

x∈X

P1(x)UZ |X (z|x) =
∑

x∈X

P2(x)UZ |X (z|x) ∀z ∈ Y .

Let Γind be the partition of P(X ) into equivalence classes formed by grouping indistinguishable distributions.

Definition 7 (UZ |X -distribution overwritability). We say that WY |X,S is UZ |X -distribution overwritable if for every P ∈ Γind and

x′ ∈X , there is an adversarial strategy QS|Z such that, for every PX ∈P and y ∈ Y ,

EX,Z,S

[

WY |X,S(y|X, S)
]

=WY |X,S(y|x′, ∅),

where, the expectation is with respect to the joint distribution PX,Z,S = PXUZ |X QS|Z .

Remark 4. It follows from the above definition that when WY |X,S is not UZ |X -distribution overwritable, there exist P ∈ Γind

and x′ ∈X such that for all QS|Z , there exists PX ∈P with

V
(

EX,Z,S

[

WY |X,S(·|X, S)
]

,WY |X,S(·|x′, ∅)
)

> 0.

Further, since we restrict our attention to finite alphabet channels with finite state spaces, and since every P ∈ Γind is a compact

subset of P(X ), there exists ν > 0 such that

max
P∈Γind

x′∈X

min
QS|Z

max
PX∈P

V
(

EX,Z,S

[

WY |X,S(·|X, S)
]

,WY |X,S(·|x′, ∅)
)

> ν. (4)



Proof of Theorem 2:

We prove that Cstoch,auth > 0 for channels that are not UZ |X -distribution writable by showing the existence of authentication tags

with positive rates for such channels and invoking Theorem 1. Suppose that (WY |X,S ,UZ |X ) satisfy (4) for some ν > 0 and let

(P , x′) be a pair achieving the maxima in (4).

Case 1: |P | = 1: Let P = {PX }. The result for this case follows from Lemma 4 by noting that, in this case, WY |X,S is

(UZ |X ,X )-overwritable (as stated in Definition 11).

Case 2: |P | > 1: Now, we extend the result to the case when the set P achieving the maximum contains more than one

element. First, fix δ > 0 and let Pδ be a δ-net covering P , i.e., for all P ∈P , there is P′ ∈Pδ such that V(P′, P) < δ. Note

that Pδ may be chosen to have a finite number of elements. In particular, we can always find Pδ such that |Pδ| <
1
δ|X | . Let

Pδ =
{

P(1), P(2), . . . , P(K)
}

.

Let α, β > 0 be small enough so as to satisfy

1 + β

(1 − α)(1 − β)

(

µ/4 + 2
α(1 + β)

1 − β

)

≤
µ

2
.

Pick B = {Bm : m ∈ [N]} as per Lemma 6. For each k ∈ [K], let (P
(k)

Xn |M
,
{

φ
(k)
m

}

) be a (P
(k)

X
, n,B, µ/4)-authentication tag as given

in Definition 12.

Our achievability relies on an authentication tag consisting of several sub-blocks. Consider a (N, nL)-authentication tag

(PXnL |M , {φm}) with encoder and decoder maps defined below. For each l ∈ [L], the encoder uniformly picks k from [K] and

the sub-block X ln
(l−1)n

according to P
(k)

Xn |M
. Thus,

PXnL |M(xnL|m) =

L
∏

l=1

K
∑

k=1

1

K
P

(k)

Xn |M
(xln

(l−1)n+1 |m).

The decoder first decodes each sub-block and outputs an ACCEPT only if, for each block, the corresponding decoder outputs

ACCEPT.

φm(ynL) =



















ACCEPT if φ
(k)
m (yln

(l−1)n+1
) = ACCEPT ∀ l ∈ [L]

REJECT otherwise.

Note that, the decoder doesn’t know a priori the value of k for each sub-block (since the value of k is randomly and privately

chosen by the transmitter). In fact, the decoder
{

φ
(k)
m

}

for any (P
(k)

X
, n,B, µ/4)-authentication tag only needs the knowledge of

B and not of P
(k)

X
. Let κ(k) = κ(P

(k)

X
, x′) (as defined in Eq. 10). Note that, over the uniform choice of k, Pr(κ(k) > µ/2) ≥ 1

K
as

long as δ is small enough. Thus, by Lemma 5, with probability at least 1/K, φm̂(·) = REJECT when m 6= m̂. We first let the

number of sub-blocks to be large enough and then the length of each sub-block to be large enough to conclude that the error

probabilities can be made as small as desired. �

V. EXAMPLES

Definition 8 ((r-overwritable BSC(p),BEC(u))). The (r-overwritable BSC(p),BEC(u) is channel defined with X = Y = {0, 1},

Z = {0, 1, E}, S = {∅, 0, 1}, and the transition probabilities

WY |X,S(y|x, s) ,



































































1 − p if y = x and s = ∅

p if y 6= x and s = ∅

1 if y = x and s = x

1 − r if y = x and s = x ⊕ 1

r if y 6= x and s = x ⊕ 1

UZ |X (z|x) ,



















1 − u if z = x

u if z = E



Example 1 (UZ |X -distribution overwritable but not UZ |X -overwritable). Consider (r-overwritable BSC(p),BEC(u)) with p ∈

(0, 1/2), r ∈ (p, 1 − p) and u > 0. First, we note that for such channels, al input distributions are myopically distinguishable

(since the probability of observing a 0 (resp. 1) by the adversary is proportional to the probability that the input is a 0

(resp. 1). Next, given any input distribution PX = (p0, 1 − p0), one can show the adversary can find a QS|Z satisfying the

UZ |X -distribution overwritability condition. Finally, to see that the channel is not UZ |X -overwritable, suppose that the adversary

intends to overwrite with x′ = 0. When the adversary observes E, the adversarial strategy must work regardless of the input

symbol. It turns out that there is no strategy that simultaneously works for x = 0 and x = 1.

Example 2 ((UZ |X ,X )-distribution overwritable but not UZ |X -distribution overwritable). Consider the (r-overwritable

BSC(p),BEC(u)) channel with p ∈ (0, 1/2), r ∈ (p, 1 − p) and u = 1. In this case, since UZ |X outputs an E with probability 1,

all input distributions are myopically indistinguishable. Following a similar reasoning as the previous example, we conclude

that there is no adversarial strategy that can work for all input distributions simultaneously. On the other hand, when the

adversary knows the input distribution, they can find an adversarial strategy that can lead to the right output distribution for

(UZ |X ,X )-distribution overwritability.
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APPENDIX A

PROOF OF LEMMA 1

Proof:

Let Wid denote the noiseless binary channel whose input equals the output with probability one. Fix R < Cstoch,auth. Let

R̂ ∈ (R,Cstoch,auth) and R̃ = R/R̂. Let λ1, λ2 ∈ (0, 1/2) be desired misauthentication probabilities. Following [19, Theorem 1], for



all ñ large enough, there exist (N (id), ñ)-identification codes

(

P̃Bñ |M ,
{

φ̃m

}

m∈[N (id)]

)

for channel Wid that achieves misidentification

probabilities (λ1/2, λ2/2) and N (id) ≥ ⌊22ñR̃

⌋. Note that the number of codewords for such a code is at most N
(id)
out , 2ñ. Next,

from the definition of authentication capacity, for all n large enough, there exist (N (auth), n)-authentication codes
(

P̂Xn |B, Φ̂
)

for

the channel (WY |X,S ,UZ |X ) with error probability at most max {λ1/2, λ2/2} and N (auth) ≥ ⌊2nR̂⌋.

Now, we compose the two codes in the following manner. First, let n be large enough so that there exist both an (N (id), ñ)-

identification code and an (N (auth), n)-authentication code of the form above with N (auth) = N
(id)
out . Consider an (N (id), n)-

authentication tag for the channel (WY |X,S ,UZ |X ) defined through the encoder

PXn |M(xn|m) =
∑

bñ∈{0,1}ñ

P̂Xn |B(xn|bñ)P̃Bñ|M(bñ|m),

and the decoders

φm̂(yn) =



















































REJECT if Φ(yn) = REJECT

REJECT if Φ(yn) = b̂ ∈ {0, 1}ñ and

φ̃m̂(b) = REJECT

ACCEPT otherwise,

for all m, m̂ ∈ [N (id)], xn ∈X n, and yn ∈ Y n. We note that the rate of this code is

1

n
log log N (id) ≥

ñR̃

n

≥
ñR̃

(1/R̂) log Ñ
= R̃R̂

= R.

Further, the error probabilities for the authentication tag (P̃Xn |M , {φm̂}) are bounded from above by the sum of the corresponding

misidentification probabilities for the identification code (PBñ|M ,
{

φ̃m

}

) and the error probability for the authentication code

(P̂Xn |B, Φ̂). This shows that Ctag ≥ Cstoch,auth. �

APPENDIX B

Lemma 3. Let Φ, g and {φm}m be defined as in the proof of Lemma 2. Then, we have,

max
m

sup
QSn |Zn

Pr(Φ(Yn) /∈ {m,REJECT} , g(Y l) 6= m|m sent)

≤ max
m,m̂6=m

sup
QSn |Zn

Pr
Xn,Yn ,Zn,Sn

(φm̂(Yn
l+1) = ACCEPT|m sent)

Proof:

Consider the following chain of inequalities.

Pr(Φ(Yn) /∈ {m,REJECT} , g(Y l) 6= m|m sent)

= Pr
Xn,Yn ,Zn ,Sn

(φg(Y l )(Y
n
l+1) = ACCEPT, g(Y l) 6= m|m sent) (5)

=
∑

m′ 6=m

Pr
Xn,Yn ,Zn ,Sn

(φm′(Y
n
l+1) = ACCEPT|g(Y l) = m′,m sent) × Pr

Xn,Yn ,Zn,Sn
(g(Y l) = m′|m sent)

=
∑

m′ 6=m

Pr
Xn,Yn ,Zn ,Sn

(φm′(Y
n
l+1) = ACCEPT|m sent) × Pr

Xn,Yn ,Zn ,Sn
(g(Y l) = m′|m sent) (6)

≤ max
m̂ 6=m

Pr
Xn,Yn ,Zn ,Sn

(φm̂(Yn
l+1) = ACCEPT|m sent) ×

∑

m′

Pr
Xn,Yn ,Zn ,Sn

(g(Y l) = m′|m sent)

≤ max
m̂ 6=m

Pr
Xn,Yn ,Zn ,Sn

(φm̂(Yn
l+1) = ACCEPT|m sent).



In the above, (5) follows from the definition of Φ, and (6) is obtained by noting that Y l − (Xn,Zn, Sn,M)− Yn
l+1

is a Markov

chain due to our two phase coding scheme. Finally, taking the suprema with respect to m and QSn |Zn gives us the bound in the

lemma statement. �

APPENDIX C

OVERWRITABILITY CONDITIONS

Definition 9 (UZ |X -overwritability [17]). We say that WY |X,S is UZ |X -overwritable if, for every x′ ∈X , there exists an adversarial

strategy QS|Z such that for every x ∈X and y ∈ Y ,

EZ,S

[

WY |X,S(y|x, S)
]

= WY |X,S(y|x′, ∅),

where, the random variables (Z, S) are distributed according to the joint distribution UZ |X (·|x)QZ |S(·|·).

Definition 10 (I-overwritability [18]). We say that WY |X,S is I-overwritable if, for every x, x′ ∈X , there exists an adversarial

strategy QS|Z such that for every y ∈ Y ,

EZ,S

[

WY |X,S(y|x, S)
]

= WY |X,S(y|x′, ∅),

where, the random variables (Z, S) are distributed according to the joint distribution UZ |X (·|x)QZ |S(·|·).

Definition 11 ((UZ |X ,X )-distribution overwritability). We say that WY |X,S is (UZ |X ,X )-distribution overwritable if for every

P ∈ P(X ) and x′ ∈X , there is an adversarial strategy QS|Z such that, for every y ∈ Y ,

EX,Z,S

[

WY |X,S(y|X, S)
]

=WY |X,S(y|x′, ∅),

where, the expectation is with respect to the joint distribution PX,Z,S = PXUZ |X QS|Z .

Definition 12 ((PX , n,B, µ)-authentication tag). Given PX ∈ P(X ), blocklength n, a family of subsets of B of [n], and a

decoding threshold ρ, a (PX , n,B, µ)-authentication tag is defined through the encoder map

PXn |M(xn|m) =
∏

i /∈B

PX (x)
∏

i∈B

1x′ (x), xn ∈X
n,

and the decoder maps {φm} specified below. Given y ∈ Y , yn ∈ Y n, and B ∈ B, let

P̂yn(y|B) ,
{i ∈B : yi = y}

|B|
.

For each m ∈ [N], and yn ∈ Y n the decoder φm outputs according to the following rule

φm(yn) =



















ACCEPT if V(P̂yn(·|Bm),WY |X,S(·|x′, ∅)) < ρ

REJECT otherwise.

Lemma 4. If WY |X,S is not (UZ |X ,X )-overwritable, Cstoch,auth > 0.

Proof:

Following along a similar reasoning in Remark 4, we note that if WY |X,S is not (UZ |X ,X )-overwritable, there exist PX ∈ P(X )

and x′ ∈X and µ > 0 such that

min
QS|Z

V
(

EX,Z,S

[

WY |X,S(·|X, S)
]

,WY |X,S(·|x′, ∅)
)

> µ. (7)

We invoke the Theorem 1 to note that it is sufficient to show the existence of authentication tags of positive rate for large

enough blocklengths. To this end, let (λ1, λ2) be desired false alarm and missed detection probabilities for the authentication

tag. Let α, β > 0 be small enough so as to satisfy

1 + β

(1 − α)(1 − β)

(

µ/4 + 2
α(1 + β)

1 − β

)

≤
µ

2
. (8)



Pick B = {Bm : m ∈ [N]} as per Lemma 6. Consider a (PX , n,B, µ/4)-tag (PXn |M , {φm}) as given in Definition 12. We first

analyze the false alarm probability. Note that

Pr
Xn ,Yn

(φm(Yn) = REJECT|m sent, Sn = ∅n)

= Pr
Xn ,Yn

(

V

(

P̂Yn (·|Bm),WY |X,S(·|x′, ∅
)

> µ/4
)

= Pr
YBm

(

V

(

P̂Yn (·|Bm),WY |X,S(·|x′, ∅
)

> µ/4
∣

∣

∣xBm
= (x′)|Bm |

)

.

Now, noting that for each i ∈ Bm, xi = x′, and hence, Yi ∼ WY |X,S(·|x′, ∅), the probability of false rejection is simply the

probability that a sequence of length |Bm | is not typical when each symbol in the sequence is drawn i.i.d. from WY |X,S(·|x′, ∅).

Thus, by Weak Law of Large Numbers, for n large enough, the false alarm probability for our construction is smaller than λ1.

Now, we analyze the missed detection probability. To this end, note that, for any m, m̂ s.t. m̂ 6= m and any adversarial strategy

QSn |Zn , we have,

Pr
Xn,Yn ,Zn,Sn

(φm̂(Yn) = ACCEPT|m sent)

= Pr
Xn,Yn ,Zn,Sn

(

V

(

P̂Yn (·|Bm̂),WY |X,S(·|x′, ∅
)

< µ/4
)

(a)

≤ Pr
Xn,Yn ,Zn,Sn

[

V

(

P̂Yn (·|Bm̂ \Bm),WY |X,S(·|x′, ∅
)

<
1 + β

(1 − α)(1 − β)

(

µ/4 + 2
α(1 + β)

1 − β

) ]

(b)

≤ Pr
Xn,Yn ,Zn,Sn

[

V

(

P̂Yn (·|Bm̂ \Bm),WY |X,S(·|x′, ∅
)

<
µ

2

]

. (9)

In the above, over all candidate messages m̂ from the first phase)(a) follows from Property 5) of Lemma 6. (b) follows from

the condition in (8). Finally, we note that for all i ∈ Bm̂ \Bm, Xi is drawn i.i.d. from PX . Thus, application of Lemma 5

gives that the probability in (9) is bounded from above by 2−nα(1−α)(1+β)γ for some γ > 0. This proves that the missed detection

probability is smaller than λ2 for n large enough. �

For any PX ∈ P(X ) and x′ ∈X , let

κ(PX , x
′) ,

min
QS|Z

V

















∑

x,z,s

PX (x)UZ |X (z|x)QS|Z (s|z)WY |X,S(·|x, s),WY |X,S(·|x′, ∅)

















. (10)

Lemma 5. Let (Xn,Yn,Zn, Sn) be drawn from
∏

i PX (·)
∏

i UZ |X (·|·)QSn|Zn

∏

i WY |X,S(·|·, ·). Then, there exists γ > 0, such that for

n large enough and for all QSn |Zn ,

Pr(V(P̂Yn ,WY |X,S(·|x′, ∅)) < κ(PX , x
′)/2) < 2−nγ .

Proof:

Notation: In the following, we borrow notation from [20, Chapter 1]. We let P (n) =P (n)(Y ×Z ×S ) be the set of all types

on Y ×Z ×S . For a joint type P ∈ P (n), let TP denotes the corresponding type class, i.e., all sequences whose empirical

distribution is P. Similarly, we define the set of types and type classes for all other combinations random variables.

Suppose that (zn, sn) ∈ TQZS
for some QZS ∈P

(n)(Z ×S ). Let VY |ZS be the conditional probability of Y given (Z, S) when

X is drawn as per PX and S is drawn as per QS|Z , i.e.,

VY |ZS (y|zs) =

∑

x PX (x)UZ |X (z|x)QS|Z (s|z)WY |X,S(y|x, s)
∑

x PX (x)UZ |X (z|x)QS|Z (s|z)
.

Let QYZS = VY |ZS QZS and let QY (= Q
(zn ,sn)

Y
) be the marginal distribution induced by QYZS on Y . Note that this distribution is

completely determined by the joint type of (zn, sn), the given channel conditional probabilities, and the given input distribution.



Proof overview: The proof of this lemma proceeds by first showing in (11) that, for any (zn, sn), the joint type of (Yn, zn, sn)

is close to QYZS = VY |ZSQSZ , with high probability over the generation of Yn. Next, we show that, with a high probability over

Zn, the joint type of (Yn,Zn, Sn) is close to the single letter distribution VY |ZSPZ QS|Z , where PZ is the probability distribution

of the random variable Z when X is drawn from PX and Z is the output of the channel UZ |X . This allows us to bound the

probability that the variational distance in the lemma statement exceeds κ(PX , x
′)/2 by a similar expression in terms of the

type QY of Y (Eq. (13)). Finally, we note that QY approximately satisfies the form required in the definition (10) to conclude

that the lemma statement holds.

Proof details: Let κ = κ(PX , x
′). Let (zn, sn) ∈ TQZS

for some QZS ∈P (n)(Z ×S ) and let Yn ∼
∏

i VY |Z,S(·|zi , si). Following [20,

Lemma 2.6], we first note that, for all Q′
YZS
∈P (n)(Y ×Z ×S ) such that Q′

ZS
= QZS ,

Pr((Yn, zn, sn) ∈ TQ′
YZS

) ≤ 2−nD(P′
Y |ZS
||VY |ZS )|PZS )

.

Thus, for the given (zn, sn), and η > 0,

Pr(D(P̂Yn ,zn ,sn ||VY |ZSQZS ) > η|zn, sn)

=
∑

Q′
YZS
∈P(n)(Y ×Z ×S )

s.t. Q′
ZS
=QZS

D(Q′
YZS
||VY |ZS QZS )>η

Pr((Yn, zn, sn) ∈ TP′
YZS

)

≤
∑

Q′
YZS
∈P(n)(Y ×Z ×S )

s.t. Q′
ZS
=QZS

D(Q′
YZS
||VY |ZS QZS )>η

e
−nD(Q′

Y |ZS
||VY |ZS |QZS )

≤ (n + 1)|Y |2−nη < 2−nη/2. (11)

Now, by Pinsker’s inequality, whenever D(P̂Yn ,zn ,sn ||QYZS ) < η, we have V(P̂Yn ,zn ,sn ,QYZS )) <
√

2η. Note that

V(P̂Yn ,WY |X,S(·|x′, ∅)) ≥ V(QY ,WY |X,S(·|x′, ∅)) − V(P̂Yn ,QY )

≥ V(QY ,WY |X,S(·|x′, ∅))

− V(P̂Yn ,zn,sn ,QYZS )

≥ V(QY ,WY |X,S(·|x′, ∅)) −
√

2η. (12)

Let PZ be the distribution of each Zi under the conditions of the lemma, i.e. PZ (·) =
∑

x∈X PX (x)UZ |X (·|x). We have,

Pr

(

V(P̂Yn ,WY |X,S(·|x′, ∅)) <
κ

2

)

=
∑

zn ,sn

[

Pr

(

V(P̂Yn ,WY |X,S(·|x′, ∅)) <
κ

2

∣

∣

∣

∣

∣

zn, sn
)

×
∏

i

PZ (zi)QSn |Zn (sn|zn)

]

=
∑

QZS∈P
(n)

∑

(zn ,sn)∈TQZS

[

Pr

(

V(P̂Yn ,WY |X,S(·|x′, ∅)) <
κ

2

∣

∣

∣

∣

∣

zn, sn
)

×
∏

i

PZ (zi)QSn |Zn (sn|zn)

]

(a)

≤
∑

QZS∈P
(n)

∑

(zn ,sn)
∈TQZS

[

Pr

(

V(QY ,WY |X,S(·|x′, ∅)) −
√

2η <
κ

2

∣

∣

∣

∣

∣

zn, sn
)

×
∏

i

PZ (zi)QSn |Zn (sn|zn)

]

+ 2−nη/2



(b)

≤
∑

QZS∈P
(n)

∑

(zn ,sn)
∈TQZS

[

Pr

(

V(QY ,WY |X,S(·|x′, ∅)) −
√

2η <
κ

2

∣

∣

∣

∣

∣

zn, sn
)

× 2−nD(QZ ||PZ )−nH(QZ )QSn |Zn (sn|zn)

]

+ 2−nη/2

(c)

≤
∑

QZS∈P
(n)

D(QZ ||PZ )<ξ

∑

(zn ,sn)
∈TQZS

[

Pr

(

V(QY ,WY |X,S(·|x′, ∅)) −
√

2η <
κ

2

∣

∣

∣

∣

∣

zn, sn
)

× 2−nD(QZ ||PZ )−nH(QZ )QSn |Zn (sn|zn)

]

+ 2−nξ/2
+ 2−nη/2. (13)

In the above, (a) follows from (12). (b) follows from the method of types. To obtain (c), we bound the probability contribution

from all zn in type classes with D(QZ ||PZ ) > ξ by 2−nξ/2. Let Q̃Y be the marginal distribution on Y induced by the joint

distribution PZ QS|ZVY |ZS . Note that Q̃Y is of the form

Q̃Y (y) =
∑

z,s

PZ (z)QS|Z (s|z)VY |ZS(y|z, s)

=
∑

x,z,s

PX (x)UZ |X (z|x)QS|Z (s|z)WY |XS(y|x, s). (14)

Now, note that for all QS|Z , D(QZ ||PZ ) < ξ implies that V(QY , Q̃Y ) <
√

2ξ, since

D(QY ||Q̃Y ) ≤ D(QZ QS|ZVY |ZS ||PZ QS|ZVY |ZS ) = D(QZ ||PZ ),

and Pinsker’s inequality gives us V(QY , Q̃Y ) ≤
√

2D(QY ||Q̃Y ). As a consequence, we have, for all QY that obtained from a joint

distribution QZ QS|ZVY |ZS with D(QZ ||PZ ) < ξ, we have,

V(QY ,WY |X,S(·|x′, ∅)) ≥ V(Q̃Y ,WY |X,S(·|x′, ∅)) −
√

2ξ.

Applying this bound to (13) gives

Pr

(

V(P̂Yn ,WY |X,S(·|x′, ∅)) <
κ

2

)

≤ Pr

(

V(Q̃Y ,WY |X,S(·|x′, ∅)) <
√

2ξ +
√

2η +
κ

2

)

+ 2−nξ/2
+ 2−nη/2.

Finally, comparing (14) with (10), we note that Q̃Y satisfies V(Q̃Y ,WY |X,S(·|x′, ∅)) ≥ κ. Thus, as long as
√

2ξ +
√

2µ < µ/2, the

conclusion of the lemma follows with γ = min {ξ, η} /2.

�

The following corollary is useful in the proof of Theorem 2.

Corollary 1. Suppose that (WY |X,S ,UZ |X ) satisfy (7). Let (Xn,Yn,Zn, Sn) ∼
∏

i PX (·)
∏

i UZ |X (·|·)QSn|Zn

∏

i WY |X,S(·|·, ·). Then,

there exists γ > 0, such that for n large enough and for all QSn |Zn ,

Pr(V(P̂Yn ,WY |X,S(·|x′, ∅)) < µ/2) < 2−nγ .

Proof:

The above follows directly from Lemma 5 by replacing κ by µ. �

Lemma 6. Let n ∈ N and α, β ∈ (0, 1). Let R < min
{

β2α2/6, β2α(1 − α)/4
}

. Then, there exists a family B of subsets of [t]

satisfying:

1) α(1 − β)n ≤ |B| ≤ α(1 + β)n for all B ∈ B,

2) |B ∩B′| < α2(1 + β)n for all B,B′ ∈ B,

3) |B′ \B| > α(1 − α)(1 + β)n for all B,B′ ∈ B, and

4) |B| ≥ 2Rn.



5) For every yn ∈ Y n,

V

(

P̂yn(·|B′),WY |X,S(·|x′, ∅)
)

≥
(1 − α)(1 − β)

1 + β
V

(

P̂yn(·|B′ \B),WY |X,S(·|x′, ∅)
)

− 2
α(1 + β)

(1 − β)
.

Proof:

Choose B by picking N subsets of [t] such that each B ∈ B by independently including every element of [t] with probability

α each. Then, we have,

E [|B|] = αn,

E
[

|B ∩B
′|
]

= α2n, and

E
[

|B \B
′|
]

= α(1 − α)n

for all B,B′ ∈ B. Next, we apply Chernoff bound to conclude that

Pr(||B| − αn| > αβn) ≤ 2e−β
2αn/3,

Pr(|B ∩B
′| > α2(1 + β)n) ≤ e−β

2α2n/3, and

Pr(|B \B′| < α(1 − α)(1 − β)n) ≤ e−β
2α(1−α)n/2

for all B,B′ ∈ B. Taking a union bound over all N sets in the first inequality and N2 pairs of sets in the second and third, we

see that this random choice of B satisfies Properties 1) to 3) with probability at least 1−Ne−β
2αn/2−N2e−β

2α2n/3−N2e−β
2α(1−α)n/2.

Thus, as long as N < eRn, our procedure outputs a set B satisfying Properties 1) through 3) with high probability. Further, we

may let N = 2Rn, thus also satisfying Property 4).

Next, given B,B′ ⊆ [n] such that |B′ \B| > 0, for every yn ∈ Y n and y ∈ Y , we have

P̂yn (y|B′) =
{i ∈ B

′ : yi = y}

|B′|

=
|{i ∈B′ \B : yi = y}| + |{i ∈B ∩B′ : yi = y}|

|B′|

=
|B′ \B|

|B′|
P̂yn(y|B′ \B) +

|B ∩B′|

|B′|
P̂yn(y|B′ ∩B).

Thus, by the triangle inequality for variational distance, we have

V

(

P̂yn(·|B′),WY |X,S(·|x′, ∅)
)

≥
|B′ \B|

|B′|
V

(

P̂yn (·|B′ \B),WY |X,S(·|x′, ∅)
)

−
|B ∩B′|

|B′|
V

(

P̂yn(·|B′ ∩B),WY |X,S(·|x′, ∅)
)

≥
|B \B′|

|B′|
V

(

P̂yn (·|B′ \B),WY |X,S(·|x′, ∅)
)

− 2
|B′ ∩B|

|B′|
.

Property 5) now follows from applying properties 1) to 3) to B and B′. �
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