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Abstract—The problem of distributed matrix-vector product is
considered, where the server distributes the task of the computa-
tion among n worker nodes, out of which L are compromised (but
non-colluding) and may return incorrect results. Specifically, it is
assumed that the compromised workers are unreliable, that is, at
any given time, each compromised worker may return an incor-
rect and correct result with probabilities α and 1−α, respectively.
Thus, the tests are noisy. This work proposes a new probabilistic
group testing approach to identify the unreliable/compromised

workers with O

(

L log(n)
α

)

tests. Moreover, using the proposed

group testing method, sparse parity-check codes are constructed
and used in the considered distributed computing framework for
encoding, decoding and identifying the unreliable workers. This
methodology has two distinct features: (i) the cost of identifying
the set of L unreliable workers at the server can be shown
to be considerably lower than existing distributed computing
methods, and (ii) the encoding and decoding functions are easily
implementable and computationally efficient.

I. INTRODUCTION

In distributed computing, an expensive task can be encoded

into sub-tasks of lower complexity, which can then be dis-

tributed to several worker nodes, in order to improve the

overall computational speed [1]–[7]. However, a subset of

the workers may be compromised and may return incorrect

results of the sub-tasks assigned to them. In other words, these

compromised workers are unreliable, i.e., they sometimes

return incorrect results (i.e., they behave maliciously) and at

other times behave like reliable workers and return correct

results, making them difficult to identify. In such scenarios, it

is desirable that the encoding into sub-tasks is performed in a

way that two properties hold: (i) Identification: there is an effi-

cient mechanism to identify the set of unreliable/compromised

worker nodes; and (ii) Decodability: from the results of the

sub-tasks assigned to the reliable worker nodes, the result of

the original task can be recovered efficiently.

In this work, we propose a probabilistic group testing based

distributed computing scheme for the task of matrix-vector

computation, which ensures both efficient identification and

decodability. Group testing was first introduced in [8] and

extensively studied in areas ranging from medicine [9] to com-

puter science [1], to efficiently identify a set of defective items

in a large set of n items, by testing groups of items at a time

rather than testing the items individually. Two types of group

testing methodologies are prevalent: (i) probabilistic group

testing; and (ii) combinatorial group testing. Combinatorial
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group testing is deterministic and identifies defective items

with a zero probability of error [10]. In probabilistic group

testing, this probability of error goes to 0 as n → ∞, whereas

for finite n, it can be made arbitrarily small by increasing the

number of tests [11]–[14]. Unlike traditional group testing,

in this work, the goal is to identify the set of L (out of

n) unreliable workers, where the unreliable workers do not

always behave maliciously, but they sometimes hide their true

identity. A test can therefore be negative even if there were

one or more unreliable workers in the tested group. Group

testing with unreliable items has been widely studied [15]–

[19]. However, the probabilistic model for the behavior of

unreliable workers that we adopt is different from the models

considered in the above works. This difference is primarily due

to the fact that the behavior of an unreliable worker (i.e., either

acting maliciously or acting reliably) remains the same for all

the tests related to a specific computing task. Thus, naively

adopting the probabilistic group testing methods of [15]–[18]

for our model, produce sub-optimal results.

The contribution of this work is threefold: (i) we propose a

probabilistic group testing scheme to efficiently identify the L
unreliable workers (Section II); (ii) using the proposed group

testing scheme, we construct sparse parity-check codes which

are used for encoding and enable an efficient identification of

the unreliable workers (Section III); and (iii) we construct a

low-complexity decoding function for retrieving the original

matrix-vector product from the results of the reliable workers

(Section III). The proposed scheme can be shown to outper-

form the MDS-code based schemes presented in [1], [2] for

unreliable worker’s identification.

Notation. For an integer n ≥ 1, we define [n] , {1, 2, . . . , n}.

For a matrix M, we use Mi,: and M:,j to represent its ith row

and jth column, respectively. Moreover, for sets A and B,

MA,B is the submatrix of M where only the rows in A and

the columns in B are retained. For x, y ∈ {0, 1}, we define

x ≻ y if (x, y) = (1, 0) and x � y, otherwise. For a vector z,

we define supp(z) = {j : zj 6= 0}.

II. SYSTEM MODEL

The server node aims at computing T matrix-vector prod-

ucts B · vt for t ∈ [T ], where B ∈ F
r×c and vt ∈ F

c×1. In

other words, we aim at computing the tth matrix-vector prod-

uct B · vt in time-slot t ∈ [T ]. To speed up the computation,

the server can distribute the task among n workers, denoted

by the set [n]. However, a set L ⊆ [n] of |L| = L workers are

unreliable and may return incorrect/noisy results for the task
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assigned to them. We model the random behavior of these

L unreliable workers as follows: at time-slot t ∈ [T ], each

unreliable worker is attacked with probability α, and returns

an incorrect result, independent of other workers and other

time-slots. If an unreliable worker remains unattacked in a

time-slot t, it behaves reliably and returns the correct result.

We denote by Lt ⊆ L the subset of unreliable workers, which

are attacked in time-slot t. For any w ∈ L, we have

P
(

w ∈ Lt

∣

∣w ∈ L
)

= α. (1)

For the distributed computing scheme, the vectors vt’s are first

communicated to all the n workers. Moreover, each worker

w ∈ [n] receives a matrix W(w) ∈ F
s×c with s = r/k ≪ r

rows (assuming that k ∈ N divides r) obtained by using a set

of encoding functions f (w) : Fr×c −→ F
s×c as

W(w) = f (w)(B), w ∈ [n]. (2)

For each t ∈ [T ], the wth worker then computes the matrix-

vector product a
(w)
t = W(w) · vt, and sends a message back

to the server. In particular, the result ã
(w)
t returned by the wth

worker is given by

ã
(w)
t =

{

W(w) · vt if w /∈ Lt,

W(w) · vt + z
(w)
t if w ∈ Lt,

(3)

where z
(w)
t ∈ F

s×1 is the noise vector corresponding to

worker w and is independent of the noise vectors of other

attacked workers (since we assume the unreliable workers to

be non-colluding). The server is then required to identify the

unreliable workers and subsequently reconstruct/decode the

correct product B · vt by applying a decoding function g(·)
on the results received from (a subset of) the reliable workers.

We propose a distributed computing scheme where the

encoding functions f (i) in (2) and the decoding function g are

such that the overall computational complexity at the server is

low because: (i) the set of unreliable workers can be identified

with a low computational cost of O
(

L log(n)
α

)

×O
(

rn
Lk

)

; and

(ii) the decoding can be performed with a cost of O
(

rn
k

)

×T
operations for T matrix-vector products.

III. GROUP TESTING FOR IDENTIFYING UNRELIABLE

WORKERS

We are interested in identifying the set of all unreliable

workers L. Here, we face two main challenges: (1) workers

cannot be tested individually, and (2) an unreliable worker is

not always attacked and hence, we cannot identify it from its

result in a single time-slot.

Instead, we can test a group of workers, and a test result

will be negative if all the unreliable workers in the selected

group are unattacked during the time-slot of interest. In other

words, a test performed based on the results of time-slot t
will be positive if and only if there is at least one attacked

unreliable worker w ∈ Lt in the tested group.

We let mt be the number of tests that are performed in time-

slot t ∈ [T ]. Then the total number of tests is M :=
∑T

t=1 mt.

These tests can be represented using a contact matrix

M(c) ∈ {0, 1}M×n, where M
(c)
j,w = 1 if and only if the wth

worker is included in the jth test. The tests conducted in time-

slot t correspond to the rows Tt=[1 +
∑t−1

j=1 mt :
∑t

j=1 mt] of

M(c). We can use a vector x ∈ {0, 1}n×1 to indicate whether

or not each worker is unreliable, that is, xw = 1 if and only

if w ∈ L. Ideally, if all the unreliable workers were always

attacked, i.e., α = 1, the result of the tests can be represented

by a vector y(c) ∈ {0, 1}M as

y(c) = M(c) ⊙ x, (4)

where the multiplication and addition are logical and and or,

respectively. More precisely, we have y
(c)
i =

∨n
j=1(M

(c)
i,j ∧xj).

To capture the unreliable behavior of the compromised

workers, we adopt the notation in [17], and define a sampling

matrix M(s) which is obtained from the contact matrix M(c) as

M
(s)
Tt,w

=

{

M
(c)
Tt,w

if w ∈ ([n] \ L) ∪ Lt,

0 if w ∈ L \ Lt.
(5)

Moreover, the result of the actual tests in the presence of

unreliable workers is given by

y = M(s) ⊙ x. (6)

To understand how the sampling matrix models the unreliable

behavior, let us assume that worker w was selected to be

included in a test j ∈ Tt in time-slot t. Then, we have

M
(c)
j,w = 1. If w ∈ Lt, then in time-slot t the unreliable

worker is attacked and exposes its true identity and therefore,

we should have y
(c)
j = yj = 1, which is achieved by setting

M
(s)
j,w = M

(c)
j,w in such a scenario. Now, assume that worker w

is unreliable (i.e., xw = 1), but unattacked in time-slot t, that

is, w ∈ L \ Lt. In this case, w hides its true identity. Since

M
(c)
j,w = 1, we have y

(c)
j = 1. But the actual test result yj

should not be influenced by w. This unattacked behavior of

worker w in test j ∈ Tt is captured by setting M
(s)
j,w = 0.

Note that if α = 1, then Lt = L for all t ∈ [T ], and

therefore M
(c)
j,w = M

(s)
j,w for all j ∈ [M ] and w ∈ [n], which

reduces the problem to the classical group testing problem [8].

Examples of a contact matrix M(c) and a sampling matrix

M(s) for n = 5 workers, T = 2, m1 = 2, and m2 = 1 is

given in (7). Here, L = {3, 4}, and L1 = {4}. Since worker 3
is unattacked at t = 1, the entries of M(c) at column 3 and

T1 = [1 : 2] are replaced by 0 in M(s):

M(c)=





1 0 0 1 0
0 1 1 0 0
1 1 0 1 0



, M(s)=





1 0 0 1 0
0 1 0 0 0
1 1 0 1 0



. (7)

Remark 1. Note that the tests are always conducted according

to the contact matrix M(c), but due to the random behavior

of the unreliable workers, the actual result of the tests is

determined by y = M(s) ⊙ x (rather than y(c) = M(c) ⊙ x).

We seek to minimize the number of tests M , i.e., design a

contact matrix M(c) with as few rows as possible, such that,

given M(c) and y, we can identify the unreliable set L (or

equivalently the vector x), with an arbitrarily small probability



of error (as n → ∞). In particular, we are interested in

characterizing how the number of tests M should scale with

respect to the underlying parameters, n, L and α, to achieve

a vanishing error probability.

To construct M(c), we consider parameters (Z,m), where

we assume mt = m tests are performed only for t ∈ [Z]
(i.e., mt = 0 for t > Z). Therefore, the total number of

tests performed is M = mZ . The parameters (m,Z) will

be determined later to guarantee the identification of the

unreliable workers with high probability.

Probabilistic construction for M(c) and M(s): We generate

M(c) ∈ F
Zm×n randomly, where each entry is drawn from

a Bernoulli distribution with parameter q := θ
L (where the

parameter θ will be determined later), independent of all other

entries. For this scheme, the corresponding sampling matrix

M(s) is generated from M(c) as follows,

M
(s)
Tz,w

=

{

M
(c)
Tz,w

if w ∈ ([n] \ L) ∪ Lz ,

0 if w ∈ L \ Lz ,
(8)

where, Tz = [(z − 1)m + 1 : zm] is the set of rows which

correspond to time-slot z ∈ Z .

The (d, ǫ)-threshold decoder: For z ∈ [Z], we let

yTz
∈ {0, 1}m be the test result vector of time-slot z, which

is given by yTz
= M

(s)
Tz,:

⊙x, where Tz = [(z− 1)m+1 : zm]
is the set of tests in time-slot z. Moreover, we define the score

of a worker w ∈ [n] in time-slot z by Iw,z , which is given by

Iw,z =











1 if M
(c)
Tz,w

� yTz
and M

(c)
Tz,w

6= 0,

ǫ if M
(c)
Tz,w

= 0,

0 if M
(c)
Tz,w

6� yTz
.

(9)

Then, a worker w will be marked as unreliable (i.e., x̂w = 1)

if and only if Iw :=
∑Z

z=1 Iw,z ≥ d. Note that an unreliable

worker’s score is expected to be higher than a reliable worker’s

score. We leverage this fact to obtain the following result that

guarantees the success of the proposed decoder (with high

probability) for a proper choice of parameters.

Theorem 1. For any arbitrary, but a-priori fixed, L-

sparse vector x and any error exponent β > 0,

there exists a choice of parameters (q,m,Z, d, ǫ) such

that the (d, ǫ)-threshold decoder can decode x with er-

ror probability Pe = P[X̂ 6= x|X = x] ≤ n−β with at most

450(1 + β)L log(n)
α tests.

Remark 2. In this work, we focus on noise-level-independent

Bernoulli designs of the contact matrix M(c) with parameter

q = θ
L (where q does not depend on the noise parameter α).

Advantages of such a design include: (1) increased robustness

against erroneous estimates of α, and (2) no requirement of

redesigning M(c) every time that α fluctuates. Under such a

construction of M(c), it is not difficult to show an information

theoretic converse of O
(

L log(n)
α log(1/α)

)

tests for the group testing

noise model considered in this work. The (d, ǫ)-threshold

decoder almost achieves this converse, except for a small

factor of log(1/α). Moreover, noise-level-dependent designs

could lead to better achievable bounds, as it has been observed

in other noise models [20], [21] and we intend to explore such

designs in the extended version of this paper.

In the proof of Theorem 1, we will show that under a proper

choice of (q,m,Z, d, ǫ), the error probability vanishes as n−β .

In particular, we set (q,m,Z, ǫ) =
(

θ
L ,

L
θ ,

λ log n
α , θα

)

, where

λ and θ ∈ [0, 1] are design parameters, to be determined later.

Moreover, the value of d is given in (14).

We will need the following two propositions, which play an

essential role in the proof. The proofs of the propositions are

presented in Appendix A and Appendix B.

Proposition 1. The total expected scores for reliable and

unreliable workers are given by,

µf := E
[

Iw
∣

∣w /∈ L
]

=Z(hL − (1−ǫ)(1−q)
m
), (10)

µm := E
[

Iw
∣

∣w ∈ L
]

=Z(α+(1−α)hL−1−(1−ǫ)(1−q)m),

where for every integer x ∈ [0 : L], we have that

hx :=
∑x

ℓ=0

(

x

ℓ

)

αℓ(1− α)x−ℓ
(

1− q(1− q)ℓ
)m

. (11)

Proposition 2. Assume qm ≤ 1. Then, hx in (11) satisfies

(1−q)m ≤ hL≤ (1−q)m +mLq2α, (12)

and, hL − (1− α)hL−1 ≤ α(1−mq(1− qL)/2). (13)

Proof of Theorem 1. There are two types of error associ-

ated with the (d, ǫ)-threshold decoder: (i) a false alarm,

where a worker w ∈ [n] \ L is identified as un-

reliable, and (ii) a mis-detection error, where an unre-

liable worker w ∈ L is identified as reliable. Cor-

respondingly, we define P+(w) := P(Iw ≥ d|w /∈ L) and

P−(w) = P(Iw < d|w ∈ L), where d is the decoder parameter

which is set to

d := (1 + η)µf = (1 + η)Z(hL − (1 − ǫ)(1− q)m), (14)

where η > 0 will be determined later. Since there are L
unreliable and n−L reliable workers, using the union bound,

the total error probability is upper bounded by

Pe ≤
∑

w∈[n]\L

P+(w) +
∑

w∈L

P−(w). (15)

In the following, we will bound both probabilities of error for

the regime of parameters of interest. We start with

P+(w)=P
(

Iw≥d
∣

∣ w /∈ L
)

= P
(

Iw≥(1 + η)µf

∣

∣ w /∈ L
)

(a)

≤ exp

(

−
η2

2+η
µf

)

=exp

(

−
η2

2+η
Z(hL− (1− ǫ)(1−q)

m
)

)

(b)

≤ exp

(

−
η2

2 + η
Zǫ(1− q)

m

)

(c)

≤ exp

(

−
η2

2+η
θ exp

(

−
qm

1−q

)

Zα

)

(d)
= exp(−ζ1Zα), (16)

where: (a) is due to the Chernoff bound; in (b) we used

Proposition 2; (c) follows from the facts that ǫ = θα, and



1 − x ≥ exp
(

− x
1−x

)

which holds for x < 1; and in (d), we

used the choice of parameters (q,m) =
(

θ
L ,

L
θ

)

which yields

1− q ≥ 1− θ and

ζ1 =
η2

2 + η
θ exp

(

−
1

1− q

)

≥
η2

2 + η
θ exp

(

−
1

1− θ

)

.

Similarly, for P−(w) we can write

P−(w) = P(Iw < d|w ∈ L) = P(Iw < (1− δ)µm|w ∈ L)

≤ exp

(

−
1

2
δ2µm

)

, (17)

where δ := µm−d
µm

. We note that

µm − d = µm − (1 + η)µf

= Z[α− η(hL − (1− ǫ)(1 − q)m)− (hL − (1− α)hL−1)]

(e)

≥ Z

[

α− η(ǫ(1 − q)m +mLq2α)− α

(

1−
mq(1− qL)

2

)]

(f)
= Zα[−ηθ(1− q)m − ηmLq2 +mq/2−mLq2/2]

= ζ2Zα, (18)

where (e) follows from Proposition 2, and in (f) we plugged

in ǫ = θα. Note that

ζ2 =
mq

2
−ηθ(1− q)m −

(

η +
1

2

)

mLq2

(g)

≥
1

2
− θ
(

η exp(−1) +
(

η +
1

2

))

,

where in (g) we used the facts that (q,m) =
(

θ
L ,

L
θ

)

and

(1 − q)m ≤ exp(−mq) = exp(−1).
Moreover, we have that

µm = Z[α+ (1− α)hL−1 − (1− ǫ)(1− q)m]

(h)

≤ Z[α+ ǫ(1− q)m +mLq2α] = ζ3Zα, (19)

where the inequality in (h) follows from the chain of in-

equalities (1− α)hL−1 ≤ hL−1 ≤ hL ≤ (1− q)m +mLq2α,

which is implied by Proposition 2. Note that since ǫ = θα,

we have

ζ3 = 1 + θ(1− q)m +mLq2
(i)

≤ 1 + θ exp(−1) + θ,

where (i) follows since (q,m) =
(

θ
L ,

L
θ

)

and from the fact that

(1 − q)m ≤ exp(−mq) = exp(−1). Therefore, plugging (18)

and (19) into (17), we get

P−(w) ≤ exp

(

−
1

2

(µm − d)2

µm

)

≤ exp

(

−
1

2

ζ22Z
2α2

ζ3Zα

)

= exp(−ζ4Zα), (20)

where ζ4 = ζ22/2ζ3. Now, setting (θ, η) = (0.15, 1), we have

ζ1, ζ4 > ζ := 0.015. Plugging (16) and (20) in (15), we get

Pe ≤ (n− L) exp(−ζ1Zα) + L exp(−ζ4Zα)

(j)

≤ n exp

(

−ζ
λ logn

α
α

)

= exp(−(ζλ− 1) logn)
(k)
= n−β,

where (j) holds for ζ1, ζ4 > ζ and Z = λ logn
α , and (k) follows

from the fact that λ = (1+β)/ζ. Note that the total number of

tests is mZ = L
θ

λ log n
α < 450(1 + β)L logn

α . This completes

the proof of Theorem 1.

IV. DISTRIBUTED SCHEME

In this section, we present the distributed computing scheme

by dividing the scheme into the following three subsections.

A. Generator Matrix for Encoding

To obtain the generator matrix for encoding, we start with

the group testing contact matrix M(c) ∈ {0, 1}M×n that we

obtained in Section III, where M = mZ . We design a random

parity matrix M(p) ∈ F
M×n, given by M

(p)
i,j = M

(c)
i,j · Qi,j ,

where the entries of Q ∈ F
M×n are chosen uniformly and

independently at random from F \ {0}. We will use the linear

code induced by M(p) for pre-coding of the matrix B. To this

end, let G ∈ F
k×n be the generator matrix of the systematic

code induced by the parity-check matrix M(p), that is,

G =
[

Ik×k

∣

∣Rk×(n−k)

]

,

for some matrix R ∈ F
k×(n−k) where1 k = n − M and G

satisfies M(p) · GT = 0.

Next, we use the matrix G for encoding the original matrix

B ∈ F
r×c. To this end, B is first divided horizontally into k

equal parts B1,B2, · · · ,Bk. Then, for w ∈ [n] we generate

the matrix W(w) ∈ F
s×c (where s = r/k), given by

W(w) =
∑k

j=1
Gj,wBj , (21)

and send it to worker w, who is responsible for computing the

product a
(w)
t = W(w) · vt.

B. Group Testing for Identifying the Unreliable Workers

Worker w will return the result ã
(w)
t in (3), which may or

may not be equal to the expected result a
(w)
t , depending on

whether w ∈ Lt or not (i.e., worker w is attacked in time-

slot t or not; see (3)). The server can not determine if ã
(w)
t

is correct or incorrect only from the information provided by

worker w. However, the set of correct results {a
(w)
t : w ∈ [n]}

satisfy M parity equations, corresponding to the M rows of

the parity-check matrix M(p). To formalize this, we define a

parity check function as follows.

Parity Check Function: Consider some i ∈ [M ] and a set

of workers Ui = supp
(

M
(p)
i,:

)

with the corresponding results

{ã
(j)
t : j ∈Ui}. We define the parity check function Γt(Ui) as

Γt(Ui) :=
∑

j∈Ui

M
(p)
i,j ã

(j)
t , (22)

which can be used to check if there is any attacked (and hence

unreliable) worker in the set Ui that returned an incorrect result

in time-slot t ∈ [T ]. The following lemma, the proof of which

is in Appendix C, states important properties of Γt(·).

1We note that in general it is rather unlikely, but possible, that M(p)

is not full-rank. In spite of that, we can always find k = n − M linearly
independent vectors in Fn which are orthogonal to the rows of M(c).



Lemma 1. In the finite field F, for every i ∈ [M ] and set

Ui = supp(M
(p)
i,: ), we have

P[Γt(Ui) = 0|Ui ∩ Lt = ∅] = 1,

P[Γt(Ui) = 0|Ui ∩ Lt 6= ∅] =
1

|F|
.

(23)

We now discuss the use of the parity check function to

identify the set of unreliable workers.

Probabilistic Group Testing: In time-slot z ∈ [Z], the server

computes ŷj for j ∈ Tz = [(m− 1)z + 1 : mz], (where the

parameters Z and m are specified in Section III) as follows,

ŷj =

{

0 if Γz(Uj) = 0,

1 otherwise,
(24)

where Uj = supp
(

M
(p)
j,:

)

= supp
(

M
(c)
j,:

)

, since M
(c)
j,w = 0 if

and only if M
(p)
j,w = 0. Hence, the parity equation on Uj is

equivalent to a group test on Uj . However, due to (23), we get

P(ŷ = y) = P

(

ŷ = M(s) ⊙ x

)

≥ (1− 1/|F|)
M
,

or equivalently, P(ŷ 6= y) ≤ 1 − (1− 1/|F|)
M

≤ M
|F| . There-

fore, the server can use the (d, ǫ)-threshold decoder to identify

all the unreliable workers L with an error probability less

than n−β + M
|F| , where the n−β and M

|F| represent the upper

bounds on the errors due to probabilistic group testing and the

probabilistic nature of the parity-check function, respectively.

Remark 3. Here, we need to choose a finite field with

|F| ≫ M to guarantee the success of the algorithm with high

probability. However, using a more sophisticated analysis for

group testing, we can consider the underlying model similar

to [22], in which the results of the tests are passed through a

Z-channel, i.e., P(ŷj = 0|yj = 1) = 1/|F|.

Average Computational Cost of Identifying Unreliable

Workers: On average, each row of M(p) contains qn = θn
L

non-zero elements and ã
(w)
t has s = r

k elements. There-

fore, the computational cost of Γt(Uj) for j ∈ [M ] is

O
(

θnr
kL

)

= O
(

nr
kL

)

. Moreover, a total of M = O
(

L log(n)
α

)

such tests are performed. Therefore, the total cost of identify-

ing the unreliable workers is O
(

rn log(n)
kα

)

. Note that this does

not scale with T , the number of vectors to be multiplied by B.

Moreover, for the interesting regime where L logn
α = o(n), we

have M = o(n) and hence k = n−M = Θ(n). Consequently,

in this regime, the total cost of identifying the unreliable

workers will be O
(

r log(n)
α

)

.

C. Reconstruction of Incorrect Results and Decoding

Note that after performing group testing, the server knows

the set of unreliable workers L with a probability of error

less than n−β + M
|F| . Since the generator matrix is of the

form G =
[

Ik×k

∣

∣Rk×(n−k)

]

, the first k workers received

matrices {B1,B2, · · · ,Bk} and were expected to compute

{a
(1)
t = B1 · vt, a

(2)
t = B2 · vt, · · · , a

(k)
t = Bk · vt} in time-

slot t. Now, if the server was lucky and all of the first k

workers were reliable, that is, L ∩ [k] = ∅, then ã
(w)
t = a

(w)
t

for all w ∈ [k] and therefore the correct matrix-vector product

B · vt is directly given by the result of the first k workers,

without any extra decoding computation cost at the server.

However, if one or more of these k workers were unreliable,

that is, L ∩ [k] 6= ∅, then ã
(w)
t may not be equal to a

(w)
t

for w ∈ L ∩ [k]. In the following, we show that the server

can reconstruct the correct answers a
(w)
t for all the unreliable

workers w ∈ L with vanishing probability of error. Towards

this end, we first define a reconstruction criterion as follows.

Reconstruction Criterion: For any worker w ∈ L, the parity

matrix M(p) satisfies the reconstruction criterion if M(p) has

a row i whose support Ui = supp
(

M
(p)
i,:

)

has the following

properties: (i) Ui ∩ L = w and (ii) Ui ∩ ([n] \ L) 6= ∅.

The following lemma shows that if M(p) satisfies the

reconstruction criterion for a worker w ∈ L, then the server

can reconstruct the correct result a
(w)
t of w. The proof of the

lemma is presented in Appendix D.

Lemma 2. If the parity matrix M(p) satisfies the reconstruc-

tion criterion for a worker w ∈ L, then the correct result a
(w)
t

of w can be reconstructed as follows,

a
(w)
t =

(

M
(p)
i,w

)−1(

M
(p)
i,wã

(w)
t − Γt(Ui)

)

,

where i ∈ [M ] is a row for which the two conditions of the

reconstruction criterion are satisfied and Ui = supp(M
(p)
i,: ).

In the next lemma, we show that M(p) satisfies the re-

construction criterion for all unreliable workers w ∈ L with

vanishing probability of error. The proof of the lemma is

presented in Appendix E.

Lemma 3. The parity matrix M(p) constructed from the

group testing contact matrix M(c) satisfies the reconstruction

criterion for all the unreliable workers w ∈ L, with an error

probability less than n−β .

Since the reconstruction criterion holds for every w ∈ L
with a probability of error less than n−β , the server can

reconstruct the results of all the unreliable workers with an

error probability less than n−β+M
|F|+n−β = 2n−β+M

|F| , where

n−β+ M
|F| and n−β are upper bounds on the error probabilities

for the identification of the unreliable workers and for the

reconstruction of the correct results of the unreliable workers,

respectively. Once the correct results are reconstructed, the

server can use the first k workers’ results to obtain the matrix-

vector product B · vt.

Average Computational Cost of Decoding: On average,

each row of M(p) contains qn = θn
L non-zero elements and

ã
(j)
t has s = r

k elements. Therefore, the computational cost of

reconstructing each unreliable worker’s answer by Lemma 2 is

O
(

θnr
kL

)

= O
(

nr
kL

)

. Moreover, the total cost of reconstructing

all of the L unreliable workers’ results is O
(

nr
k

)

. Once the

unreliable workers’ results are reconstructed, the matrix-vector

product B · vt is given by stacking the correct results of

first k workers, which has no additional cost. Therefore, the

computational cost of decoding is O
(

nr
k

)

.
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APPENDIX A

PROOF OF PROPOSITION 1

We start by noting that

P(Iw,z = ǫ) = P

(

M
(c)
Tz,w

= 0

)

=
∏

j∈Tz

P

(

M
(c)
j,w = 0

)

= (1− q)m. (25)

For a reliable worker w /∈ L, we have that

P
(

Iw,z = 1
∣

∣w /∈ L
)

= P

(

M
(c)
Tz,w

� yTz
,M

(c)
Tz,w

6= 0
∣

∣w /∈ L
)

(a)
= P

(

M
(c)
Tz,w

� yTz

∣

∣w /∈ L
)

− P

(

M
(c)
Tz,w

= 0
∣

∣w /∈ L
)

(b)
=

L
∑

ℓ=0

P

(

M
(c)
Tz,w

� yTz

∣

∣ |Lz|=ℓ, w /∈L
)

P(|Lz |=ℓ)

− (1− q)m, (26)

where (a) follows from the fact that the event M
(c)
Tz,w

= 0 is a

subset of the event M
(c)
Tz,w

� yTz
, and in (b) we used the law

of total probability and the fact that the event M
(c)
Tz,w

= 0 is

independent of w, and it occurs with probability (1− q)m, as

shown in (25). Moreover, we have that

P

(

M
(c)
Tz,w

� yTz

∣

∣ |Lz| = ℓ, w /∈ L
)

(c)
=
∏

j∈Tz

P

(

M
(c)
j,w � yj

∣

∣ |Lz| = ℓ, w /∈ L
)

=
∏

j∈Tz

(

1− P

(

M
(c)
j,w ≻ yj

∣

∣ |Lz| = ℓ, w /∈ L
))

=
∏

j∈Tz

(

1− P

(

M
(c)
j,w = 1,yj = 0

∣

∣ |Lz | = ℓ, w /∈ L
))

(d)
=
∏

j∈Tz

(

1−P

(

M
(c)
j,w=1,

{

M
(c)
j,u=0;u ∈ Lz

}∣

∣ |Lz|=ℓ, w /∈L
))

=
∏

j∈Tz

(

1− q(1− q)ℓ
)

=
(

1− q(1− q)ℓ
)m

, (27)

where (c) follows from the fact that the entries of M(c) are

generated independently and therefore, all of its rows are

independent of each other, and in (d) we used the fact that in

the presence of |Lz | = ℓ unreliable attacked workers, yj = 0 if

and only if none of the unreliable attacked workers are selected

in group j. Note that each unreliable worker will be attacked in

each time-slot with probability α, independent of all the other

workers. Hence, P(|Lz | = ℓ) =
(

L
ℓ

)

αℓ(1− α)
L−ℓ

. Plugging

this and (27) into (26), we arrive at

P
(

Iw,z = 1
∣

∣w /∈ L
)

=

L
∑

ℓ=0

(

L

ℓ

)

αℓ(1− α)L−ℓ(1− q(1 − q)ℓ)m − (1− q)m

= hL − (1− q)m. (28)

Therefore, from (25) and (28), we get

E[Iw |w /∈ L] =

Z
∑

z=1

E[Iw,z|w /∈ L]

= Z(hL − (1− q)m + ǫ(1− q)m), (29)

which proves the first claim in Proposition 1.

Next, consider an unreliable worker w ∈ L. First, using the

law of total probability, we can write

P
(

Iw,z = 1
∣

∣ w ∈ L
)

= P
(

Iw,z = 1
∣

∣ w ∈ Lz, w ∈ L
)

P(w ∈ Lz|w ∈ L)

+ P
(

Iw,z = 1
∣

∣ w /∈ Lz , w ∈ L
)

P(w /∈ Lz |w ∈ L)

(a)
= αP

(

Iw,z =1
∣

∣w ∈ Lz

)

+(1−α)P
(

Iw,z =1
∣

∣w ∈ L \ Lz

)

, (30)

where in (a) we have used the fact that Lz ⊆ L. Then, similar

to (26), we can evaluate the first term in (30) as

P
(

Iw,z = 1
∣

∣ w ∈ Lz

)

= P

(

M
(c)
Tz,w

� yTz

∣

∣w ∈ Lz

)

− P

(

M
(c)
Tz,w

= 0
∣

∣w ∈ Lz

)

(b)
= 1− (1− q)

m
, (31)

where (b) holds because when w ∈ Lz (i.e., w is an attacked

unreliable worker), M
(c)
j,w = 1 implies yj = 1.

The second term in (30) can be evaluated similar to (26)

and (27). However, since w ∈ L \ Lz , the size of Lz can be

any integer between 0 and L− 1. This leads to

P
(

Iw,z = 1
∣

∣ w ∈ L \ Lz

)

= hL−1 − (1− q)m. (32)

Plugging (31) and (32) in (30) we get

P
(

Iw,z = 1
∣

∣ w ∈ L
)

= α(1− (1− q)m) + (1− α)(hL−1 − (1− q)m)

= α+ (1 − α)hL−1 − (1 − q)m. (33)

Therefore, using (33) and (25), we get

E[Iw |w ∈ L] =

Z
∑

z=1

E[Iw,z|w ∈ L]

= Z(α+ (1− α)hL−1 − (1− ǫ)(1− q)m),

which completes the proof of Proposition 1.

APPENDIX B

PROOF OF PROPOSITION 2

The lower bound follows easily from the definition of hL.

Since (1− q)ℓ ≤ 1, we have that

hL =

L
∑

ℓ=0

(

L

ℓ

)

αℓ(1− α)L−ℓ
(

1− q(1− q)ℓ
)m

≥

L
∑

ℓ=0

(

L

ℓ

)

αℓ(1− α)L−ℓ(1− q)
m

= (1− q)
m
.



In order to prove the upper bound, we first note that

g(ℓ) := (1− q(1− q)ℓ)m is a concave function provided that

mq ≤ 1. Note, in fact, that

d2g(ℓ)

dℓ2
=

−mq(log(1−q))2(1−q)ℓ(1−mq(1−q)ℓ)g(ℓ)

(1 − q(1− q)ℓ)2
≤0,

when mq ≤ 1. Then, using Jensen’s inequality, we get

hL =

L
∑

ℓ=0

(

L

ℓ

)

αℓ(1− α)L−ℓ
(

1− q(1 − q)ℓ
)m

(a)
= E[g(ℓ)]

(b)

≤ g(E[ℓ]) = g(αL) =
(

1− q(1 − q)Lα
)m

(c)

≤
(

1− q + Lαq2
)m (d)

≤ (1− q)m +mLαq2, (34)

where: the expectation in (a) is with respect to a bino-

mial distribution Bin(L, α), in (b) we used Jensen’s in-

equality, (c) holds because (1 − q)Lα ≥ 1 − qLα by

Bernoulli’s inequality, and (d) follows from the inequal-

ity (x + y)m ≤ xm +myxm−1 along with the fact that

(1 − q)m−1 ≤ 1. This completes the proof of (12).

Next, we have that

hL − (1 − α)hL−1

=

L
∑

ℓ=0

αℓ(1− α)L−ℓ
(

1− q(1− q)ℓ
)m
((

L

ℓ

)

−

(

L− 1

ℓ

))

(e)

≤

L
∑

ℓ=0

αℓ(1− α)L−ℓ(1− q(1− qL))
m

(

L− 1

ℓ− 1

)

= α(1 − q(1− qL))m
L−1
∑

k=0

(

L− 1

k

)

αk(1 − α)L−1−k

= α(1 − q(1− qL))m
(f)

≤ α
(

1−
mq

2
(1 − qL)

)

, (35)

where in (e) we used the Pascal’s identity as well as the fact

that (1 − q)ℓ ≥ (1 − q)L ≥ 1 − qL for every ℓ ≤ L, and

(f) follows from (1 − x)m ≤ 1 − mx/2, which holds true

provided that mx ≤ 1. This proves (13) and concludes the

proof of Proposition 2.

APPENDIX C

PROOF OF LEMMA 1

First the correct answers {a
(j)
t : j ∈ Ui} satisfy a parity

corresponding to the row M
(p)
i,: as follows,

∑

j∈Ui

M
(p)
i,j a

(j)
t

(a)
=
∑

w∈[n]

M
(p)
i,wa

(w)
t =

∑

w∈[n]

M
(p)
i,w

(

W(w) · vt

)

=

n
∑

w=1

M
(p)
i,w





k
∑

j=1

Gj,wBj · vt





=

k
∑

j=1

n
∑

w=1

(

M
(p)
i,wGj,w

)

Bj · vt
(b)
= 0, (36)

where (a) follows since Ui = supp
(

M
(p)
i,:

)

and (b) follows

because M(p) · GT = 0. Moreover, by (3), we know that

ã
(j)
t = a

(j)
t + z

(j)
t for j ∈ Lt ∩ Ui and ã

(j)
t = a

(j)
t for

j ∈ Ui \ Lt. Therefore, we have

Γt(Ui) =
∑

j∈Ui

M
(p)
i,j ã

(j)
t =

∑

j∈Ui

M
(p)
i,j a

(j)
t +

∑

j∈Lt∩Ui

M
(p)
i,j z

(j)
t

(c)
=
∑

j∈Lt∩Ui

M
(p)
i,j z

(j)
t ,

where (c) follows from (36). Then, we have that

P[Γt(Ui) = 0] = P





∑

j∈Lt∩Ui

M
(p)
i,j z

(j)
t = 0





=

{

1 if Lt ∩ Ui = ∅,
1
|F| if Lt ∩ Ui 6= ∅,

(37)

where the last equation follows because the unreliable work-

ers are assumed to be non-colluding and unaware of the

entries of M(p). This implies that each entry of the vector
∑

j∈Lt∩Ui
M

(p)
i,j z

(j)
t is a linear combination of the correspond-

ing entries chosen by the attacked workers in Lt ∩ Ui, and

since these workers are not communicating, they choose their

inserted noises independent of each other. Hence, their linear

combination admits a uniform distribution over F, which will

be 0 with probability2 1/|F|. This concludes the proof of

Lemma 1.

APPENDIX D

PROOF OF LEMMA 2

If the parity matrix M(p) satisfies the reconstruction criterion

for a worker w ∈ L, then there exists a row i ∈ [M ]
in M(p) which satisfies Ui ∩ L = w and Ui ∩ ([n] \ L) 6= ∅.

Therefore, we have that

(

M
(p)
i,w

)−1(

M
(p)
i,wã

(w)
t − Γt(Ui)

)

=
(

M
(p)
i,w

)−1



M
(p)
i,wã

(w)
t −

∑

j∈Ui

M
(p)
i,j ã

(j)
t





(a)
=
(

M
(p)
i,w

)−1



M
(p)
i,wã

(w)
t −

∑

j∈[n]\L

M
(p)
i,j ã

(j)
t −

∑

j∈L

M
(p)
i,j ã

(j)
t





(b)
=
(

M
(p)
i,w

)−1



M
(p)
i,wã

(w)
t −

∑

j∈[n]\L

M
(p)
i,j ã

(j)
t −M

(p)
i,wã

(w)
t





(c)
=
(

M
(p)
i,w

)−1



−
∑

j∈[n]\L

M
(p)
i,j a

(j)
t





=
(

M
(p)
i,w

)−1



−
∑

j∈[n]\L

M
(p)
i,j a

(j)
t −M

(p)
i,wa

(w)
t +M

(p)
i,wa

(w)
t





2It may seem that this probability should be 1/|F|s, since there are s
entries in the vector of interest. However, the attacked worker may only insert
noise in a certain position, and not all the entries may be corrupted by their
noise.



=
(

M
(p)
i,w

)−1



−
∑

j∈Ui

M
(p)
i,j a

(j)
t



+ a
(w)
t

(d)
= a

(w)
t ,

where: (a) follows since Ui = supp
(

M
(p)
i,:

)

, (b) follows

because Ui∩L = w by the reconstruction criterion, (c) follows

because for reliable workers j ∈ [n] \ L, ã
(j)
t = a

(j)
t , and (d)

holds because
∑

j∈Ui
M

(p)
i,j a

(j)
t = 0 by (36). This concludes

the proof of Lemma 2.

APPENDIX E

PROOF OF LEMMA 3

Note that each entry of the group testing contact matrix

M(c) ∈ {0, 1}M×n is identically and independently (i.i.d.)

generated and is equal to 1 and 0 with probabilities q = θ
L

and 1− q, respectively (where θ ≤ 1). Therefore, every entry

in the corresponding parity matrix M(p) is non-zero and zero

with probabilities q and 1−q, respectively. Let Ew be the event

that M(p) satisfies the reconstruction criterion for w ∈ L and

let Uj = supp
(

M
(p)
j,:

)

for j ∈ [M ]. Then, we have that

P(Ec
w) =

M
∏

j=1

P((Uj ∩ L 6= w) ∪ (Uj ∩ ([n] \ L) = ∅))

=

M
∏

j=1

(1− P((Uj ∩ L = w) ∩ (Uj ∩ ([n] \ L) 6= ∅)))

=
M
∏

j=1

(

1−P

(

M
(p)
j,w 6= 0

)

P

(

M
(p)
j,L\{w}= 0

)

P

(

M
(p)
j,[n]\L 6= 0

))

(a)
=
(

1− q(1− q)L−1
(

1− (1 − q)n−L
))M

≤
(

1− q(1− q)L
(

1− (1− q)n−L
))M

=
(

1− q(1− q)L + q(1− q)n
)M

(b)

≤
(

1− q(1− q)L + q(1− q)2L
)M

(c)

≤

(

1− q exp

(

−
θ

1− θ
L

)

+ q exp(−2θ)

)M

(d)

≤

(

1− q exp

(

−
θ

1− θ

)

+ q exp(−2θ)

)M

=

(

1−
θrθ
L

)M (e)

≤ exp

(

−
Mθrθ
L

)

,

where, rθ , exp
(

− θ
1−θ

)

− exp(−2θ) is a

constant function of θ. Step (a) follows because

P

(

M
(p)
j,w 6= 0

)

= q, P

(

M
(p)
j,L = 0

)

= (1 − q)L−1 and

P

(

M
(p)
j,[n]\L 6= 0

)

= 1− P

(

M
(p)
j,[n]\L= 0

)

= 1 − (1 − q)n−L;

in (b), we have assumed3 that n ≥ 2L; (c) follows from

exp(− x
1−x ) ≤ 1 − x ≤ exp(−x) which holds for 0 < x < 1

and setting q = θ
L from the choice of parameters in

3This assumption is justified because L = o(n) for group testing to be
relevant, because if L ≈ n, then testing one worker at a time is optimal and
there is no requirement for group testing [23], [11].

Section III; in (d), we have used the fact that L ≥ 1; and

finally (e) follows because 1 − x ≤ exp(−x). Moreover,

using the union bound, the probability that the reconstruction

criterion does not hold for at least one unreliable worker is

upper bounded by

∑

w∈L

P(Ec
w)≤L exp

(

−
Mθrθ
L

)

≤n exp

(

−
Mθrθ
L

)

(f)
= n exp

(

−
450(1+β) log(n)θrθ

α

)

(g)

≤ n−β,

where in (f) we have used the value of M found in Section III

and in (g) we have used the choice of parameter θ = 0.15 from

Section III. This concludes the proof of Lemma 3.
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