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Abstract

This paper introduces a novel information-theoretic perspective on the relationship between
prominent group fairness notions in machine learning, namely statistical parity, equalized odds,
and predictive parity. It is well known that simultaneous satisfiability of these three fairness
notions is usually impossible, motivating practitioners to resort to approximate fairness solutions
rather than stringent satisfiability of these definitions. However, a comprehensive analysis of
their interrelations, particularly when they are not exactly satisfied, remains largely unexplored.
Our main contribution lies in elucidating an exact relationship between these three measures
of (un)fairness by leveraging a body of work in information theory called partial information
decomposition (PID). In this work, we leverage PID to identify the granular regions where
these three measures of (un)fairness overlap and where they disagree with each other leading to
potential tradeoffs. We also include numerical simulations to complement our results.

1 Introduction

The increasing adoption of machine learning (ML) in high-stakes applications such as employment,
finance, healthcare, etc, promises enhanced efficiency and improved decision-making. However, this
widespread reliance on ML systems has escalated concerns about the disparate impact [1–9] that
these systems might cause on unprivileged groups based on sensitive attributes such as gender, race,
age, etc. Several anti-discrimination laws and ethical principles [1] are being actively put forth to
ensure algorithmic fairness.

Existing literature has studied a plethora of definitions, metrics, and scholarly debates about
algorithmic fairness [2,3]. Central to the debate of quantifying fairness at a group level are three
popular definitions, namely, statistical parity, equalized odds, and predictive parity [2, 3, 10]. Due to
the multitude of fairness definitions available, it is often unclear which measure of fairness is most
appropriate to adopt in a given setting [11]. Furthermore, it is also well-known that simultaneous
satisfiability of these three fairness definitions is generally impossible [12–14].

Given such a fundamental impossibility, practitioners often strive for approximate fairness
solutions rather than stringent satisfiability of all these definitions. Such approximate fairness
solutions consist of two pivotal aspects: (i) quantification of (un)fairness (i.e., a gap from exact
satisfiability); and (ii) development of strategies to mitigate such unfairness in ML models. For
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Figure 1: Illustrates the decomposition of mutual information I(Z; Ŷ , Y ) using the chain rule.
(left) shows the decomposition into Statistical Parity and Predictive Parity. (right) shows the
decomposition into I(Z;Y ) and Equalized Odds. No further insights into the overlapping regions of
these measures, highlighting the need for measures to capture the nuanced interactions between
fairness measures.

instance, one may jointly minimize one or more measures of unfairness while training an ML
model which has often led to empirical tradeoffs between accuracy and different measures of
unfairness [15,16].

Although previous studies have identified certain impossibilities among these fairness notions [12–
14], a detailed analysis focusing on the interrelationships among different measures of unfairness,
specifically explaining when they will be in agreement and when they will be in disagreement leading
to potential tradeoffs has received limited attention.

Our research bridges this gap by leveraging Partial Information Decomposition (PID) [17], a
body of work in information theory, to elucidate the exact relationship between different measures
of unfairness. In particular, we consider information-theoretic quantifications [18] of the respective
gaps from statistical parity, equalized odds, and predictive parity as our measures of unfairness.
Using PID, we demonstrate the exact relationship between these three measures of unfairness in
Proposition 1. We also refer to Fig. 1 and Fig. 4 for a pictorial illustration of the relationship
between the measures of unfairness.

PID enables us to provide a unified information-theoretic framework that is instrumental in
establishing the fundamental limits and tradeoffs among these unfairness measures, particularly in
the context of approximate fairness solutions when exact satisfiability of all three fairness definitions
is not met. Furthermore, the impossibility among the three fairness definitions can also be derived
from our result (see Theorem 1). We also identify and delineate the regions of agreement and
disagreement among these three measures of unfairness (see Section 3), providing insights on when
there will be a tradeoff and when there will be no tradeoff among the measures of unfairness. We
perform numerical simulations on the Adult dataset [19] to complement our theoretical results.
Moreover, our work holds broader implications in fields such as algorithmic fairness auditing [8],
where it can significantly contribute to the evaluation of fairness in ML models.
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1.1 Related Works

Existing literature has introduced several foundational definitions and methods for fairness in
machine learning (see some comprehensive overviews and surveys [2–5]). Another line of work
focuses on exploring trade-offs between fairness and accuracy [15,16,20–31].

Early works on impossibility results among different fairness measures highlight the challenges of
simultaneously satisfying multiple group fairness criteria [12–14,32, 33]. Notably, [34] challenges the
practical implications of the impossibility theorem, showing that fairness across multiple criteria is
more achievable than previously believed. Similarly, [31] presents an integer-programming-based
framework for optimizing post-processing methods to simultaneously satisfy multiple fairness criteria
under small violations while maintaining a minimal reduction in model performance. However,
the nuanced interrelationships among different measures of unfairness, specifically explaining when
they will be in agreement and when they will be in disagreement leading to potential tradeoffs has
received limited attention.

Information-theoretic measures have been used to quantify group fairness in existing literature
[7, 18, 35–44]. For instance, [7, 18] have already used mutual information and conditional mutual
information to quantify statistical parity, equalized odds, and predictive parity. Closely related
to our work, [30] explores whether fairness measures can be gradually compatible using these
information-theoretic quantifications and chain rule, also showing that some fairness criteria can be
simultaneously improved through fairness-regularized predictors. Our work dives deeper into this
nuanced tradeoff among the three group fairness measures leveraging a body of work in information
theory called Partial Information Decomposition (PID) that goes beyond chain rule, delineating
regions of agreement and disagreement.

PID is recently gaining traction across various ML applications [7,25,37,45–51]. It is particularly
noteworthy in the realm of algorithmic fairness [7, 25, 37, 45]. Prior work [7, 37] leverages PID to
dissect total disparity in decision-making into exempt and non-exempt components depending on
which features they came from. Another work [25] leverages PID to analyze the trade-offs between
global and local fairness in a federated learning setting, identifying three sources of unfairness, and
formulates a convex optimization problem to define the theoretical limits of accuracy and fairness
trade-offs. We also refer to [45] for a survey of PID in fairness and explainability. Understanding
tradeoffs and agreement disagreement between the three canonical group fairness measures, namely
statistical parity, equalized odds, and predictive parity, using PID has not been studied. We aim to
develop a unified information-theoretic framework that effectively formalizes the fundamental limits
and trade-offs among these three unfairness measures.

2 Preliminaries

Let X denote the input features, Z denote the sensitive attribute, and Y denote the true label. The
sensitive attribute Z is assumed to be binary with 1 indicating the privileged group and 0 indicating
the unprivileged group. We also let Ŷ represent the predictions of a model, i.e., Ŷ = fθ(X) where
the model is parameterized by θ. Standard machine learning aims to minimize the empirical risk:

min
θ

L(θ) = min
θ

1

n

n∑
i=1

l(fθ(xi), yi), (1)

where l(·, ·) is a predefined loss function, xi is the input feature, yi ∈ {0, 1} is the true label, and n

is the number of datapoints in the dataset.
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Figure 2: Venn diagram showing PID of I(Z;A,B).

2.1 Background on Partial Information Decomposition

Partial Information Decomposition (PID) [17] decomposes the total mutual information about a
random variable Z contained in the tuple (A,B), i.e., I(Z;A,B) into four nonnegative terms as
follows (also see Fig. 2):

I(Z;A,B) = Uni(Z:A|B) + Uni(Z:B|A) (2)

+Red(Z:A,B) + Syn(Z:A,B)

Here, Uni(Z:A|B) denotes the unique information about Z that is present only in A and not in B.
E.g., shopping preferences (A) may provide unique information about gender (Z) that is not present
in address (B). Red(Z:A,B) denotes the redundant information about Z that is present in both A

and B. E.g., zipcode (A) and county (B) may provide redundant information about race (Z). The
term Syn(Z:A,B) denotes the synergistic information not present in either A or B individually, but
present jointly in (A,B), e.g., each individual digit of the zipcode may not have information about
race but together they provide significant information. Before formally defining these terms, we
provide an example.
Motivational Example. Let Z=(Z1, Z2, Z3) with each Zi∼ i.i.d. Bern(1/2). Let A = (Z1, Z2, Z3⊕
N), B = (Z2, N), and N ∼ Bern(1/2) which is independent of Z. Here, I(Z;A,B) = 3 bits. The
unique information about Z that is contained only in A and not in B is effectively in Z1, and is given
by Uni(Z:A|B) = I(Z;Z1) = 1 bit. The redundant information about Z that is contained in both A

and B is effectively in Z2 and is given by Red(Z:A,B) = I(Z;Z2) = 1 bit. Lastly, the synergistic
information about Z that is not contained in either A or B alone, but is contained in both of them
together is effectively in the tuple (Z3 ⊕N,N), and is given by Syn(Z:A,B)=I(Z; (Z3 ⊕N,N)) = 1

bit. This accounts for the 3 bits in I(Z;A,B).
We also note that defining any one of the PID terms suffices in obtaining the others. This is because

of another relationship among the PID terms as follows [17]: I(Z;A) = Uni(Z:A|B) + Red(Z:A,B).
Essentially Red(Z:A,B) is viewed as the sub-volume between I(Z;A) and I(Z;B) (see Fig. 2).
Hence, Red(Z:A,B) = I(Z;A) − Uni(Z:A|B). Lastly, Syn(Z:A,B) = I(Z;A,B) − Uni(Z:A|B) −
Uni(Z:B|A)−Red(Z:A,B) (can be obtained from (2) once both unique and redundant information
has been defined). The main results of our paper hold regardless of the specific definition of a given
PID term. However, our experiments are based on the precise definition of Uni(Z:A|B) from [17].

Definition 1 (Unique Information [17]). Let ∆ be the set of all joint distributions on (Z,A,B)

and ∆p be the set of joint distributions with the same marginals on (Z,A) and (Z,B) as the true
distribution, i.e., ∆p = {Q∈∆ : PrQ(Z = z,A = a) = Pr(Z = z,A = a) and PrQ(Z = z,B = b) =
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Pr(Z = z,B = b)}. Then,
Uni(Z:A|B) = min

Q∈∆p

IQ(Z;A|B), (3)

where IQ(Z;A|B) is the conditional mutual information when (Z,A,B) have joint distribution Q

and PrQ(·) denotes the probability under Q.

Operational meaning of Unique Information from Blackwell sufficiency: Unique informa-
tion is closely tethered to Blackwell Sufficiency [52] in statistical decision theory. The concept of
Blackwell sufficiency [52] from statistical decision theory helps characterize if a random variable A is
more informative than B about Z (also relates to stochastic degradation of channels [51, 53]). A
channel PB|Z is Blackwell sufficient with respect to another channel PA|Z (also denoted as B ≥Z A)
if there exists a stochastic transformation PA′|B such that the effective channel from Z to A′ is
equivalent to the original channel from Z to A (see Fig. 3). The unique information Uni(Z:A|B) is 0 if
and only if PB|Z is Blackwell sufficient with respect to PA|Z [17,51,53]. Otherwise, Uni(Z:A|B) > 0,
and it is viewed as a departure from Blackwell sufficiency, i.e., there exists a scenario where A gives
something unique about Z that you can never get after degrading to B.

Figure 3: Blackwell sufficiency of channel PB|Z with respect to PA|Z means A has no unique
information about Z that is not in B.

3 Decomposition of the Measures of Unfairness

We first introduce the information-theoretic quantification corresponding to the three definitions
of fairness, namely, statistical parity, equalized odds, and predictive parity. Statistical parity
(independence), requires the model prediction Ŷ to be statistically independent of the sensitive
attribute Z. Several measures have been proposed to quantify the gap from statistical parity
[3, 54] (essentially dependence between Ŷ and Z). In this work, we use the information-theoretic
quantification of the statistical parity gap as defined next.

Definition 2 (Statistical Parity Gap). The statistical parity gap of a model fθ with respect to Z is
defined as I(Z; Ŷ ), the mutual information between Z and Ŷ (where Ŷ = fθ(X)).

The concept of statistical parity has often been criticized for not considering the true labels. A
perfect predictor Ŷ = Y might not satisfy this criterion if Y is correlated to the sensitive attribute Z.
Hence, the concept of equalized odds emerges as an alternative definition of fairness [10]. Equalized
odds (separation) require the model’s predictions Ŷ to be independent of the sensitive attribute Z,
conditioned on the true label Y , i.e., Z ⊥⊥ Ŷ |Y .

Definition 3 (Equalized Odds Gap). The equalized odds gap of a model fθ with respect to Z is
defined as I(Z; Ŷ |Y ), the conditional mutual information between Z and Ŷ given Y .

Yet another vital fairness measure is predictive parity (sufficiency), which focuses on error parity
among individuals given the same prediction [2]. Predictive parity requires the sensitive attribute Z

to be independent of the true label Y conditioned on the model prediction Ŷ , i.e., Z ⊥⊥ Y |Ŷ .
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Definition 4 (Predictive Parity Gap). The predictive parity gap of a model fθ with respect to Z is
defined as I(Z;Y |Ŷ ), the conditional mutual information between Z and Y given Ŷ .

We leverage PID to derive exact relationships among the three measures of unfairness. We
decompose the statistical parity gap I(Z; Ŷ ), equalized odds gap I(Z; Ŷ |Y ), and predictive parity
gap I(Z;Y |Ŷ ) into nonnegative overlapping terms. The significance of this decomposition is that
it highlights regions where these measures are in agreement and disagreement. Fig. 1 and Fig. 4
provides a pictorial illustration of the overlaps between these three measures of unfairness.

Proposition 1. The statistical parity gap I(Z; Ŷ ), equalized odds gap I(Z; Ŷ |Y ), and predictive
parity gap I(Z;Y |Ŷ ) can be decomposed into nonnegative terms as follows:

I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ). (4)

I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y ) + Syn(Z:Ŷ , Y ). (5)

I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ). (6)

The term Uni(Z:Ŷ |Y ) quantifies the unique information about the sensitive attribute Z in the
model prediction Ŷ that is not there in the true label Y . Uni(Z:Ŷ |Y ) is the common region between
the statistical parity gap and the equalized odds gap, highlighting the region where they overlap. The
term Red(Z:Ŷ , Y ) quantifies the information about sensitive attribute Z that is common between
prediction Ŷ and true label Y . Red(Z:Ŷ , Y ) contributes only to the statistical parity gap I(Z; Ŷ ) and
not to any other measure of unfairness. The term Syn(Z:Ŷ , Y ) represents the synergistic information
about sensitive attribute Z that is not present in either Ŷ or Y individually but is present jointly in
(Ŷ , S). Syn(Z:Ŷ , Y ) is the common region between equalized odds gap and predictive parity gap,
highlighting their region of agreement. The unique information Uni(Z:Y |Ŷ ) contributes exclusively
to the predictive parity gap I(Z;Y |Ŷ ). This decomposition delineates the distinct regions where
these unfairness measures overlap and diverge, offering a nuanced perspective on the interplay in
machine learning models.

To better illustrate this decomposition, we now provide examples to understand each of these
regions separately. Consider a hiring scenario featuring binary sensitive attributes and true labels
i.e., Ŷ , Z, Y ∈ {0, 1} with Z∼ Bern(1/2).

Example 1 (Pure Uniqueness to Model Prediction). Let Ŷ = Z and Z ⊥⊥ Y (an equal base rate for
privileged and unprivileged groups). Suppose, the model only approves privileged candidates (Z = 1)
but rejects the unprivileged (Z = 0). This model violates both statistical parity and equalized odds,
i.e., I(Z; Ŷ ) = I(Z; Ŷ |Y ) = 1. This model satisfies predictive parity criterion, I(Z;Y |Ŷ ) = 0. This
is a case of purely unique information in the model prediction that is not in the true label since all
the information about Z is derived exclusively from the model predictions; the true label Y does not
correlate with Z. Here, Uni(Z:Ŷ |Y ) = 1, Red(Z:Ŷ , Y ) = 0, Syn(Z:Ŷ , Y ) = 0, and Uni(Z:Y |Ŷ ) = 0.

Example 2 (Pure Redundancy). Let Ŷ = Y and Y = Z with probability 0.9. There is a correlation
between the true label Y and protected attribute Z, but this model has perfect accuracy. Such
a model satisfies equalized odds and predictive parity criterion, i.e., I(Z; Ŷ |Y ) = I(Z;Y |Ŷ ) = 0.
However, the model fails to satisfy statistical parity since I(Z; Ŷ ) = 0.53. This is a case of purely
redundant information since the information about Z is entirely common between both Ŷ and Y .
Here, Uni(Z:Ŷ |Y ) = 0, Red(Z:Ŷ , Y ) = 0.53, Syn(Z:Ŷ , Y ) = 0, and Uni(Z:Y |Ŷ ) = 0.

Example 3 (Pure Synergy). Let Ŷ = Z XNOR Y and Z ⊥⊥ Y . The model approves candidates
from the privileged group (Z = 1) with true label Y = 1, and also from the unprivileged group (Z = 0)
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Figure 4: Venn diagram showing the exact relationship between the various unfairness measures
using PID: A critical observation is that all four PID terms are nonnegative. This enables us to
derive several fundamental limits and tradeoffs among the unfairness measures, providing a nuanced
understanding of when they agree and disagree.

with Y = 0. On the other hand, it rejects candidates from the unprivileged group (Z = 0) with true
label Y = 1, and the privileged group (Z = 1) with true label Y = 0. Such a model violates equalized
odds (and predictive parity) as it singularly prefers one group within each true label class. Thus,
I(Z; Ŷ |Y ) = 1, and I(Z;Y |Ŷ ) = 1. However, it achieves statistical parity since it maintains an
equal approval rate for both privileged and unprivileged groups with I(Z; Ŷ ) = 0. This is a case of
synergistic information about Z that is not observable in either Ŷ or Y individually but is present
jointly in Y, Ŷ . Here, Uni(Z:Ŷ |Y ) = 0, Red(Z:Ŷ , Y ) = 0, Syn(Z:Ŷ , Y ) = 1, and Uni(Z:Y |Ŷ ) = 0.

Example 4 (Pure Uniqueness to True Label). Let Y = Z with probability 0.9 and Z ⊥⊥ Ŷ . The
true label Y is highly correlated to sensitive attribute Z, but the model prediction Ŷ is independent of
sensitive attribute Z. This model violates predictive parity (I(Z;Y |Ŷ ) = 0.53) but satisfies statistical
parity and equalized odds (I(Z; Ŷ ) = I(Z; Ŷ |Y ) = 0). This is a case of unique information about
sensitive attributes in the true label that is not in the model prediction. Here, Uni(Z:Ŷ |Y ) = 0,
Red(Z:Ŷ , Y ) = 0, Syn(Z:Ŷ , Y ) = 0, and Uni(Z:Y |Ŷ ) = 0.53.

These examples demonstrate scenarios of pure uniqueness, redundancy, and synergy to help us
understand the decomposition. PID serves as a tool to highlight regions of agreement and disagree-
ment between these fairness definitions. In contrast, traditional fairness metrics lack the granularity
to capture these nuanced interactions, making PID an essential asset for a more comprehensive
understanding and mitigation of disparities.

We can go beyond the impossibility between the three fairness definitions and further analyze
their interrelationships.

Theorem 1 (Revisiting Impossibility). If I(Z; Ŷ , Y )>0, at least one of the PID terms, namely,
Uni(Z:Ŷ |Y ), Red(Z:Ŷ , Y ), Syn(Z:Ŷ , Y ), or Uni(Z:Y |Ŷ ) will be nonnegative. Hence, at least one of
the fairness measures, namely, the Statistical Parity Gap (I(Z; Ŷ )), Equalized Odds Gap (I(Z; Ŷ |Y )),
or Predictive Parity Gap (I(Z;Y |Ŷ )) will be nonzero. Conversely, all these unfairness measures will
be zero if and only if I(Z; Ŷ , Y ) = 0.
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Figure 5: (left) Illustrates Theorem 3, showing that when Statistical Parity is satisfied, the
Predictive Parity gap is greater than or equal to the Equalized Odds gap, and if I(Z;Y )=0, then
I(Z;Y |Ŷ )=I(Z; Ŷ |Y ). (right) visualizes Theorem 5 illustrating that when Equalized Odds is satisfied
and I(Z;Y )>0, there is an inverse relationship (tradeoff) between Statistical Parity and Predictive
Parity (I(Z; Ŷ )=I(Z;Y )−I(Z;Y |Ŷ )) since I(Z;Y ) is fixed.

Proof Sketch: The proof relies on the nonnegativity of each of the PID terms (also recall Fig. 4). PID
of I(Z; Ŷ , Y ) is expressed as I(Z; Ŷ , Y ) = Uni(Z:Ŷ |Y ) +Uni(Z:Y |Ŷ ) +Red(Z:Ŷ , Y ) + Syn(Z:Ŷ , Y ).
Since each component in this decomposition is nonnegative, the presence of mutual information
(I(Z; Ŷ , Y ) > 0) implies that at least one of these terms is nonzero. According to Proposition 1,
each of these PID terms influences at least one unfairness measure. Therefore, the nonnegativity of
any one of these terms results in at least one of the unfairness measures being nonzero.

This is a general result from which one can also derive the impossibility of the three fairness
definitions under specific conditions. Our next result examines the unfairness measures only when
I(Z;Y ) > 0. It is important to note that I(Z;Y ) is an inherent characteristic of the dataset alone
and hence it is independent of the model predictions.

Theorem 2 (Dataset Dependent Relationships). If I(Z;Y )>0, either the Statistical Parity Gap
I(Z; Ŷ ) or the Predictive Parity Gap I(Z;Y |Ŷ ) must be greater than zero.

Proof Sketch: The proof relies on demonstrating that the mutual information between Z and Y can
be expressed as:

I(Z;Y ) = Uni(Z:Y |Ŷ ) + Red(Z:Y, Ŷ ). (7)

Though, the PID terms Uni(Z:Y |Ŷ ) and Red(Z:Y, Ŷ ) may vary based on the model chosen, their
sum remains constant, reflecting the fixed nature of the mutual information between Z and Y in the
dataset. Notably, Uni(Z:Y |Ŷ ) contributes to the predictive parity gap, and Red(Z:Y, Ŷ ) contributes
to the statistical parity gap (recall Fig. 4).

4 Tradeoffs Between Unfairness Measures

In this section, we delineate the fundamental limits and tradeoffs between various unfairness measures.
Our findings underscore the intricate and sometimes conflicting nature of different fairness objectives
in algorithmic decision-making. Examining fairness through the lens of PID uncovers the nuanced
interplay between different unfairness measures.
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First, we will explore scenarios where models are trained with a focus on achieving any one
specific fairness criterion and analyze its implications on the other two fairness notions. This applies
to models that have been trained to achieve fairness either through in-processing techniques, such
as adding fairness regularizers to the loss function, or through post-processing methods that adjust
model outputs after training.

Theorem 3. If Statistical Parity is satisfied, i.e., I(Z; Ŷ ) = 0, then the Predictive Parity Gap is
greater than the Equalized Odds Gap, i.e., I(Z;Y |Ŷ ) ≥ I(Z; Ŷ |Y ). Additionally, if the dataset is
such that I(Z;Y ) = 0, then Predictive Parity and Equalized Odds are equivalent, i.e., I(Z;Y |Ŷ ) =

I(Z; Ŷ |Y ).

Proof Sketch: We refer to Fig. 4 for an intuitive understanding of the proof. Given that Statistical
Parity is zero, we have I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ) = 0. Since all PID terms are non-
negative, it follows that individually Uni(Z:Ŷ |Y ) = 0 and Red(Z:Ŷ , Y ) = 0. Consequently, the
Equalized Odds gap simplifies to I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y ) + Syn(Z:Ŷ , Y ) = Syn(Z:Ŷ , Y ). On the
other hand, the Predictive Parity gap is I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ). Since all PID
terms are nonnegative, it follows that I(Z;Y |Ŷ ) ≥ I(Z; Ŷ |Y ).

Furthermore, when I(Z;Y ) = 0, it results in Uni(Z:Y |Ŷ ) + Red(Z:Ŷ , Y ) = 0, leading to each
of those individual terms being zero, i.e., Uni(Z:Y |Ŷ ) = 0 and Red(Z:Ŷ , Y ) = 0. Therefore,
I(Z;Y |Ŷ ) = Syn(Z:Ŷ , Y ) = I(Z; Ŷ |Y ) (see Fig. 5 for an illustration).

Similar to Theorem 3, one can also derive the relationship between the statistical parity gap and
equalized odds gap when predictive parity is satisfied.

Theorem 4. If Predictive Parity is satisfied, i.e., I(Z;Y |Ŷ )=0, then the Statistical Parity Gap is
greater than the Equalized Odds Gap, i.e., I(Z; Ŷ ) ≥ I(Z; Ŷ |Y ). Additionally, if the dataset is such
that I(Z;Y ) = 0, then Statistical Parity and Equalized Odds are equal, i.e., I(Z;Y |Ŷ ) = I(Z; Ŷ |Y ).

Theorem 3 and 4 demonstrate scenarios where one unfairness measure dominates another and are in
agreement, now we provide a third scenario where two measures of unfairness will be in disagreement.

Theorem 5. If Equalized Odds is satisfied, i.e., I(Z; Ŷ |Y )=0 and I(Z;Y ) > 0, an inverse relationship
(tradeoff) exists between Statistical Parity and Predictive Parity, i.e., I(Z; Ŷ ) = I(Z;Y )− I(Z;Y |Ŷ ).
Thus, increasing one leads to a decrease in the other, and vice versa.

Proof Sketch Given that Equalized Odds is met, we have I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y )+Syn(Z:Ŷ , Y ) = 0.
Consequently, from nonnegativity, both the terms Uni(Z:Ŷ |Y ) and Syn(Z:Ŷ , Y ) are 0. Statistical
Parity gap simplifies to I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ) = Red(Z:Ŷ , Y ), and the Predictive
Parity gap is expressed as I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ )+Syn(Z:Ŷ , Y ) = Uni(Z:Y |Ŷ ). Hence, I(Z;Y ) =

Uni(Z:Y |Ŷ ) + Red(Z:Ŷ , Y ) = I(Z; Ŷ ) + I(Z;Y |Ŷ ). Since, I(Z;Y ) is fixed for a dataset, an increase
in the statistical parity gap leads to a decrease in the predictive parity gap, and vice versa (see
Fig. 5 for an illustration).

5 Experimental Demonstrations

In this section, we provide an experimental demonstration on the Adult dataset [19] to validate
our theoretical findings. The classification task for this dataset involves predicting whether an
individual’s income exceeds 50K per year, using features such as occupation, education, etc. We use
gender as a sensitive attribute.
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Table 1: Results of Regularizers on Different Measures of Unfairness

Regularizers
Equalized Odds I(Z; Ŷ |Y )

Statistical Parity I(Z; Ŷ ) Predictive Parity I(Z;Y |Ŷ )

Red(Z:Ŷ , Y ) Uni(Z:Ŷ |Y ) Syn(Z:Ŷ , Y ) Uni(Z:Y |Ŷ )

SP 0.012 0.000 0.001 0.024
PP 0.026 0.007 0.008 0.011
EO 0.011 0.000 0.001 0.026
EO, PP 0.000 0.000 0.000 0.037
SP, PP 0.000 0.000 0.000 0.037
SP, EO 0.008 0.000 0.000 0.028
SP, EO, PP 0.000 0.000 0.000 0.037

We train a neural network consisting of a sequence of layers: the input layer is followed by
three hidden layers, each with 32 units and ReLU activation, and concludes with a single output
layer using a sigmoid activation function. Training is conducted using a batch size of 512, and the
Adam optimizer with a learning rate of 0.01. We apply various fairness regularizers and measure
the unfairness as well as their decomposition (results are summarized in Table.1). We use the dit
package [55] for PID computation and FairTorch [56] for fairness regularizer implementation.

A key observation in our analysis is that I(Z;Y ) consistently measures 0.037 using the Adult
dataset. This mass does not decrease across various models since it only depends on the dataset.
The PID terms in I(Z;Y ), i.e., Uni(Z:Y |Ŷ ) and Red(Z:Ŷ , Y ) contribute to either predictive parity
or statistical parity gap. When statistical parity is achieved (scenario with SP regularizer), the
predictive parity gap is greater than the equalized odds gap. Also due to the impossibility of
attaining zero unfairness with all the measures (see scenario with SP, EO, and PP regularizers), the
mass typically moves to Uni(Z:Y |Ŷ ), contributing to the predictive parity. The experiments confirm
the theoretical insights by illustrating the inherent trade-offs between fairness measures. Specifically,
even with fairness regularizers, achieving zero unfairness across all metrics is impossible due to the
fixed information content in the dataset, i.e., I(Y ;Z). The movement of unfairness mass between
statistical parity and predictive parity highlights the difficulty of balancing fairness across multiple
criteria, reinforcing the necessity of carefully considering these trade-offs in real-world applications.

6 Conclusion

By introducing this unifying framework, we provide a tool for gaining a more nuanced understanding
of the interplay between different unfairness measures, thereby improving the decision-making and
deployment of fair machine learning systems. Our work holds broader implications in fields such
as fairness auditing [8], explainability [57–59], policy regulation [1, 14], where it can significantly
contribute to the evaluation and understanding of unfairness in machine learning models. This
work not only furthers the theoretical discourse but would also have significant societal implications,
guiding the trajectory toward more responsible and equitable machine learning in high-stakes settings.
Future work could explore efficient methods to estimate PID [49,50,60–62] (also see [45] for more
discussion on PID estimation).

10



References

[1] The White House. Blueprint for an ai bill of rights: Making automated systems work for the
american people. https://www.whitehouse.gov/ostp/ai-bill-of-rights/, 2022. Accessed:
[30 Jan, 2024].

[2] Dana Pessach and Erez Shmueli. A review on fairness in machine learning. ACM Comput.
Surv., 55(3), feb 2022.

[3] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A
survey on bias and fairness in machine learning. ACM Computing Surveys (CSUR), 54(6):1–35,
2021.

[4] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and machine learning, 2019.

[5] Kush R Varshney. Trustworthy Machine Learning. Independently Published, Chappaqua, NY,
2021.

[6] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. Fairness-aware learning through regu-
larization approach. In 2011 IEEE 11th International Conference on Data Mining Workshops,
pages 643–650. IEEE, 2011.

[7] Sanghamitra Dutta, Praveen Venkatesh, Piotr Mardziel, Anupam Datta, and Pulkit Grover. Fair-
ness under feature exemptions: Counterfactual and observational measures. IEEE Transactions
on Information Theory, 67(10):6675–6710, 2021.

[8] Faisal Hamman, Jiahao Chen, and Sanghamitra Dutta. Can Querying for Bias Leak Protected
Attributes? Achieving Privacy With Smooth Sensitivity. In Proceedings of the 2023 ACM
Conference on Fairness, Accountability, and Transparency, pages 1358–1368, 2023.

[9] Jacy Anthis and Victor Veitch. Causal context connects counterfactual fairness to robust
prediction and group fairness. Advances in Neural Information Processing Systems, 36, 2024.

[10] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 2016.

[11] Anne L Washington. How to argue with an algorithm: Lessons from the compas-propublica
debate. Colo. Tech. LJ, 17:131, 2018.

[12] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair
determination of risk scores. arXiv preprint arXiv:1609.05807, 2016.

[13] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism
prediction instruments. Big data, 5(2):153–163, 2017.

[14] Solon Barocas and Andrew D. Selbst. Big data’s disparate impact. California Law Review,
104:671, 2016.

[15] S. Dutta, D. Wei, H. Yueksel, P. Y. Chen, S. Liu, and K. R. Varshney. Is there a trade-
off between fairness and accuracy? a perspective using mismatched hypothesis testing. In
International Conference on Machine Learning (ICML), pages 2803–2813, 2020.

11

https://www.whitehouse.gov/ostp/ai-bill-of-rights/


[16] Joon Sik Kim, Jiahao Chen, and Ameet Talwalkar. Fact: A diagnostic for group fairness
trade-offs. In International Conference on Machine Learning, pages 5264–5274. PMLR, 2020.

[17] Nils Bertschinger, Johannes Rauh, Eckehard Olbrich, Jürgen Jost, and Nihat Ay. Quantifying
unique information. Entropy, 16(4):2161–2183, 2014.

[18] AmirEmad Ghassami, Sajad Khodadadian, and Negar Kiyavash. Fairness in supervised learning:
An information theoretic approach. In 2018 IEEE international symposium on information
theory (ISIT), pages 176–180, 2018.

[19] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[20] Hao Wang, Luxi He, Rui Gao, and Flavio Calmon. Aleatoric and epistemic discrimination: Fun-
damental limits of fairness interventions. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[21] Han Zhao and Geoffrey J Gordon. Inherent tradeoffs in learning fair representations. The
Journal of Machine Learning Research, 23(1):2527–2552, 2022.

[22] Irene Chen, Fredrik D Johansson, and David Sontag. Why is my classifier discriminatory?
Advances in neural information processing systems, 31, 2018.

[23] Carol Xuan Long, Hsiang Hsu, Wael Alghamdi, and Flavio Calmon. Individual arbitrariness
and group fairness. In Thirty-seventh Conference on Neural Information Processing Systems,
2023.

[24] Meiyu Zhong and Ravi Tandon. Intrinsic fairness-accuracy tradeoffs under equalized odds.
arXiv preprint arXiv:2405.07393, 2024.

[25] Faisal Hamman and Sanghamitra Dutta. Demystifying local and global fairness trade-offs
in federated learning using partial information decomposition. International Conference on
Learning Representations (ICLR), 2024.

[26] Praveen Venkatesh, Sanghamitra Dutta, Neil Mehta, and Pulkit Grover. Can information flows
suggest targets for interventions in neural circuits? Advances in Neural Information Processing
Systems, 34:3149–3162, 2021.

[27] Sivan Sabato and Elad Yom-Tov. Bounding the fairness and accuracy of classifiers from
population statistics. In International conference on machine learning, pages 8316–8325. PMLR,
2020.

[28] Aditya Krishna Menon and Robert C Williamson. The cost of fairness in classification. arXiv
preprint arXiv:1705.09055, 2017.

[29] Suyun Liu and Luis Nunes Vicente. Accuracy and fairness trade-offs in machine learning: A
stochastic multi-objective approach. Computational Management Science, 19(3):513–537, 2022.

[30] Corinna Hertweck and Tim Räz. Gradual (in) compatibility of fairness criteria. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 36, pages 11926–11934, 2022.

[31] Brian Hsu, Rahul Mazumder, Preetam Nandy, and Kinjal Basu. Pushing the limits of fairness
impossibility: Who’s the fairest of them all? Advances in Neural Information Processing
Systems, 35:32749–32761, 2022.

12



[32] Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of opportunity in supervised
learning. In Advances in Neural Information Processing Systems, volume 29, pages 3315–3323,
2016.

[33] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness
and calibration. Advances in neural information processing systems, 30, 2017.

[34] Andrew Bell, Lucius Bynum, Nazarii Drushchak, Tetiana Zakharchenko, Lucas Rosenblatt, and
Julia Stoyanovich. The possibility of fairness: Revisiting the impossibility theorem in practice.
In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency,
pages 400–422, 2023.

[35] Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. Fairness-aware classifier
with prejudice remover regularizer. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings,
Part II 23, pages 35–50. Springer, 2012.

[36] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ramamurthy, and
Kush R Varshney. Optimized pre-processing for discrimination prevention. Advances in neural
information processing systems, 30, 2017.

[37] S. Dutta, Praveen Venkatesh, Piotr Mardziel, Anupam Datta, and Pulkit Grover. An information-
theoretic quantification of discrimination with exempt features. In AAAI Conference on Artificial
Intelligence, 2020.

[38] Jaewoong Cho, Gyeongjo Hwang, and Changho Suh. A fair classifier using mutual information.
In 2020 IEEE international symposium on information theory (ISIT), pages 2521–2526. IEEE,
2020.

[39] Sina Baharlouei, Maher Nouiehed, Ahmad Beirami, and Meisam Razaviyayn. Renyi fair
inference. arXiv preprint arXiv:1906.12005, 2019.

[40] Vincent Grari, Boris Ruf, Sylvain Lamprier, and Marcin Detyniecki. Fairness-aware neural
reyni minimization for continuous features. arXiv preprint arXiv:1911.04929, 2019.

[41] Hao Wang, Hsiang Hsu, Mario Diaz, and Flavio P. Calmon. The impact of split classifiers on
group fairness. In 2021 IEEE International Symposium on Information Theory (ISIT), page
3179–3184. IEEE Press, 2021.

[42] Sainyam Galhotra, Karthikeyan Shanmugam, Prasanna Sattigeri, and Kush R Varshney. Causal
feature selection for algorithmic fairness. In Proceedings of the 2022 International Conference
on Management of Data, pages 276–285, 2022.

[43] Wael Alghamdi, Hsiang Hsu, Haewon Jeong, Hao Wang, Peter Michalak, Shahab Asoodeh, and
Flavio Calmon. Beyond adult and compas: Fair multi-class prediction via information projection.
In Advances in Neural Information Processing Systems, volume 35, pages 38747–38760. Curran
Associates, Inc., 2022.

[44] Peter Kairouz, Jiachun Liao, Chong Huang, Maunil Vyas, Monica Welfert, and Lalitha Sankar.
Generating fair universal representations using adversarial models. IEEE Transactions on
Information Forensics and Security, 17:1970–1985, 2022.

13



[45] Sanghamitra Dutta and Faisal Hamman. A review of partial information decomposition in
algorithmic fairness and explainability. Entropy, 25(5):795, 2023.

[46] Tycho MS Tax, Pedro AM Mediano, and Murray Shanahan. The partial information decompo-
sition of generative neural network models. Entropy, 19(9):474, 2017.

[47] Paul Pu Liang, Yun Cheng, Xiang Fan, Chun Kai Ling, Suzanne Nie, Richard Chen, Zihao
Deng, Faisal Mahmood, Ruslan Salakhutdinov, and Louis-Philippe Morency. Quantifying
& modeling feature interactions: An information decomposition framework. arXiv preprint
arXiv:2302.12247, 2023.

[48] Salman Mohamadi, Gianfranco Doretto, and Donald A Adjeroh. More synergy, less re-
dundancy: Exploiting joint mutual information for self-supervised learning. arXiv preprint
arXiv:2307.00651, 2023.

[49] Ari Pakman, Amin Nejatbakhsh, Dar Gilboa, Abdullah Makkeh, Luca Mazzucato, Michael
Wibral, and Elad Schneidman. Estimating the unique information of continuous variables.
Advances in neural information processing systems, 34:20295–20307, 2021.

[50] Barproda Halder, Faisal Hamman, Pasan Dissanayake, Qiuyi Zhang, Ilia Sucholutsky, and
Sanghamitra Dutta. Quantifying spuriousness of biased datasets using partial information
decomposition. arXiv preprint arXiv:2407.00482, 2024.

[51] Praveen Venkatesh, Keerthana Gurushankar, and Gabriel Schamberg. Capturing and inter-
preting unique information. In IEEE International Symposium on Information Theory (ISIT),
pages 2631–2636, 2023.

[52] David Blackwell. Equivalent comparisons of experiments. The annals of mathematical statistics,
pages 265–272, 1953.

[53] Pradeep Kr Banerjee, Eckehard Olbrich, Jürgen Jost, and Johannes Rauh. Unique informations
and deficiencies. In Annual Allerton Conference on Communication, Control, and Computing
(Allerton), pages 32–38, 2018.

[54] Yuxin Shi, Han Yu, and Cyril Leung. A survey of fairness-aware federated learning. arXiv
preprint arXiv:2111.01872, 2021.

[55] R. G. James, C. J. Ellison, and J. P. Crutchfield. dit: a Python package for discrete information
theory. The Journal of Open Source Software, 3(25):738, 2018.

[56] Masashi Sode Akihiko Fukuchi, Yoko Yabe. Fairtorch. https://github.com/wbawakate/
fairtorch, 2021.

[57] Jianlong Zhou, Fang Chen, and Andreas Holzinger. Towards explainability for ai fairness. In
International Workshop on Extending Explainable AI Beyond Deep Models and Classifiers,
pages 375–386. Springer, 2020.

[58] Faisal Hamman, Erfaun Noorani, Saumitra Mishra, Daniele Magazzeni, and Sanghamitra
Dutta. Robust counterfactual explanations for neural networks with probabilistic guarantees.
In International Conference on Machine Learning, pages 12351–12367. PMLR, 2023.

14

https://github.com/wbawakate/fairtorch
https://github.com/wbawakate/fairtorch


[59] Faisal Hamman, Erfaun Noorani, Saumitra Mishra, Daniele Magazzeni, and Sanghamitra Dutta.
Robust algorithmic recourse under model multiplicity with probabilistic guarantees. IEEE
Journal on Selected Areas in Information Theory, pages 1–1, 2024.

[60] Praveen Venkatesh, Corbett Bennett, Sam Gale, Tamina K. Ramirez, Greggory Heller, Severine
Durand, Shawn R Olsen, and Stefan Mihalas. Gaussian partial information decomposition:
Bias correction and application to high-dimensional data. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

[61] Chaitanya Goswami, Amanda Merkley, and Pulkit Grover. Computing unique information for
poisson and multinomial systems, 2023.

[62] Michael Kleinman, Alessandro Achille, Stefano Soatto, and Jonathan C Kao. Redundant
information neural estimation. Entropy, 23(7):922, 2021.

A Proofs for Theorems in Section 3

Theorem 1 (Revisiting Impossibility). If I(Z; Ŷ , Y )>0, at least one of the PID terms, namely,
Uni(Z:Ŷ |Y ), Red(Z:Ŷ , Y ), Syn(Z:Ŷ , Y ), or Uni(Z:Y |Ŷ ) will be nonnegative. Hence, at least one of
the fairness measures, namely, the Statistical Parity Gap (I(Z; Ŷ )), Equalized Odds Gap (I(Z; Ŷ |Y )),
or Predictive Parity Gap (I(Z;Y |Ŷ )) will be nonzero. Conversely, all these unfairness measures will
be zero if and only if I(Z; Ŷ , Y ) = 0.

Proof. For completeness, we first show the non-negativity of PID terms for the PID definition that
we are using in this work (also see [17]):

Uni(Z:Ŷ |Y ) = minQ∈∆p
IQ(Z; Ŷ |Y ) is non-negative since the conditional mutual information is

non-negative by definition.
Similarly argument holds for Uni(Z:Y |Ŷ ).
Syn(Z:Ŷ , Y ) = I(Z; Ŷ |Y )−minQ∈∆p

IQ(Z; Ŷ |Y ) ≥ I(Z; Ŷ |Y )− I(Z; Ŷ |Y ) = 0.

The Redundant information:

Red(Z:Ŷ , Y ) = I(Z; Ŷ )− min
Q∈∆p

IQ(Z; Ŷ |S) = max
Q∈∆p

IQ(Ŷ ;Z)− IQ(Z; Ŷ |Y )

First equality holds by definition of redundant information. Second equality holds since marginals
on (Ŷ , Z) is fixed in ∆p, hence, maxQ∈∆p

IQ(Ŷ ;Z) = I(Ŷ ;Z).
To prove non-negativity of redundant information, we construct a distribution Q0 such that:

Pr
Q0

(Z = z, Ŷ = y, Y = y) =
Pr(Z = z, Ŷ = y) Pr(Z = z, Y = y)

Pr(Z = z)

Next, we show Q0 ∈ ∆p. Recall the set ∆p in Definition 1:

∆p = {Q ∈ ∆ : Pr
Q
(Z = z, Ŷ = y) = Pr(Z = z, Ŷ = y),Pr

Q
(Z = z, Y = y) = Pr(Z = z, Y = y)}.

Pr
Q0

(Z = z, Ŷ = y) =
∑
y

Pr
Q0

(Z = z, Ŷ = y, Y = y) =
∑
y

Pr(Z = z, Ŷ = y)

Pr(Z = z)
Pr(Z = z, Y = y)

=
Pr(Z = z, Ŷ = y)

Pr(Z = z)

∑
y

Pr(Z = z, Y = y) = Pr(Z = z, Ŷ = y).
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Pr
Q0

(Z = z, Y = y) =
∑
ŷ

Pr
Q0

(Z = z, Ŷ = y, Y = y) =
∑
ŷ

Pr(Z = z, Ŷ = y) Pr(Z = z, Y = y)

Pr(Z = z)

=
Pr(Z = z, Y = y)

Pr(Z = z)

∑
ŷ

Pr(Z = z, Ŷ = y) = Pr(Z = z, Y = y).

Marginals of Q0 satisfy conditions on set ∆p, hence Q0 ∈ ∆p. Also, note that by construction of
Q0, Ŷ and Y are independent conditioned on Z, i.e., IQ0(Ŷ ;Y |Z) = 0. Hence, we have:

Red(Z:Ŷ , Y )
(a)
= max

Q∈∆p

IQ(Z; Ŷ )− IQ(Z; Ŷ |Y )

(b)

≥ IQ0
(Z; Ŷ )− IQ0

(Z; Ŷ |Y )

(c)
= HQ0(Z) +HQ0(Ŷ )−HQ0(Z, Ŷ )−HQ0(Z|Y )−HQ0(Ŷ |Y ) +HQ0(Z, Ŷ |Y )

(d)
= IQ0

(Ŷ ;Y )− IQ0
(Ŷ ;Y |Z)

(e)
= IQ0

(Ŷ ;Y )
(f)

≥ 0.

Here, (a) hold from definition of Red(Z:Ŷ , Y ), (b) hold since Q0 ∈ ∆p, (c)-(d) holds from expressing
mutual information in terms of entropy, (e) hold since IQ0

(Ŷ ;S|Z) = 0, (f ) holds from non-negativity
property of mutual information.

Since mutual information I(Z; Ŷ , Y ) > 0, we can use the PID framework to decompose this
mutual information as:

I(Z; Ŷ , Y ) = Uni(Z:Ŷ |Y ) + Uni(Z:Y |Ŷ ) + Red(Z:Ŷ , Y ) + Syn(Z:Ŷ , Y ).

Since each of the PID components Uni(Z:Ŷ |Y ), Uni(Z:Y |Ŷ ), Red(Z:Ŷ , Y ), and Syn(Z:Ŷ , Y ) is
nonnegative, the condition I(Z; Ŷ , Y ) > 0 implies that at least one of these terms must be strictly
positive.

Next, according to Proposition 1:

I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ),

I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y ) + Syn(Z:Ŷ , Y ),

I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ).

Given that I(Z; Ŷ , Y ) > 0 ensures that at least one of Uni(Z:Ŷ |Y ), Red(Z:Ŷ , Y ), Syn(Z:Ŷ , Y ),
or Uni(Z:Y |Ŷ ) is nonnegative, it follows that: - If Uni(Z:Ŷ |Y ) > 0, then I(Z; Ŷ ) > 0. - If
Syn(Z:Ŷ , Y ) > 0, then I(Z; Ŷ |Y ) > 0 or I(Z;Y |Ŷ ) > 0. - If Red(Z:Ŷ , Y ) > 0, then I(Z; Ŷ ) > 0. -
If Uni(Z:Y |Ŷ ) > 0, then I(Z;Y |Ŷ ) > 0.

Therefore, the presence of positive mutual information I(Z; Ŷ , Y ) guarantees that at least one of
the fairness measures (I(Z; Ŷ ), I(Z; Ŷ |Y ), I(Z;Y |Ŷ )) will be nonzero.

Conversely, if all these unfairness measures are zero, then by the definitions given in Proposition 1
and non-negativity of PID terms, all the PID terms must be zero, which implies I(Z; Ŷ , Y ) = 0.

Theorem 2 (Dataset Dependent Relationships). If I(Z;Y )>0, either the Statistical Parity Gap
I(Z; Ŷ ) or the Predictive Parity Gap I(Z;Y |Ŷ ) must be greater than zero.
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Proof. We begin by expressing the mutual information between Z and Y using PID:

I(Z;Y ) = Uni(Z:Y |Ŷ ) + Red(Z:Y, Ŷ ). (8)

Next, we examine the contributions of these PID terms to the fairness measures: The term
Uni(Z:Y |Ŷ ) contributes to the Predictive Parity Gap (I(Z;Y |Ŷ )). The term Red(Z:Y, Ŷ ) contributes
to the Statistical Parity Gap (I(Z; Ŷ )).

Given that I(Z;Y ) > 0, it follows that the sum of Uni(Z:Y |Ŷ ) and Red(Z:Y, Ŷ ) is positive, i.e.,
I(Z;Y ) = Uni(Z:Y |Ŷ ) + Red(Z:Y, Ŷ ) > 0.

Since both Uni(Z:Y |Ŷ ) and Red(Z:Y, Ŷ ) are nonnegative, the fact that their sum is positive
implies that at least one of them must be strictly positive. Thus, we have two cases to consider:

1. If Uni(Z:Y |Ŷ ) > 0, then the Predictive Parity Gap (I(Z;Y |Ŷ )) must be greater than zero.
2. If Red(Z:Y, Ŷ ) > 0, then the Statistical Parity Gap (I(Z; Ŷ )) must be greater than zero.
Therefore, if I(Z;Y ) > 0, it is guaranteed that either I(Z; Ŷ ) > 0 or I(Z;Y |Ŷ ) > 0.

B Proofs for Theorems in Section 4

Theorem 3. If Statistical Parity is satisfied, i.e., I(Z; Ŷ ) = 0, then the Predictive Parity Gap is
greater than the Equalized Odds Gap, i.e., I(Z;Y |Ŷ ) ≥ I(Z; Ŷ |Y ). Additionally, if the dataset is
such that I(Z;Y ) = 0, then Predictive Parity and Equalized Odds are equivalent, i.e., I(Z;Y |Ŷ ) =

I(Z; Ŷ |Y ).

Proof. Given that Statistical Parity is zero (I(Z; Ŷ ) = 0), we have:

I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ) = 0. (9)

Since all PID terms are non-negative, this implies:

Uni(Z:Ŷ |Y ) = 0 and Red(Z:Ŷ , Y ) = 0. (10)

The Equalized Odds gap (I(Z; Ŷ |Y )) and Predictive Parity gap (I(Z;Y |Ŷ )) can be expressed as:

I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y ) + Syn(Z:Ŷ , Y ) = Syn(Z:Ŷ , Y ), (11)

I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ). (12)

Since Uni(Z:Ŷ |Y ) = 0, we have:

I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ) ≥ Syn(Z:Ŷ , Y ) = I(Z; Ŷ |Y ). (13)

Furthermore, if I(Z;Y ) = 0, we have:

I(Z;Y ) = Uni(Z:Y |Ŷ ) + Red(Z:Ŷ , Y ) = 0. (14)

This implies:

Uni(Z:Y |Ŷ ) = 0 and Red(Z:Ŷ , Y ) = 0. (15)

Therefore:

I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ) = Syn(Z:Ŷ , Y ) = I(Z; Ŷ |Y ). (16)

Thus, we have: I(Z;Y |Ŷ ) ≥ I(Z; Ŷ |Y ) when I(Z; Ŷ ) = 0, and I(Z;Y |Ŷ ) = I(Z; Ŷ |Y ) when
I(Z;Y ) = 0.
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Theorem 4. If Predictive Parity is satisfied, i.e., I(Z;Y |Ŷ )=0, then the Statistical Parity Gap is
greater than the Equalized Odds Gap, i.e., I(Z; Ŷ ) ≥ I(Z; Ŷ |Y ). Additionally, if the dataset is such
that I(Z;Y ) = 0, then Statistical Parity and Equalized Odds are equal, i.e., I(Z;Y |Ŷ ) = I(Z; Ŷ |Y ).

Proof. Given that Predictive Parity is satisfied (I(Z;Y |Ŷ ) = 0), we have:

I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ) = 0. (17)

Since all PID terms are non-negative, this implies:

Uni(Z:Y |Ŷ ) = 0 and Syn(Z:Ŷ , Y ) = 0. (18)

The Statistical Parity gap (I(Z; Ŷ )) and Equalized Odds gap (I(Z; Ŷ |Y )) can be expressed as:

I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ), (19)

I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y ) + Syn(Z:Ŷ , Y ) = Uni(Z:Ŷ |Y ). (20)

Since Uni(Z:Y |Ŷ ) = 0, we have:

I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ) ≥ Uni(Z:Ŷ |Y ) = I(Z; Ŷ |Y ). (21)

Thus, I(Z; Ŷ ) ≥ I(Z; Ŷ |Y ) when I(Z;Y |Ŷ ) = 0.
Furthermore, if I(Z;Y ) = 0, we have:

I(Z;Y ) = Uni(Z:Y |Ŷ ) + Red(Z:Ŷ , Y ) = 0. (22)

This implies:

Uni(Z:Y |Ŷ ) = 0 and Red(Z:Ŷ , Y ) = 0. (23)

Therefore: I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) and I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y ).

Hence, when I(Z;Y ) = 0, and I(Z;Y |Ŷ ) = 0, we have: I(Z; Ŷ ) = I(Z; Ŷ |Y ).

Theorem 5. If Equalized Odds is satisfied, i.e., I(Z; Ŷ |Y )=0 and I(Z;Y ) > 0, an inverse relationship
(tradeoff) exists between Statistical Parity and Predictive Parity, i.e., I(Z; Ŷ ) = I(Z;Y )− I(Z;Y |Ŷ ).
Thus, increasing one leads to a decrease in the other, and vice versa.

Proof. Given that Equalized Odds is satisfied (I(Z; Ŷ |Y ) = 0), we have:

I(Z; Ŷ |Y ) = Uni(Z:Ŷ |Y ) + Syn(Z:Ŷ , Y ) = 0. (24)

Since all PID terms are non-negative, it follows that:

Uni(Z:Ŷ |Y ) = 0 and Syn(Z:Ŷ , Y ) = 0. (25)

The Statistical Parity gap (I(Z; Ŷ )) and Predictive Parity gap (I(Z;Y |Ŷ )) can now be expressed
as:

I(Z; Ŷ ) = Uni(Z:Ŷ |Y ) + Red(Z:Ŷ , Y ) = Red(Z:Ŷ , Y ), (26)

I(Z;Y |Ŷ ) = Uni(Z:Y |Ŷ ) + Syn(Z:Ŷ , Y ) = Uni(Z:Y |Ŷ ). (27)
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Given that I(Z;Y ) > 0, we can write the mutual information between Z and Y as:

I(Z;Y ) = Uni(Z:Y |Ŷ ) + Red(Z:Ŷ , Y ). (28)

Substituting I(Z;Y |Ŷ ) and I(Z; Ŷ ) into this equation, we get:

I(Z;Y ) = I(Z;Y |Ŷ ) + I(Z; Ŷ ). (29)

Since I(Z;Y ) is fixed for a given dataset, this equation demonstrates that I(Z; Ŷ ) and I(Z;Y |Ŷ )

have an inverse relationship:

I(Z; Ŷ ) = I(Z;Y )− I(Z;Y |Ŷ ). (30)

Therefore, increasing the Statistical Parity gap (I(Z; Ŷ )) will lead to a decrease in the Predictive
Parity gap (I(Z;Y |Ŷ )), and vice versa.
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