
1

DNA-Correcting Codes: End-to-end Correction in
DNA Storage Systems

Avital Boruchovsky, Daniella Bar-Lev Eitan Yaakobi
Department of Computer Science, Technion—Israel Institute of Technology, Haifa

3200003, Israel Email: {avital.bor ,daniellalev, yaakobi}@cs.technion.ac.il

Abstract

This paper introduces a new solution to DNA storage that integrates all three steps of retrieval, namely
clustering, reconstruction, and error correction. DNA-correcting codes are presented as a unique solution to
the problem of ensuring that the output of the storage system is unique for any valid set of input strands. To
this end, we introduce a novel distance metric to capture the unique behavior of the DNA storage system and
provide necessary and sufficient conditions for DNA-correcting codes. The paper also includes several bounds
and constructions of DNA-correcting codes.

I. INTRODUCTION

The first two experiments that showed the potential of using synthetic DNA as a means for a large-
scale information storage system were done in [6] and [9]. Since then, together with the developments
in synthesis and sequencing technologies, more research groups showed the potential of in vitro DNA
storage; see e.g. [1], [2], [4], [5], [7], [13], [22], [23].

A typical DNA storage system consists of three components: (1) synthesization of the strands
that contain the encoded data. In current technologists, each strand has millions of copies, and the
length of these strands is usually limited to 250-300 nucleotides; (2) a storage container that stores
the synthetic DNA strands; (3) a DNA sequencer that reads the strands, where the output sequences
from the sequencing machine are called reads. This novel technology has several properties that are
fundamentally different from its digital counterparts, while the most prominent one is that the erroneous
copies are stored in an unordered manner in the storage container (see e.g. [12]). The most common
solution to overcome this challenge is to use indices that are stored as part of the strand. Each strand
is prefixed with some nucleotides that indicate the strand’s location, with respect to all other strands.
These indices are usually protected using an error-correcting code (ECC) [2], [4], [11], [13], [22].
The retrieval of the input information is usually done by the following three steps. The first step is to
partition all the reads into clusters such that the reads at each cluster are all noisy copies of the same
information strand. The second step applies a reconstruction algorithm on every cluster to retrieve an
approximation of the original input strands. In the last step, an ECC is used in order to correct the
remaining errors and retrieve the user’s information.

While previous works tackled each of these steps independently (see e.g. [1], [2], [4], [13], [20],
[22]), this work aims to tackle all of them together. This is accomplished by limiting the stored
messages in the DNA storage system, such that for any two input messages, the sets of all the possible
outputs will be mutually disjoint. We call this family of codes DNA-correcting codes. Our point of

Parts of this work were presented at the IEEE International Symposium on Information Theory (ISIT), Taipei, Taiwan, 2023 [3].
A. Boruchovsky, D. Bar-Lev, E. Yaakobi are with the Henry and Marilyn Taub Faculty of Computer Science, Technion - Israel Institute of

Technology, Haifa 3200003, Israel (e-mail: avital.bor@campus.technion.ac.il ,daniellalev@cs.technion.ac.il,
yaakobi@cs.technion.ac.il).

The research was Funded by the European Union (ERC, DNAStorage, 865630). Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency.
Neither the European Union nor the granting authority can be held responsible for them.

ar
X

iv
:2

30
4.

10
39

1v
2

 [
cs

.I
T

]
 3

0
Ju

n
20

24

2

departure is the recent work [19] of clustering-correcting codes that proposed codes for successful
clustering. However, their results have been established under the assumption that the correct reads in
every cluster satisfy some dominance property. Furthermore, the codes in [19] do not aim to recover
the input data, but only to achieve a successful clustering. On the contrary, our suggested codes also
guarantee the recovery of the input data, while eliminating the dominance assumption. Similar to [19],
it is assumed that every information strand consists of an index-field and a data-field.

The rest of the paper is organized as follows. Section II presents the definitions and the problem
statement. In Section III, we consider the case where the data-field is error-free. In addition, we
present the DNA-distance metric, which is used in order to find necessary and sufficient conditions
for DNA-correcting codes. In section IV, we study codes over the index-field. Using these codes we
present constructions for DNA-correcting codes and bounds on the size of DNA-correcting codes.
Lastly, in Section V we generalize the results for the case of an erroneous data-field.

II. DEFINITIONS, PROBLEM STATEMENT, AND RELATED WORKS

A. Definitions
The following notations will be used in this paper. For a positive integer n, the set {0, 1, . . . , n− 1}

is denoted by [n] and {0, 1}n is the set of all length-n binary vectors. For two vectors x,y, of the
same length, the Hamming distance between them is the number of coordinates in which they differ
and is denoted by dH(x,y). For two sets of vectors of the same size Z, Y , let BI(Z, Y) be the space
of all bijective functions (matchings) from Z to Y . For a matching π ∈ BI(Z, Y), let wH(π) denote
the maximal Hamming distance between any two matched vectors, i.e., wH(π) = max

z∈Z
{dH(z, π(z))}.

We assume a binary alphabet in the paper as the generalization to higher alphabets will be immediate
and all logs are taken according to base 2.

Assume that a set of M unordered length-L strands are stored in a DNA-based storage system. We
will assume that M = 2βL for some 0 < β < 1, and for simplicity, it is assumed that βL is an integer.
Every stored length-L strand s is of the form s = (ind,u), where ind is the length-ℓ index-field of
the strand (which represents the relative position of this strand in relation to all other strands) and u is
the length-(L− ℓ) data-field of the strand. Different strands are required to have a different index-field,
as otherwise, it will not be possible to determine the order of the strands. The length of the index-field
of all the strands is the same and since all indices are different it holds that ℓ ≥ log(M) = βL.

For M,L, and ℓ, the space of all possible messages that can be stored in the DNA storage system is:

XM,L,ℓ =
{
{(ind1,u1), (ind2,u2), . . . , (indM ,uM)}| (1)

∀i : indi ∈ {0, 1}ℓ,ui ∈ {0, 1}L−ℓ,∀i ̸= j : indi ̸= indj
}
.

Note that |XM,L,ℓ| =
(
2ℓ

M

)
2(L−ℓ)M since there are

(
2ℓ

M

)
options to choose the different set of index-fields

and then 2(L−ℓ)M more options to choose the data-field for every index. Under this setup, a code C
will be a subset of XM,L,ℓ.

B. Problem Statement
When a set Z = {(ind1,u1), . . . , (indM ,uM)} is synthesized, each of its strands has a large number

of noisy copies, and during the sequencing process a subset of these copies is read, while the number
of copies mostly depends on the synthesis and sequencing technologies. Throughout this paper, it is
assumed that the number of copies for each strand is exactly K, and so, the sequencer’s output is a set
of MK reads, where every output read is a noisy copy of one of the input strands. It is also assumed
that the noise is of substitution type and in Section VI we explain how most of the results hold for edit
errors as well when changing the Hamming distance to the edit distance. Let τ denote the maximal

3

relative fraction from the K reads of each input strand that can be erroneous. Furthermore, let ei, ed
be the largest number of errors that can occur at the index-field, data-field of each strand, respectively.
Formally, the DNA storage channel is modeled as follows.

Definition 1. A DNA-based storage system is called a (τ, ei, ed)K-DNA storage system if it satisfies
the following properties: (1) Every input strand (ind,u) has exactly K output reads, (2) at most ⌊τK⌋
of these reads are erroneous, and (3) if (ind′,u′) is a noisy read of (ind,u) then dH(ind, ind

′) ≤ ei
and dH(u,u

′) ≤ ed.

For a set Z ∈ XM,L,ℓ, let BK
(τ,ei,ed)

(Z) be the set of all possible MK reads one can get from Z after
it passes through a (τ, ei, ed)K-DNA storage system (i.e., every element in BK

(τ,ei,ed)
(Z) is a multiset of

MK reads). Under this setup, a code C ⊆ XM,L,ℓ is called a (τ, ei, ed)K-DNA-correcting code if for
every two codewords Z,Z ′ ∈ C such that Z ̸= Z ′, it holds that BK

(τ,ei,ed)
(Z) ∩ BK

(τ,ei,ed)
(Z ′) = ∅, i.e.,

the sets of possible outputs for all codewords are mutually disjoint when the parameters are τ, ei, ed
and K. The redundancy of such a code is defined by r(C) = log2(|XM,L,ℓ|)− log2(|C|).

Let AM,L,ℓ(τ, ei, ed, K) denote the largest size of a (τ, ei, ed)K-DNA-correcting code given the
parameters M,L, ℓ, τ, ei, ed, and K. The goal of this work is to find necessary and sufficient conditions
for a code to be DNA-correcting code and study the value of AM,L,ℓ(τ, ei, ed, K), for different parameters.

C. Related Work
Previous studies on information retrieval in DNA storage systems have typically tackled the problem

by addressing the three steps (i.e., clustering, reconstruction, and error correction) individually, utilizing
a combination of ECC and algorithmic methods. In most works, the clustering step was performed
by protecting the indices with an ECC and then using the decoder of this code to correct the indices
and cluster the reads [4], [11], [13], [22]. Other works used algorithmic methods which are usually
time-consuming or not accurate enough in clustering [14], [15]. The reconstruction task is commonly
studied independently, and it is usually assumed that the clustering step was successful [10], [17], [20].
Additionally, in most previous works, an ECC is applied on the data and is used for correcting errors
on the reconstructed strands, see e.g. [2], [4], [13], [22]. Another approach appears in [19], where the
authors studied the clustering problem from a coding theory perspective, however, their work only
tackles the first step in the retrieval process of the data, i.e., the clustering step.

The key difference of this work from previous studies is that in this work we present a novel
approach for error-correcting codes in DNA storage systems which encapsulate all the information
retrieval steps together into a single code. A follow-up work to the first version of this paper [3]
appears in [21]. In [21], Wu generalized some of the results that are presented in Section III to the
case where errors can also affect the data-field. For more details see Section V.

III. ERROR FREE DATA-FIELD

We start by studying the case where the data part is free of errors, i.e., ed = 0. For a set Z =
{(ind1,u1), . . . , (indM ,uM)} ∈ XM,L,ℓ, let S(Z) denote the data-field set of Z which is defined by
S(Z) = {u1, . . . ,uM} and MS(Z) denotes the data-field multiset of Z, MS(Z) = {{u1, . . . ,uM}}.
We use the notation of MS(XM,L,ℓ) to denote the set of all possible data-field multisets of the elements
in XM,L,ℓ.

For a code C ⊆ XM,L,ℓ and a data-field multiset U ∈ MS(XM,L,ℓ), let CU ⊆ C be the set of all
codewords Z ∈ C for which MS(Z) = U . The next claim presents a necessary and sufficient condition
for DNA-correcting codes for ed = 0.

Claim 1. A code C ⊆ XM,L,ℓ is a (τ, ei, ed = 0)K-DNA-correcting code if and only if for every
data-field multiset U ∈ MS(XM,L,ℓ), it holds that CU is a (τ, ei, 0)K-DNA-correcting code.

4

Proof: If C ⊆ XM,L,ℓ is a (τ, ei, 0)K-DNA-correcting code, then every subset of it is a (τ, ei, 0)K-
DNA-correcting code as well. On the other hand, if Z1, Z2 ∈ C such that MS(Z1) ̸= MS(Z2) then
BK

(τ,ei,0)
(Z1) ∩ BK

(τ,ei,0)
(Z2) = ∅ since the data-field is free of errors, and for Z1, Z2 ∈ C such that

MS(Z1) = MS(Z2) we have that BK
(τ,ei,0)

(Z1)∩BK
(τ,ei,0)

(Z2) = ∅, since CMS(Z1) is a (τ, ei, ed)K-DNA-
correcting code.

For a data-field multiset U ∈ MS(XM,L,ℓ), let AM,L,ℓ(τ, ei, ed, K)U denote the largest size of a
(τ, ei, ed)K-DNA-correcting code in which all its codewords have a data-field multiset U . The next
corollary follows immediately from Claim 1.

Corollary 1. It holds that

AM,L,ℓ(τ, ei, 0, K) =
∑

U∈MS(XM,L,ℓ)

AM,L,ℓ(τ, ei, 0, K)U .

The last corollary implies that for ed = 0, in order to find the largest DNA-correcting code it is
sufficient to find the largest DNA-correcting code for every data-field multiset U . To this end, we
define the DNA-distance, a metric on XM,L,ℓ, which will be useful for determining what conditions a
(τ, ei, 0)K-DNA-correcting code CU must hold.

A. The DNA-Distance
For Z = {(ind1,u1), . . . , (indM ,uM)} ∈ XM,L,ℓ and u ∈ S(Z), let I(u, Z) be the set of all indices

of u in Z, that is, I(u, Z) = {indi| ui = u}. For Z1, Z2 ∈ XM,L,ℓ, their DNA-distance is defined as

D(Z1, Z2) =

∞, if MS(Z1) ̸= MS(Z2),

max
u∈S(Z1)

min
π ∈BI(I(u, Z1), I(u, Z2))

{wH(π)}, otherwise.

That is, if the data-field multisets are different, then the distance is infinity. Otherwise, for each data-field
u we look at all the possible matchings between the two sets of indices of u in Z1 and Z2, and choose
the matching with minimal Hamming weight. Then we take the maximal data-field u and the distance
is the Hamming weight of the minimal matching for this data-field. The motivation for using the
DNA-distance is Claim 1 and the observation that if the codewords Z1 and Z2 have different data-field
multisets then they cannot share the same output. However, if their data-field multisets are the same,
then we consider the Hamming distance between the index-fields of the same data-field. Given a set
Z ∈ XM,L,ℓ, we define the radius-r ball1 of Z by Br(Z) = {Y ∈ XM,L,ℓ | D(Z, Y) ≤ r}.

Example 1. Consider the following two words in X4,5,2

Z1 = {(00, 111), (01, 000), (10, 111), (11, 001)},
Z2 = {(00, 111), (01, 111), (10, 001), (11, 000)}.

Both words have the same data-field multiset and thus the DNA-distance between them is not infinity.
In Fig. 1, for every u ∈ S(Z1), we show all possible matchings between I(u, Z1) and I(u, Z2). The
data-fields 000 and 001 have only one index in both Z1 and Z2. Thus, there is only one matching in
both cases and the weight of each matching is one. On the other hand, the data-field 111 has two
indices in Z1 and Z2, and thus there are two optional matchings between the corresponding indices
in Z1 to the corresponding indices in Z2, the dashed red one and the solid green as can be seen in
Figure 1. The weight of the red matching is 2 since wH(red) = max{dH(00, 00), dH(10, 01)} = 2 and
the weight of the green matching is 1 since wH(green) = max{dH(00, 01), dH(10, 00)} = 1. Hence,
D(Z1, Z2) = 1.

1We use the terminology of a ball since D is a metric, as shown in Lemma 1.

5

Figure 1. All possible matchings between I(u, Z1) and I(u, Z2) for every date field u ∈ S(Z1).

As will be seen later, the DNA-distance D will be essential in order to determine if a code is a
DNA-correcting code. First, we show that D is a metric but not a graphic metric2.

Lemma 1. The DNA-distance D is a metric on XM,L,ℓ, but not a graphic one.

Proof: Let Z1, Z2, Z3 ∈ XM,L,ℓ. In order to show that D is indeed a metric, let us prove the three
properties of a metric:

1) D(Z1, Z2) = 0 if and only if Z1 = Z2.
If Z1 = Z2 then for every data-field u we consider the trivial matching that sends every index to
itself, hence D(Z1, Z2) = 0. For the other direction, if D(Z1, Z2) = 0 then both words have the
same data-field multiset, and in the minimal matching for every data-filed, every index is matched
to itself (otherwise the distance would be greater than 0), thus the indices for every data-field u
are the same in both sets and hence Z1 = Z2.

2) D(Z1, Z2) = D(Z2, Z1).
Since there is no difference between matching the indices in Z1 and the indices in Z2 or vice
versa, the definition of the distance is symmetric.

3) D(Z1, Z3) ≤ D(Z1, Z2) +D(Z2, Z3).
If Z1 and Z3 do not have the same data-field multiset then at least Z1 and Z3 or Z2 and Z3 have
different data-field multiset, and the right-hand side will be equal to ∞ as well. Assume that
Z1, Z2, Z3 have the same data-field multiset {{u1,u2, . . . ,uM}}. Let πi,j denote the matching
between the indices of Zi and Zj , where every index of data-field u is matched according to
the minimal Hamming weight matching in BI(I(u, Zi), I(u, Zj)). We show that for every u the
triangle inequality holds and our claim will follow. Let there be u ∈ S(Z1) and let D(Z1, Z2)u
be the distance when focusing on the data-field u. Then, it holds that

D(Z1, Z2)u +D(Z2, Z3)u = max
i∈I(u,Z1)

dH(i, π1,2(i)) + max
i∈I(u,Z1)

dH
(
π1,2(i), π2,3(π1,2(i))

)
≥ max

i∈I(u,Z1)
{dH(i, π1,2(i)) + dH

(
π1,2(i), π2,3(π1,2(i))

)
}

(a)

≥ max
i∈I(u,Z1)

{dH(i, π23(π12(i))}

(b)

≥ D(Z1, Z3)u.

where (a) holds since the Hamming distance is a metric and (b) is true because π23 ◦ π12 ∈
BI(I(u, Z1), I(u, Z3)).

2A metric D : X ×X → N is graphic if the graph G = (V,E) with V = X and edges connect between any two nodes of distance
one, satisfies the following property: for x1, x2 ∈ X it holds that D(x1, x2) = t if and only if the length of the shortest path between
x1 and x2 in G is t as well.

6

Next, we show by a counter-example that the metric is not graphic. Let there be the following two
sets in X4,L,4

Z1 = {(0000,u1), (1100,u2), (1010,u3), (1001,u4)},
Z2 = {(0000,u2), (1100,u1), (1010,u4), (1001,u3)},

where all the data-fields are different. On one hand, since for every data-field, the Hamming distance
between the corresponding indices is 2 it holds that D(Z1, Z2) = 2. On the other hand, if the metric
was graphic, the shortest path between Z1 and Z2 in the corresponding graph would be 2 as well,
which implies that there would be a word Z ∈ X4,L,4 such that Z ∈ B1(Z1) ∩ B1(Z2). But for it to
happen, Z must have the same data-field multiset as Z1 and Z2, and the indices of u1 and u2 must be
{1000, 0100}, and the indices of u3 and u4 must be {1000, 1011}. We get three indices for four data
parts, and hence B1(Z1) ∩B1(Z2) = ∅.

Even though the DNA-distance is not a graphic metric, it still satisfies several properties that hold
trivially for such ones. In particular, using the metric D it is possible to derive necessary and sufficient
conditions for a code to be a DNA-correcting code, which are shown in the next subsection.

B. Necessary and Sufficient Conditions for DNA-Correcting Codes
For a code C ⊆ XM,L,ℓ, its DNA-distance is defined by D(C) ≜ min

Z1 ̸=Z2∈C
D(Z1, Z2). Next, we draw

connections between DNA-correcting codes and their DNA-distance. These connections will depend
upon the value of τ . First, the case τ = 1 is considered. In the proof of Theorem 2, we use Hall’s
marriage theorem, which is stated next.

Theorem 1 (Hall, 1935). For a finite bipartite graph G = (L ∪R,E), there is an L-perfect matching3

if and only if for every subset Y ⊆ L it holds that |Y | ≤ |NG(Y)|, where NG(Y) is the set of all
vertices that are adjacent to at least one element of Y .

Theorem 2. A code C ⊆ XM,L,ℓ is a (1, ei, 0)K-DNA-correcting code if and only if D(C) > 2ei.

Proof: From Claim 1 it is sufficient to show that the claim holds for every CU ⊆ C. Let
U = {{u1,u2, . . . ,uM}} ∈ MS(XM,L,ℓ) and assume that CU ⊆ XM,L,ℓ is a (1, ei, 0)-DNA-correcting
code. Assume to the contrary that there are two codewords Z1, Z2 ∈ CU such that D(Z1, Z2) ≤ 2ei. It
will be shown that there exists W ∈ BK

(1,ei,0)
(Z1)∩BK

(1,ei,0)
(Z2). For every data-field ui ∈ S(Z1), there

exists πi ∈ BI ((I(ui, Z1), I(ui, Z2))) such that wH(πi) ≤ 2ei. Thus, for every index ij ∈ I(ui, Z1)
there exists rij ∈ {0, 1}ℓ with dH(ij, rij) ≤ ei and dH(πi(ij), rij) ≤ ei (since the Hamming metric
is graphic). The word W is built in the following way. For every index ij there are K copies of
the form (rij ,ui), i.e., we move all the copies of each strand in both codewords to a word in the
middle. It is easy to verify that W ∈ BK

(1,ei,0)
(Z1) ∩BK

(1,ei,0)
(Z2), which is a contradiction since C is a

(1, ei, 0)K-DNA-correcting code.
For the opposite direction, let Z1, Z2 ∈ CU be such that Z1 ̸= Z2. We need to show that BK

(1,ei,0)
(Z1)∩

BK
(1,ei,0)

(Z2) = ∅. From the assumption that D(Z1, Z2) > 2ei and the definition of D, we have that there
exists a data-field u ∈ S(Z1) such that there is no π ∈ BI ((I(u, Z1), I(u, Z2))) with wH(πi) ≤ 2ei.
Equivalently, if we construct a bipartite graph G = (L∪R,E) where L = I(u, Z1), R = I(u, Z2) and
E = {(i, j)|i ∈ L, j ∈ R, dH(i, j) ≤ 2ei} then from Hall’s marriage theorem there is a subset Y ⊆ L
such that |Y | > |NG(Y)|.

We say that a read s = (ind,u) is in the ei area of Y if its index-field is at distance at most ei from
at least one of the indices in Y . Consider a general output word w1 ∈ BK

(1,ei,0)
(Z1), the number of reads

3In a bipartite graph G = (L ∪R,E), an L perfect matching is a subset T of the edges E, such that every vertex in L is adjacent to
exactly one edge in T .

7

in w1 that are in the ei area of Y is at-least K · |Y |. On the other hand, for every w2 ∈ BK
(1,ei,0)

(Z2),
the number of reads in w2 that are in the ei area of Y is at most K · |NG(Y)| < K · |Y |. Thus, since
for every general output w1 ∈ BK

(1,ei,0)
(Z1) the number of reads in the ei area of Y is larger then

the number of reads in the ei area of Y for every general output w2 ∈ BK
(1,ei,0)

(Z2), we have that
BK

(1,ei,0)
(Z1) ∩BK

(1,ei,0)
(Z2) = ∅.

Next, we study the case of 1
2
+ K mod 2

2K
≤ τ < 1 (equivalent to τ < 1 such that K

2
≤ ⌊τK⌋) and

present a similar necessary condition for this case.

Lemma 2. For 1
2
+ K mod 2

2K
≤ τ < 1 and U ∈ MS(XM,L,ℓ), if CU is a (τ, ei, 0)K-DNA-correcting

code then D(CU) > ei.

Proof: Similar to the proof of the necessary condition in Theorem 2, let U = {{u1,u2, . . . ,uM}} ∈
MS(XM,L,ℓ) and assume that CU ⊆ XM,L,ℓ is a (τ, ei, 0)K-DNA-correcting code. Assume to the
contrary that there are two codewords Z1, Z2 ∈ CU such that D(Z1, Z2) ≤ ei. It will be shown
that there exists W ∈ BK

(τ,ei,0)
(Z1) ∩ BK

(τ,ei,0)
(Z2). For every data-field ui ∈ S(Z1), there exists πi ∈

BI ((I(ui, Z1), I(ui, Z2))) such that wH(πi) ≤ ei. Thus, for every index ij ∈ I(ui, Z1) there exists a
matched index πi(ij) ∈ I(ui, Z2) with dH(ij, πi(ij)) ≤ ei. The word W is built in the following way.
For every index ij there are ⌊K

2
⌋ copies of the from (ij,ui) and ⌈K

2
⌉ copies of the from (πi(ij),ui), i.e.,

we move ⌈K
2
⌉ copies of each strand in Z1 to its matched strand index in Z2. Since K

2
≤ ⌊τK⌋ it holds

that ⌈K
2
⌉ ≤ ⌊τK⌋ and hence W ∈ BK

(τ,ei,0)
(Z1). In addition W can be obtained by taking every strand

in Z2 of the form (πi(ij),ui) and move ⌊K
2
⌋ copies to (ij,ui). Hence W ∈ BK

(τ,ei,0)
(Z1)∩BK

(τ,ei,0)
(Z2),

which is a contradiction since C is a (τ, ei, 0)K-DNA-correcting code
Unfortunately, the opposite direction of Lemma 2 does not generally hold, as seen in the following

example.

Example 2. Consider the case of K = 2, ei = 1, and τ = 1
2
. Take Z1 = {(1100,u1), (1000,u1),

(0001,u1)} and Z2 = {(1100,u1), (0001,u1), (0101,u1)}, it is easy to verify that D(Z1, Z2) > 1.
Nonetheless the following set

W = {(1000,u1), (1001,u1), (1100,u1), (1101,u1), (0001,u1), (0101,u1)},

holds that W ∈ B2
(1
2
,1,0)

(Z1) ∩B2
(1
2
,1,0)

(Z2).

However, the opposite direction of Lemma 2 holds if one assures that all data-fields in the stored
sets differ. Let XM,L,ℓ denote all such sets, i.e.,

XM,L,ℓ = {Z ∈ XM,L,ℓ| |S(Z)| = M}.

Note that the size of XM,L,ℓ is
(
2ℓ

M

)(
2L−ℓ

M

)
M !, and that XM,L,ℓ ̸= ∅ if and only if L − ℓ ≥ log2(M).

Although restricting to only sets in XM,L,ℓ might reduce the number of information bits that is possible
to store in the DNA storage system, it is verified in the next lemma, using the results from [19], that
for practical values of β, the cost of this constraint is at most a single redundancy bit.

Lemma 3. For β < 1
2

(
1− ℓ

L

)
it holds that r(XM,L,ℓ) < 1. Furthermore, for L that satisfies the

following equation 2

L ≥ log(M)
(
3 + 2 log log(M)

)
+ 8, (2)

there exists an efficient construction of XM,L,log(M) that uses a single redundancy bit.

8

Proof: Denote L′ = L− ℓ, we have that

r(XM,L,ℓ) = log(|XM,L,ℓ|)− log
(
|XM,L,ℓ|

)
= log

((
2ℓ

M

)
2(L−ℓ)M

)
− log

((
2ℓ

M

)(
2L−ℓ

M

)
M !

)
= log(2(L−ℓ)M)− log

((
2L−ℓ

M

)
M !

)
= log(2L

′M)− log(
2L

′
!

(2L′ −M)!
)

= log

(
2L

′ · 2L′ · · · 2L′

2L′(2L′ − 1) · · · (2L′ −M + 1)

)
= log

(
M−1∏
i=0

2L
′

2L′ − i

)

= − log

(
M−1∏
i=0

(1− i

2L′

)
.

Using the inequality (1− a)(1− b) > 1− (a+ b) for a, b > 0, we get that
M−1∏
i=0

(1− i

2L′) > 1−
M−1∑
i=0

i

2L′ = 1− M(M − 1)

2L′+1
> 1− M2

2L′+1
.

Thus, since − log is a monotonic decreasing function, it is derived that r(XM,L,ℓ) < − log(1− M2

2L′+1).

Lastly, since β < 1
2

(
1− ℓ

L

)
we have that M2

2L′+1 = 22βL

2L−ℓ+1 = 2L(2β−1)+ℓ−1 < 1
2
. Thus, we conclude

that r(XM,L,ℓ) < − log(1− M2

2L′+1) < − log(1− 1
2
) = 1.

Regarding the construction, in [19], the authors present such a construction([19], Theorem 19) in
the case that

L− 2 log(M) ≥ t+ log(M) + 3.

Where t ≤ 5 + 2 log(M) · log(log(M))([19], Lemma 24). Hence, if

L ≥ log(M)
(
3 + 2 log log(M)

)
+ 8,

then we have an efficient construction of XM,L,log(M).
The notation MS(XM,L,ℓ) is used to denote the set of all possible data-field multisets of elements

in XM,L,ℓ, which are in essence sets. The next lemma presents a sufficient condition for such sets.

Lemma 4. For 1
2
+ K mod 2

2K
≤ τ < 1 and U ∈ MS(XM,L,ℓ), if D(CU) > ei then CU is a (τ, ei, 0)K-

DNA-correcting code.

Proof: The proof is similar to the proof of the sufficient condition in Theorem 2. Let Z1, Z2 ∈ CU
be such that Z1 ̸= Z2. We need to show that BK

(τ,ei,0)
(Z1) ∩ BK

(τ,ei,0)
(Z2) = ∅. From the assumption

that D(Z1, Z2) > ei and the definition of D, we have that there exists a data-field u ∈ S(Z1) such
that dH(I(u, Z1), I(u, Z2)) > ei. Since τ < 1 in every general output w1 ∈ BK

(τ,ei,0)
(Z1) there is

at least one read of the form (I(u, Z1),u), on the other hand since dH(I(u, Z1), I(u, Z2)) > ei
in every general output w2 ∈ BK

(τ,ei,0)
(Z2) there are zero reads of the form (I(u, Z1),u). Hence,

BK
(τ,ei,0)

(Z1) ∩BK
(τ,ei,0)

(Z2) = ∅.
The next corollary summarizes this discussion.

Corollary 2. For 1
2
+ K mod 2

2K
≤ τ < 1 and U ∈ MS(XM,L,ℓ), CU is a (τ, ei, 0)K-DNA-correcting code

if and only if D(CU) > ei.

We continue to study the case of τ < 1
2
+ K mod 2

2K
in Lemma 5 (recall that this condition implies

that ⌊τK⌋ < K
2

).

Lemma 5. For τ < 1
2
+ K mod 2

2K
, it holds that for every ei, XM,L,ℓ is a (τ, ei, 0)K-DNA-correcting code.

9

Proof: In this case, the output strands enjoy the property which is referred to at [19] as the
dominance property, i.e., if the strands are clustered by their index, and every such cluster is partitioned
into subsets based on the original index part, the largest subset will be the correct subset. This is
indeed the situation, as the data part of every strand is different and free of errors, thus, the correct
subset would be of size at least ⌊K

2
⌋+ 1 while all others subsets would be of size at most ⌊K

2
⌋. Hence

the naive algorithm which clusters the strands by their index and matches every index with the data
that fits with the majority of this cluster, retrieves the original input successfully.

C. Codes for a Fixed Data-Field Set
So far in the paper we focused on properties and conditions of DNA-correcting codes that guarantee

successful decoding of the data. In particular, Corollary 1 showed that it is enough to construct codes
for every data-field multiset U ∈ MS(XM,L,ℓ) independently, while the conditions concerning the
DNA-distance were established in Theorem 2, and Lemmas 2, 4 and 5. These conditions depend upon
the value of τ and whether U is a set or a multiset. In Lemma 3, it was shown that for all practical
values of β, restricting to using only sets in XM,L,ℓ imposes only a single bit of redundancy and
therefore, the next section provides DNA-correcting codes for XM,L,ℓ when ed = 0.

Note that for U,U ′ ∈ MS(XM,L,ℓ) it holds that AM,L,ℓ(τ, ei, 0, K)U = AM,L,ℓ(τ, ei, 0, K)U ′ and thus
for the rest of the paper we fix U = {u1,u2, . . . ,uM} ∈ MS(XM,L,ℓ) and our goal is to find DNA-
correcting codes for U with a given DNA-distance. Note that for Z = {(ind1,u1), . . . , (indM ,uM)}, Z ′ =
{(ind′1,u1), . . . , (ind

′
M ,uM)}, it holds that

D(Z1, Z2) = max
1≤i≤M

dH(indi, ind
′
i).

Thus, we focus on studying the next family of codes for the index-fields.

Definition 2. Let I(ℓ,M) = {(ind1, . . . , indM)|∀i : indi ∈ {0, 1}ℓ,∀i ̸= j : indi ̸= indj}. For every
two codewords c = (c1, . . . , cM), c′ = (c′1, . . . , c

′
M) ∈ I(ℓ,M), their index-distance is defined by

DI(c, c
′) ≜ max

1≤i≤M
dH(ci, c

′
i) and for a code C ⊆ I(ℓ,M), its index-distance is defined by DI(C) ≜

min
c̸=c′∈C

DI(c, c
′). A code C ⊆ I(ℓ,M) will be called an (ℓ,M, d) index-correcting code if DI(C) ≥ d.

We denote by F (ℓ,M, d) the size of a maximal (ℓ,M, d) index-correcting code.

Example 3. The rows of the following matrix form a (2, 4, 2) index-correcting code, while each row
corresponds to a codeword,

P =

00 01 11 10
00 11 10 01
00 10 01 11
11 01 00 10
11 00 10 01
11 10 01 00

 . (3)

One can verify, that for every two different rows i, i′ in P , there exists a column j such that
dH(P (i, j), P (i′, j)) = 2.

The motivation for studying this family of codes comes from the following observation which results
from Theorem 2, Corollary 2, and Lemma 5.

Observation 1. For U ∈ MS(XM,L,ℓ), it holds that

AM,L,ℓ(τ, ei, 0,K)U =

F (ℓ,M, 2ei + 1), τ = 1

F (ℓ,M, ei + 1), K
2 ≤ ⌊τK⌋ < K(

2ℓ

M

)
M !, ⌊τK⌋ < K

2 .

10

Note that the study of index-correcting codes and in particular the value of F (ℓ,M, d) is interesting
on its own and can be useful for other problems, independently of the problem of designing codes for
DNA storage. The next section is dedicated to a careful investigation of these codes.

IV. INDEX-CORRECTING CODES

In this section, we study index-correcting codes. We start with the special case of ℓ = log(M).

A. ℓ = log(M)

In this case, every possible codeword in I(log(M),M) is a permutation over {0, 1}log(M), and for
f, g ∈ I(log(M),M), their index-distance is equivalent to the ℓ∞ distance over the Hamming distance
of the indices, i.e.,

DI(f, g) = max
i∈{0,1}log(M)

dH(f(i), g(i)).

For f ∈ I(log(M),M), let Br(f) be the ball of radius r centered at f in I(log(M),M), i.e.,

Br(f) = {g ∈ I(log(M),M)|DI(f, g) ≤ r}.

In this case, it holds that DI is right invariant, i.e., for f, g, p ∈ I(log(M),M), we have that DI(f, g) =
DI(f ◦ p, g ◦ p), and thus the size of the balls in I(log(M),M) is the same. Let Br,M denote the size
of the balls of radius r in I(log(M),M). An important matrix with respect to Br,M is the matrix
Ar,M = (ai,j) of size M ×M which is defined by

ai,j =

{
1 dH(i, j) ≤ r

0 otherwise
, i, j ∈ {0, 1}log(M).

Let per(A) denote the permanent of a square matrix A. For completeness, the definition of a permanent
of a square matrix is presented next.

Definition 3. Let Sn denote all permutations over [n]. For an n× n matrix A = (ai,j), the permanent
of A is defined as per(A) ≜

∑
f∈Sn

∏
i∈[n]

ai,f(i).

The next lemma follows in a similar way to the one presented in [18].

Lemma 6. It holds that Br,M = per(Ar,M).

Proof: Let IDM be the identity permutation over {0, 1}log(M). Then Br,M = Br(IDM) and from
the definition of the permanent we have that:

per(Ar,M) =
∑
f∈SM

∏
i∈{0,1}log(M)

ai,f(i)

(a)
= |{f ∈ SM)|∀i ∈ {0, 1}log(M) : dH(i, f(i)) ≤ r}|
= |{f ∈ SM)|DI(IDM , f) ≤ r}| = |Br(IDM)| = Br,M ,

where (a) holds because of the shape of the matrix Ar,M .
Next, two bounds on F (log(M),M, d) are presented. Lemma 7 uses the sphere packing bound with

a known bound on the permanent of a matrix, while Lemma 8 uses a method that is similar to the
proof of the Singleton bound.

Lemma 7. It holds that

F (log(M),M, d) ≤ MM

(
∑⌊ d−1

2
⌋

i=0

(
log(M)

i

)
)M

.

11

Proof: By the Van der Waerden conjecture, which was proved in [8], it is known that for a binary
M ×M matrix for which the sum of the elements in any row or column is k, the permanent of the
matrix is lower bounded by M !kM

MM . Note that the number of ones in every row and column of A⌊ d−1
2

⌋,M

is exactly
∑⌊ d−1

2
⌋

i=0

(
log(M)

i

)
, thus, since the balls of radius ⌊d−1

2
⌋ are mutually disjoint we have that

F (log(M),M, d)
M !(

∑⌊ d−1
2

⌋
i=0

(
log(M)

i

)
)M

MM
≤ F (log(M),M, d) ·B⌊ d−1

2
⌋,M ≤ M !.

Thus, achieving the statement of the lemma.

Lemma 8. F (log(M),M, d) ≤ M !

(2d−1!)2
log(M)−d+1 .

Proof: Let C be a (log(M),M, d) index-correcting code and let P be the matrix whose rows are
the codewords of C. Given a row of indices in P , ind1, ind2, . . . , indM , we divide every such indj to
two parts, aj ∈ {0, 1}ℓ−d+1 which is the first log(M)− d + 1 bits of indj and bj ∈ {0, 1}d−1 which
is the last d− 1 bits of indj . We concatenate all aj to form a vector a ∈

(
{0, 1}log(M)−d+1

)M . Note
that every such vector a can only appear once in P (as if there are two different rows i, i′ that form
this vector, then the Hamming distance between indices of the same column is at most d− 1, which
implies that the index-distance between those two rows is at most d− 1 < d). Hence, the number of
possible rows in P , is bounded from above by the number of possible vectors a ∈

(
{0, 1}log(M)−d+1

)M .
Since all the {0, 1}log(M) indices must appear in every row, every vector in {0, 1}log(M)−d+1 must
appear 2d−1 times in a. Thus, from the multinomial theorem the number of possible vectors a is

M !

(2d−1!)2
log(M)−d+1 . Since we started with a general (log(M),M, d) index-correcting code, we conclude

that F (log(M),M, d) ≤ M !

(2d−1!)2
log(M)−d+1 .

We obtain the following corollary by assigning d = 2 to Lemma 8.

Corollary 3. F (log(M),M, 2) ≤ M !

2
M
2
.

Note that the code in Example 3 achieves the bound in Corollary 3 for M = 4, and hence the bound
of Lemma 8 can be tight in some cases.

Next, we present a construction by building a matrix whose rows form a (log(M),M, d) index-
correcting code. Such a matrix whose rows form an (ℓ,M, d) index-correcting code will be called an
(ℓ,M, d)-matrix. The construction uses codes over {0, 1}log(M) with Hamming distance d and afterward
an example for small values of d is presented.

Construction 1. Let there be an optimal, with respect to the Hamming distance, binary linear code C
of length log(M) with minimum distance d. Denote by A the size of C and note that the M

A
cosets of

C form a partition of {0, 1}log(M). Denote the cosets of C by C1 = C, C2, . . . , CM
A

. We start by building

a matrix that consists of (A!)
M
A rows, where the first A entries of every row are permutations over the

first coset, the second A entries are permutations over the second coset, and so on. Since the entries
of every column belong to the same coset, the distance between different rows is at least d. Next,
we take every coset Ci, for 2 ≤ i ≤ M

A
, and remove from it all words that are at distance at most d

from the zero vector 0, denote by C ′
i the achieved codes and let C ′ =

⋃M
A
i=2 C ′

i. Then, for every c′ ∈ C ′,
we can look at all the rows in the matrix where c′ and 0 are fixed to the first entry of their coset
(note that there are (A− 1)!2(A!)

M
A
−2 such rows) and add the same row where we replace the entry

of c′ with 0, adding in total (A− 1)!2|C ′|(A!)M
A
−2 more rows. In conclusion, we achieve a code with

(A!)
M
A + (A− 1)!2|C ′|(A!)M

A
−2 = (A!)

M
A

(
1 + |C ′| · 1

A2

)
codewords.

We show how to apply Construction 1 in the next example.

12

Example 4. We apply Construction 1 to the case of d = 2 and d = 3. For d = 2 we have that the
maximal linear code C is the parity code with |C| = M

2
, and that |C ′| = M

2
− log(M). Thus in this case

we get a (log(M),M, 2) index-correcting code with size of (M
2
!)2(1 +

4(M
2
−log(M))

M2).
For d = 3 and log(M) = ℓ = 2m−1 we have that the maximal linear code C is the binary Hamming

code with |C| = 22
m−1−m, and that there are 2m cosets (including the code itself). In addition, every

coset Ci ̸= C has one word of weight 1 and 2m−2
2

words of weight 2, thus |C ′
i| = 22

m−1−m− 2m−4
2

. Hence,
by applying Construction 1 we get a (2m− 1, 22

m−1, 3) index-correcting code of size (22
m−1−m!)2

m
(1+

(2m − 1)(22
m−1−m − 2m−4

2
) 1
(22m−1−m)2

). Using that m = log(ℓ + 1) = log(log(M) + 1) we have that
the size of the code is(

M

log(M) + 1
!

)
log(M)+1 ·

(
1 + log(M)

(
M

log(M) + 1
− log(M)− 3

2

)
(log(M) + 1)2

M2

)
=

(
M

log(M) + 1
!

)log(M)+1(
1 + Θ

(
log2(M)

M

))
.

Hence, we have a (2m − 1, 22
m−1, 3) index-correcting code of size (M

log(M)+1
!)log(M)+1 (1 + g(M)),

where g(M) = Θ(log
2(M)
M

).

B. ℓ > log(M)

In this case, the set of possible indices is larger than the number of strands. Next we show how to
construct an (ℓ′,M, d) index-correcting code from an (ℓ,M, d) index-correcting code for ℓ < ℓ′.

Lemma 9. For ℓ′ = ℓ+ ⌈d
2
⌉ it holds that F (ℓ′,M, d) ≥ F (ℓ,M, d) · 2M .

Proof: We show a construction of a matrix P ′ using an optimal (ℓ,M, d)-matrix P with F (ℓ,M, d)
rows, and later we prove that the matrix P ′ is a legal (ℓ′,M, d)-matrix with F (ℓ,M, d) · 2M rows. The
construction is specified next iteratively.

1) Obtain a matrix P ′
0 by adding ⌈d

2
⌉ bits of 0 at the end of every index in P .

2) For j = 1, 2, . . . ,M : For every row i of P ′
j−1, add a similar row of indices bj(i), which differs

from the i-th row only in the j-th column (i.e., the j-th index of the row). The difference is
that in bj(i), the first ⌈d

2
⌉ bits and last ⌈d

2
⌉ bits of the j-th index, are the complement of the

corresponding index in row i. We denote the matrix obtained after the j-th step by P ′
j .

We are left to show that the above construction ends with a legal (ℓ′,M, d)-matrix with F (ℓ,M, t)×2M

rows. First, since for every step j the number of rows is multiplied by two, we have at the end a
matrix P ′ = P ′

M with F (ℓ,M, t)× 2M rows.
Next, we show by induction that after every step j, P ′

j is an (ℓ′,M, d)-matrix. The base case is
simple, as P is an (ℓ,M, d)-matrix and hence P ′

0 is an (ℓ′,M, d)-matrix. For the induction step, on
step j we start with a matrix P ′

j−1 which is an (ℓ′,M, d)-matrix. First, note, that the indices in every
row in P ′

j are disjoint, as otherwise we can complement the last ⌈d
2
⌉ and the first ⌈d

2
⌉ bits of these

indices and have that there was a row in P ′
0 which had two identical indices. Now, take two general

rows i, i′ ∈ P ′
j−1, the distance between rows bj(i) and bj(i

′) is the same as the distance between rows
i and i′, and the distance between rows i and bj(i) is ⌈d

2
⌉+ ⌈d

2
⌉ ≥ d (as they differ in the first and last

⌈d
2
⌉ components in index j). Thus, we are left to check the distance condition for rows i and bj(i

′).
But the distance between rows i and bj(i

′) can only increase from the distance between rows i and
i′ (because they will differ at the last ⌈d

2
⌉ bits) and P ′

j(i) is an (ℓ′,M, d)-matrix. Hence, the distance
property holds and P ′

j is an (ℓ′,M, d)-matrix.

13

Example 5. The next matrices are obtained from the matrix in Example 3 after step j = 1 and step
j = 2.

P ′
1 =

000 010 110 100
000 110 100 010
000 100 010 110
110 010 000 100
110 000 100 010
110 100 010 000
101 010 110 100
101 110 100 010
101 100 010 110
011 010 000 100
011 000 100 010
011 100 010 000

(4)

P ′
2 =

000 010 110 100
000 110 100 010
000 100 010 110
110 010 000 100
110 000 100 010
110 100 010 000
101 010 110 100
101 110 100 010
101 100 010 110
011 010 000 100
011 000 100 010
011 100 010 000
000 111 110 100
000 011 100 010
000 001 010 110
110 111 000 100
110 101 100 010
110 001 010 000
101 111 110 100
101 011 100 010
101 001 010 110
011 111 000 100
011 101 100 010
011 001 010 000

(5)

This example leads to the following recursive construction.

Lemma 10. It holds that

F (log(M) + 1, 2M, 2) ≥ 2MF (log(M),M, 2)2.

Proof: Let P be an (log(M),M, 2) matrix with F (log(M),M, 2) rows. We use the construction
specified in Lemma 9 to obtain a (log(M) + 1,M, 2) matrix P ′ with 2M · F (log(M),M, 2) rows. In
order to convert the matrix P ′ into a (log(M) + 1, 2M, 2) matrix, M missing indices need to be added
to every row in P ′. Note that for each row i in P ′, we can add F (log(M),M, 2) similar rows that
have the same first M indices as in row i, and the last M indices obtain the distance property. This is
because the worst case is when all the indices in i finish with the same bit, and this case is equivalent
to finding a maximal (log(M),M, 2) matrix.

14

Example 6. The next six rows can be obtained by adding the F (2, 4, 2) rows of indices concatenated
with a 1 bit in the end, to the row

(
000 010 110 100

)
.

000 010 110 100 001 011 111 101
000 010 110 100 001 111 101 011
000 010 110 100 001 101 011 111
000 010 110 100 111 011 001 101
000 010 110 100 111 001 101 011
000 010 110 100 111 101 011 001

 .

Note that if we delete the last bit of every index in the last 4 columns, we obtain the matrix in
Example 3. The next six rows, show how to extend the row

(
011 100 111 101

)
into 6 rows where

all the length-3 binary vectors appear.
011 100 111 101 001 110 010 000
011 100 111 101 001 010 000 110
011 100 111 101 001 000 110 010
011 100 111 101 010 110 001 000
011 100 111 101 010 001 000 110
011 100 111 101 010 000 110 100

By applying Lemma 10 recursively and the fact that F (2, 4, 2) = 6 (from Example 3 and Lemma 8),

we obtain the following Corollary.

Corollary 4. For M ≥ 4 a power of two we have that F (log(M)+1, 2M, 2) ≥ 2M(log(M)−1) ·6(2log(M)−1).

V. ERRONEOUS DATA-FIELD

A. Sufficient and Necessary Conditions
In this subsection, we study the case of ed > 0 and present conditions for a code to be a (τ, ei, ed)K-

DNA-correcting code. For this purpose, we define a generalization to the DNA distance. For Z1, Z2 ∈
XM,L,ℓ, we say that D(Z1, Z2) > (r, t) if for every π ∈ BI(Z1, Z2), there exists a strand s = (ind,u) ∈
Z1 such that dH(ind, π(ind)) > r or dH(u, π(u)) > t. For a code C ⊆ XM,L,ℓ, if for every Z1 ̸= Z2 ∈ C
it holds that D(Z1, Z2) > (r, t), then we say that D(C) > (r, t). Note that when t = 0 this definition is
equivalent to the regular DNA-distance.

Theorem 3, Lemma 11 is a generalization of Theorem 2, Lemma 2, respectively, and can be proved
by similar arguments. We note that the proofs of Theorem 3 and Lemma 11 were also obtained in a
parallel work by Wu [21]. For completeness of this paper, we present the proofs here as well.

Theorem 3. A code C ⊂ XM,L,ℓ is a (1, ei, ed)K-DNA-correcting code if and only if D(C) > (2ei, 2ed).

Proof: For the first direction, assume that C is a (1, ei, ed)K-DNA-correcting code and assume
for contrary that there exist two different codewords of C, Z1 ̸= Z2 ∈ C, and a matching π′ ∈
BI(Z1, Z2) such that for every strand s = (indj,uj) ∈ Z1 it holds that dH(indj, π′(indj)) ≤ 2ei and
dH(uj, π

′(uj) ≤ 2ed. As in the proof of Theorem 2, for every strand in Z1 there is a matched strand
in Z2, such that we can move all the K copies of the strands to a noisy strand in the middle (since
τ = 1), this will end in a word W ∈ BK

(1,ei,ed)
(Z1) ∩BK

(1,ei,ed)
(Z2), which is a contradiction.

For the opposite direction, let Z1 ̸= Z2 ∈ C. We need to show that BK
(1,ei,ed)

(Z1) ∩BK
(1,ei,ed)

(Z2) = ∅.
Similarly to the proof of Theorem 2, if we construct a bipartite graph G = (L ∪ R,E), where
L = Z1, R = Z2, and E = {((ind,u), (ind′,u′)) |(ind,u) ∈ Z1, (ind

′,u′) ∈ Z2, dH(ind, ind
′) ≤

2ei, dH(u,u
′) ≤ 2ed}, then from Hall’s theorem there is a subset Y ⊆ L such that |Y | > |NG(Y)|.

Hence, for every general output W1 ∈ BK
(1,ei,ed)

(Z1) the number of reads in the (ei, ed) area of Y is at
least |Y | ·K, whereas in every general output W2 ∈ BK

(1,ei,ed)
(Z2), the number of reads in the (ei, ed)

area of Y is at most |NG(Y)| ·K < |Y | ·K.

15

Lemma 11. Let C ⊂ XM,L,ℓ and 1
2
+ K mod 2

2K
≤ τ < 1. If C is a (τ, ei, ed)K-DNA-correcting code then

D(C) > (ei, ed).

Proof: Assume to the contrary that there are two codewords Z1 ̸= Z2 ∈ C and π ∈ BI(Z1, Z2) such
that for every strand s = (indj,uj) ∈ Z1 it holds that dH(indj, π(indj)) ≤ ei and dH(uj, π(uj)) ≤ ed.
As in the proof of Lemma 2, we build a word W ∈ BK

(τ,ei,ed)
(Z1) ∩ BK

(τ,ei,ed)
(Z2) by moving ⌈K

2
⌉

copies of each strand in Z1 to its matched strand in Z2. Note that due to the condition on τ , W is
indeed in BK

(τ,ei,ed)
(Z1) ∩BK

(τ,ei,ed)
(Z2).

As in the case for ed = 0, the opposite direction of Lemma 11 is not necessarily true. To overcome
this, the following subspace of XM,L,ℓ was defined in [21],

X (r1,r2)

M,L,ℓ = {Z ∈ XM,L,ℓ|∀s1 = (ind1,u1), s2 = (ind2,u2) ∈ Z, such that s1 ̸= s2,

dH(ind1, ind2) > r1 or dH(u1,u2) > r2}.

Note that when ℓ = log(M), a code C ⊆ X (r1,r2)

M,L,log(M) is refereed to in [19] as an (r1, r2 + 1)-
clustering-correcting code (only to the data-field was added +1 because in [19] the set was defined
with a weak inequality). The next lemma explains why we focus on the set X (r1,r2)

M,L,ℓ .

Lemma 12. ([21], Lemma 4) Assume that τ < 1 such that K
2
≤ ⌊τK⌋, and let Z1, Z2 ∈ X (2ei,2ed)

M,L,ℓ ,
then

BK
(τ,ei,ed)

(Z1) ∩BK
(1,ei,ed)

(Z2) ̸= ∅

if and only if D(Z1, Z2) ≤ (ei, ed).

For K
2
≤ ⌊τK⌋ < MK

2M−1
, Wu has prove that restricting to X (ei,ed)

M,L,ℓ is enough.

Lemma 13. ([21], Lemma 5) Assume that K
2
≤ ⌊τK⌋ < MK

2M−1
, and let Z1, Z2 ∈ X (ei,ed)

M,L,ℓ , then

BK
(τ,ei,ed)

(Z1) ∩BK
(1,ei,ed)

(Z2) ̸= ∅

if and only if D(Z1, Z2) ≤ (ei, ed).

Next, we study the case of τ < 1
2
+ K mod 2

2K
. The following lemma is the generalization of Lemma 5

for ed > 0 and is proved in a similar way.

Lemma 14. For τ < 1
2
+ K mod 2

2K
, it holds that for every ei and ed, X (2ei,2ed)

M,L,ℓ is a (τ, ei, ed)K-DNA-
correcting code.

Proof: For every Z ∈ X (2ei,2ed)

M,L,ℓ , every input strand in Z will have at least ⌊K
2
⌋+ 1 correct copies

(because τ < 1
2
+ K mod 2

2K
). However, all the other subsets (where a subset refers to all the copies

that agree on the index and the data parts) would be of size at most ⌊K
2
⌋, as different strands of

Z ∈ X (2ei,2ed)

M,L,ℓ cannot output the same erroneous copy. Hence, the naive algorithm that selects all the
M subsets of size at least ⌊K

2
⌋+ 1 will retrieve the original input successfully.

B. Constructions for ed > 0

In this subsection, we construct (τ, ei, ed)K-DNA-correcting codes. We start with the case of τ = 1.
Recall that by Theorem 3, we need to construct a code C ⊆ XM,L,ℓ such that D(C) > (2ei, 2ed). In
order to do so, we use a code on the data-field and then apply the constructions for the case of ed = 0.
Let A(n, d) denote the largest size of a length-n binary code with Hamming distance d.

16

Lemma 15. It holds that

AM,L,ℓ(1, ei, ed, K) ≥
(
A(L− ℓ, 2ed + 1)

M

)
F (ℓ,M, 2ei + 1).

Proof: Let C ′ ⊆ {0, 1}L−ℓ be a largest size code with Hamming distance 2ed+1 of size A(L−ℓ, 2ed+
1). For every set of M different codewords from C ′ (the number of such sets is

(
A(L−log(M),2ed+1)

M

)
), we

can apply any of the constructions for the case of ed = 0. This is a valid construction since for every
Z1 ̸= Z2 ∈ C, if Z1 and Z2 have a different data-field set, then for every permutation that matches
between the strands of Z1 and the strands of Z2, there will be a data-field that is matched to a different
data-field, and since we took all the data-fields from C ′, we will have that D(Z1, Z2) > (0, 2ed+1). On
the other end, if Z1 and Z2 have the same data-field set, then we will have D(Z1, Z2) > (2ei+1, 0).

Next we study the case of τ < 1 such that MK
2M−1

≤ ⌊τK⌋.

Lemma 16. For τ such that MK
2M−1

≤ ⌊τK⌋ < K, we have that

AM,L,ℓ(τ, ei, ed, K) ≥
(
A(L− ℓ, 2ed + 1)

M

)
F (ℓ,M, ei + 1).

Proof: Let C ′ ⊆ {0, 1}L−ℓ be a largest size code with Hamming distance 2ed + 1 of size A(L−
ℓ, 2ed + 1). For every set of M different codewords from C ′, we can apply any of the constructions
for the case of ed = 0, let C denote the code obtained. First note that since all the data-fields of any
codeword in C are different and taken from a code with Hamming distance 2ed + 1, we have that that
C ⊆ X (2ei,2ed)

M,L,ℓ . Thus, by Lemma 12 we need to show that D(C) > (ei, ed). This is indeed the case, and
it follows in the same way as in the proof of Lemma 15.

For K
2
≤ ⌊τK⌋ < MK

2M−1
, by Lemma 13, we need the code C which is obtained in Lemma 16 to be

in X (ei,ed)

M,L,ℓ and not necessarily in X (2ei,2ed)

M,L,ℓ , thus we can have a better bound for this case.

Lemma 17. For K
2
≤ ⌊τK⌋ < MK

2M−1
, we have that

AM,L,ℓ(τ, ei, ed, K) ≥
(
A(L− ℓ, ed + 1)

M

)
F (ℓ,M, ei + 1).

Next we study the case of τ < 1
2
+ K mod 2

2K
, and ℓ = log(M). In [19], the authors proved that if L

satisfies the following equation

L− 2 log(M) ≥ 5(2ed + 1) + 2ei · log(log(M)) + log
(
B2ei(log(M)) ·B2ed(L− log(M))

)
+ 3, (6)

where Br(n) =
∑r

i=0

(
n
i

)
, then there exists a construction that requires a single redundancy bit and

returns a code C ⊆ X (2ei,2ed)

M,L,log(M). Using this and Lemma 14 we obtain Corollary 5.

Corollary 5. For τ < 1
2
+ K mod 2

2K
and L that satisfies equation (6) we have that

AM,L,log(M)(τ, ei, ed, K) ≥ 2M(L−log(M))−1.

As in the case of ed = 0, from a code C ⊆ XM,L,log(M) which is a (τ, ei, ed)K-DNA-correcting code,
we can construct (τ, ei, ed)K-DNA-correcting codes for larger values of ℓ by the same way as appears
in Lemma 9.

17

VI. CONCLUSION AND FUTURE WORK

We introduced a new solution to DNA storage that integrates all three steps of retrieval, namely
clustering, reconstruction, and error correction. DNA-correcting codes were presented as a unique
solution to the problem of ensuring that the output of the storage system is unique for any valid set
of input strands. To this end, we introduced a novel distance metric to capture the unique behavior
of the DNA storage system and provide necessary and sufficient conditions for codes to be DNA-
correcting codes. In our analyses we considered a variety of parameters and provided several bounds
and constructions of DNA-correcting codes for the different parameter regimes. Nevertheless, there are
still several intriguing open problems that should be considered in future research. Below we present
the most important ones.

1) For values of ℓ which are of the form ℓ = log(M) + k⌈d
2
⌉ for an integer k, we can construct

an (ℓ,M, d) index-correcting codes by taking a (log(M),M, d) index-correcting code and apply
Lemma 9 recursively. On the contrary, the problem of constructing (ℓ,M, d) index-correcting
codes when ℓ does not carry this form, is still open. In particular, it will be interesting to study
how to construct (ℓ,M, d) index-correcting codes for these values smartly and efficiently.

2) The work presents several upper bounds on the size of a maximal (ℓ,M, d) index-correcting
code(F (ℓ,M, d)). An important question is for which parameters these bounds are tight. We note
that example 3 shows that the upper bound of Lemma 8 is tight for M = 4, d = 2. Moreover, the
characterization of all the cases in which Lemma 8 is obtained with equality is interesting by its
own.

3) For ed > 0, we presented several constructions that utilize an error-correcting code on the data-
field. A natural question to ask is whether there are better constructions that obtain the sufficient
conditions for a code to be a (τ, ei, ed)K-DNA-correcting code?

4) Throughout this work we assumed that the number of copies for each strand is exactly the same.
A more realistic model is where the number of copies can be different for different strands, for
example, the case where the number of copies for each strand is distributed by the some knowen
distribution. In particular, the normal and the skew-normal distributions are of high interest based
on previously published works [12], [16]. An important direction is to adjust the necessary and
sufficient conditions for these cases in order to guarantee a successful retrieval of the information
with probability 1− ϵ.

VII. ACKNOWLEDGMENTS

We would like to thank Prof. Tuvi Etzion for helping us analyze the DNA-Distance and Prof. Moshe
Schwartz for helping us study the ℓ∞ distance over the Hamming distance of the indices.

18

REFERENCES

[1] L. Anavy, I. Vaknin, O.Atar, R. Amit and Z. Yakhini, "Data storage in DNA with fewer synthesis cycles using composite DNA
letters". Nat. Biotechnol. 37, 2019.

[2] D. Bar-Lev, I. Orr, O. Sabary, T. Etzion, and E. Yaakobi, “Deep DNA storage: Scalable and robust DNA storage via coding theory
and deep learning,” arXiv preprint arXiv:2109.00031, 2021.

[3] A. Boruchovsky, D. Bar-Lev, and E. Yaakobi, "DNA-correcting codes: End-to-end correction in DNA storage systems", IEEE
International Symposium on Information Theory (ISIT), 2023.

[4] M. Blawat, K. Gaedke, I. Hutter, X.-M. Chen, B. Turczyk, S. Inverso, B.W. Pruitt, and G.M. Church, “Forward error correction for
DNA data storage,” Int. Conf. on Computational Science, vol. 80, pp. 1011–1022, 2016.

[5] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K. Strauss, “A DNA-based archival storage system”, Proc. of the
Twenty-First Int. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 637–649,
Atlanta, GA, Apr. 2016.

[6] G.M. Church, Y. Gao, and S. Kosuri, "Next-generation digital information storage in DNA,” Science, vol. 337, no. 6102, pp.
1628–1628, Sep. 2012.

[7] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and efficient storage architecture”, Science, vol. 355, no. 6328, pp.
950–954, 2017.

[8] D.I. Falikman, "Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix," Mathematical
notes of the Academy of Sciences of the USSR 29, pp.475-479, 1981.

[9] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E.M. LeProust, B. Sipos, and E. Birney, "Towards practical, high-capacity,
low-maintenance information storage in synthesized DNA,” Nature, vol. 494, no. 7435, pp. 77–80, 2013.

[10] P. Gopalan, S. Yekhanin, S. Dumas Ang, N. Jojic, M. Racz, K. Strauss, and L. Ceze, “Trace reconstruction from noisy polynucleotide
sequencer reads,” 2018, US Patent application : US 2018 / 0211001 A1.

[11] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, "Robust chemical preservation of digital information on DNA in
silica with error-correcting codes". Angew. Chemie - Int, Ed. 54, 2015.

[12] R. Heckel, G. Mikutis, and R.N. Grass, “A characterization of the DNA data storage channel”, Nature, 2018.
[13] L. Organick et al. “Scaling up DNA data storage and random access retrieval,” bioRxiv, Mar. 2017
[14] G. Qu, Z. Yan, and H. Wu, "Clover: tree structure-based efficient DNA clustering for DNA-based data storage", Briefings in

Bioinformatics, vol 23, issue 5, 2022.
[15] C. Rashtchian, K. Makarychev, M. Racz, S. Ang, D. Jevdjic, S. Yekhanin, L. Ceze, and K. Strauss, "Clustering billions of reads

for DNA data storage", Advances in Neural Information Processing Systems, vol. 30, 2017.
[16] O. Sabary, Y. Orlev, R. Shafir, L. Anavy, E. Yaakobi, and Z. Yakhini, "SOLQC: Synthetic oligo library quality control tool",

Bioinformatics, vol. 37, no. 5, pp.720-722, 2021.
[17] O. Sabary, A. Yucovich, G. Shapira, and E. Yaakobi, "Reconstruction Algorithms for DNA-Storage Systems", bioRxiv 2020.
[18] M. Schwartz and P.O. Vontobel, "Improved lower bounds on the size of balls over permutations with the infinity metric", IEEE

Transactions on Information Theory, vol. 63, no. 10, pp. 6227–6239, Oct. 2017.
[19] T. Shinkar, E. Yaakobi, A. Lenz, and A. Wachter-Zeh, "Clustering correcting codes", IEEE Transactions on Information Theory,

vol. 68, no. 3, pp. 1560–1580 March 2022.
[20] S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin, "Trellis BMA: Coded trace reconstruction on IDS channels for

DNA storage", IEEE International Symposium on Information Theory (ISIT), 2021.
[21] H. Wu, "DNA-correcting codes in DNA storage systems," arXiv preprint arXiv:2311.09910, 2023.
[22] H. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free DNA-based data storage,” Sci. Reports, vol. 7, no.1, pp. 5011,

2017.
[23] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, "A rewritable, random-access DNA-based storage system,” Nature

Scientific Reports, vol. 5, no. 14138, Aug. 2015.

	Introduction
	Definitions, Problem Statement, and Related Works
	Definitions
	Problem Statement
	Related Work

	Error Free Data-Field
	The DNA-Distance
	Necessary and Sufficient Conditions for DNA-Correcting Codes
	Codes for a Fixed Data-Field Set

	Index-Correcting Codes
	=(M)
	>(M)

	Erroneous Data-Field
	Sufficient and Necessary Conditions
	Constructions for ed>0

	Conclusion and Future Work
	Acknowledgments
	References

